Search results for: active learning strategies
2568 Detailed Mapping of Pyroclastic Flow Deposits by SAR Data Processing for an Active Volcano in the Torrid Zone
Authors: Asep Saepuloh, Katsuaki Koike
Abstract:
Field mapping activity for an active volcano mainly in the Torrid Zone is usually hampered by several problems such as steep terrain and bad atmosphere conditions. In this paper we present a simple solution for such problem by a combination Synthetic Aperture Radar (SAR) and geostatistical methods. By this combination, we could reduce the speckle effect from the SAR data and then estimate roughness distribution of the pyroclastic flow deposits. The main purpose of this study is to detect spatial distribution of new pyroclastic flow deposits termed as P-zone accurately using the β°data from two RADARSAT-1 SAR level-0 data. Single scene of Hyperion data and field observation were used for cross-validation of the SAR results. Mt. Merapi in central Java, Indonesia, was chosen as a study site and the eruptions in May-June 2006 were examined. The P-zones were found in the western and southern flanks. The area size and the longest flow distance were calculated as 2.3 km2 and 6.8 km, respectively. The grain size variation of the P-zone was mapped in detail from fine to coarse deposits regarding the C-band wavelength of 5.6 cm.Keywords: Geostatistical Method, Mt. Merapi, Pyroclastic, RADARSAT-1.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13072567 The Price of Knowledge in the Times of Commodification of Higher Education: A Case Study on the Changing Face of Education
Authors: Joanna Peksa, Faith Dillon-Lee
Abstract:
Current developments in the Western economies have turned some universities into corporate institutions driven by practices of production and commodity. Academia is increasingly becoming integrated into national economies as a result of students paying fees and is consequently using business practices in student retention and engagement. With these changes, pedagogy status as a priority within the institution has been changing in light of these new demands. New strategies have blurred the boundaries that separate a student from a client. This led to a change of the dynamic, disrupting the traditional idea of the knowledge market, and emphasizing the corporate aspect of universities. In some cases, where students are seen primarily as a customer, the purpose of academia is no longer to educate but sell a commodity and retain fee-paying students. This paper considers opposing viewpoints on the commodification of higher education, reflecting on the reality of maintaining a pedagogic grounding in an increasingly commercialized sector. By analysing a case study of the Student Success Festival, an event that involved academic and marketing teams, the differences are considered between the respective visions of the pedagogic arm of the university and the corporate. This study argues that the initial concept of the event, based on the principles of gamification, independent learning, and cognitive criticality, was more clearly linked to a grounded pedagogic approach. However, when liaising with the marketing team in a crucial step in the creative process, it became apparent that these principles were not considered a priority in terms of their remit. While the study acknowledges in the power of pedagogy, the findings show that a pact of concord is necessary between different stakeholders in order for students to benefit fully from their learning experience. Nevertheless, while issues of power prevail and whenever power is unevenly distributed, reaching a consensus becomes increasingly challenging and further research should closely monitor the developments in pedagogy in the UK higher education.
Keywords: Economic pressure, commodification, pedagogy, gamification, public service, marketization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7322566 Augmenting People's Creative Idea Generation Using an Artificial Intelligent Sketching Collaborator
Authors: Joseph Maloba Makokha
Abstract:
Idea generation is an important part of the design process, and many strategies to support this stage have been developed. As artificial intelligence (AI) gains adoption in many domains, we need to understand its role, if any, in the design process. This paper introduces the concept of a “Disruptive Interjector”, an AI system that frequently interjects with suggestions based on observing what a user does. The concept emanates from a study that was conducted with pairs of humans on one hand, and human-AI pairs on the other collaborating on idea generation by sketching. Results from a study show that participants who collaborated with, and took cues from the AI sketch suggestions generated more ideas; and also had more ideas ranked by experts as “creative” compared to two humans working together on the same tasks. It is notable that while researchers from diverse fields of engineering, psychology, art and others have explored conditions and environments that enhance people's creativity - and have provided insights on creativity in general - there still exists a gap on the role that AI can play on creativity. We attempt to narrow this gap.
Keywords: Artificial intelligence, design collaboration, creativity, human-machine collaboration, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10552565 Urban Corridor Management Strategy Based on Intelligent Transportation System
Authors: Sourabh Jain, Sukhvir Singh Jain, Gaurav V. Jain
Abstract:
Intelligent Transportation System (ITS) is the application of technology for developing a user–friendly transportation system for urban areas in developing countries. The goal of urban corridor management using ITS in road transport is to achieve improvements in mobility, safety, and the productivity of the transportation system within the available facilities through the integrated application of advanced monitoring, communications, computer, display, and control process technologies, both in the vehicle and on the road. This paper attempts to present the past studies regarding several ITS available that have been successfully deployed in urban corridors of India and abroad, and to know about the current scenario and the methodology considered for planning, design, and operation of Traffic Management Systems. This paper also presents the endeavor that was made to interpret and figure out the performance of the 27.4 Km long study corridor having eight intersections and four flyovers. The corridor consisting of 6 lanes as well as 8 lanes divided road network. Two categories of data were collected on February 2016 such as traffic data (traffic volume, spot speed, delay) and road characteristics data (no. of lanes, lane width, bus stops, mid-block sections, intersections, flyovers). The instruments used for collecting the data were video camera, radar gun, mobile GPS and stopwatch. From analysis, the performance interpretations incorporated were identification of peak hours and off peak hours, congestion and level of service (LOS) at mid blocks, delay followed by the plotting speed contours and recommending urban corridor management strategies. From the analysis, it is found that ITS based urban corridor management strategies will be useful to reduce congestion, fuel consumption and pollution so as to provide comfort and efficiency to the users. The paper presented urban corridor management strategies based on sensors incorporated in both vehicles and on the roads.
Keywords: Congestion, ITS Strategies, Mobility, Safety.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16592564 The Latency-Amplitude Binomial of Waves Resulting from the Application of Evoked Potentials for the Diagnosis of Dyscalculia
Authors: Maria Isabel Garcia-Planas, Maria Victoria Garcia-Camba
Abstract:
Recent advances in cognitive neuroscience have allowed a step forward in perceiving the processes involved in learning from the point of view of acquiring new information or the modification of existing mental content. The evoked potentials technique reveals how basic brain processes interact to achieve adequate and flexible behaviours. The objective of this work, using evoked potentials, is to study if it is possible to distinguish if a patient suffers a specific type of learning disorder to decide the possible therapies to follow. The methodology used in this work is to analyze the dynamics of different brain areas during a cognitive activity to find the relationships between the other areas analyzed to understand the functioning of neural networks better. Also, the latest advances in neuroscience have revealed the exis-tence of different brain activity in the learning process that can be highlighted through the use of non-invasive, innocuous, low-cost and easy-access techniques such as, among others, the evoked potentials that can help to detect early possible neurodevelopmental difficulties for their subsequent assessment and therapy. From the study of the amplitudes and latencies of the evoked potentials, it is possible to detect brain alterations in the learning process, specifically in dyscalculia, to achieve specific corrective measures for the application of personalized psycho-pedagogical plans that allow obtaining an optimal integral development of the affected people.
Keywords: dyscalculia, neurodevelopment, evoked potentials, learning disabilities, neural networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5992563 An Intelligent Baby Care System Based on IoT and Deep Learning Techniques
Authors: Chinlun Lai, Lunjyh Jiang
Abstract:
Due to the heavy burden and pressure of caring for infants, an integrated automatic baby watching system based on IoT smart sensing and deep learning machine vision techniques is proposed in this paper. By monitoring infant body conditions such as heartbeat, breathing, body temperature, sleeping posture, as well as the surrounding conditions such as dangerous/sharp objects, light, noise, humidity and temperature, the proposed system can analyze and predict the obvious/potential dangerous conditions according to observed data and then adopt suitable actions in real time to protect the infant from harm. Thus, reducing the burden of the caregiver and improving safety efficiency of the caring work. The experimental results show that the proposed system works successfully for the infant care work and thus can be implemented in various life fields practically.Keywords: Baby care system, internet of things, deep learning, machine vision.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19032562 Ride Control of Passenger Cars with Semi-active Suspension System Using a Linear Quadratic Regulator and Hybrid Optimization Algorithm
Authors: Ali Fellah Jahromi, Wen Fang Xie, Rama B. Bhat
Abstract:
A semi-active control strategy for suspension systems of passenger cars is presented employing Magnetorheological (MR) dampers. The vehicle is modeled with seven DOFs including the, roll pitch and bounce of car body, and the vertical motion of the four tires. In order to design an optimal controller based on the actuator constraints, a Linear-Quadratic Regulator (LQR) is designed. The design procedure of the LQR consists of selecting two weighting matrices to minimize the energy of the control system. This paper presents a hybrid optimization procedure which is a combination of gradient-based and evolutionary algorithms to choose the weighting matrices with regards to the actuator constraint. The optimization algorithm is defined based on maximum comfort and actuator constraints. It is noted that utilizing the present control algorithm may significantly reduce the vibration response of the passenger car, thus, providing a comfortable ride.Keywords: Full car model, Linear Quadratic Regulator, Sequential Quadratic Programming, Genetic Algorithm
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29412561 Dynamic Measurement System Modeling with Machine Learning Algorithms
Authors: Changqiao Wu, Guoqing Ding, Xin Chen
Abstract:
In this paper, ways of modeling dynamic measurement systems are discussed. Specially, for linear system with single-input single-output, it could be modeled with shallow neural network. Then, gradient based optimization algorithms are used for searching the proper coefficients. Besides, method with normal equation and second order gradient descent are proposed to accelerate the modeling process, and ways of better gradient estimation are discussed. It shows that the mathematical essence of the learning objective is maximum likelihood with noises under Gaussian distribution. For conventional gradient descent, the mini-batch learning and gradient with momentum contribute to faster convergence and enhance model ability. Lastly, experimental results proved the effectiveness of second order gradient descent algorithm, and indicated that optimization with normal equation was the most suitable for linear dynamic models.Keywords: Dynamic system modeling, neural network, normal equation, second order gradient descent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7812560 Customer Churn Prediction Using Four Machine Learning Algorithms Integrating Feature Selection and Normalization in the Telecom Sector
Authors: Alanoud Moraya Aldalan, Abdulaziz Almaleh
Abstract:
A crucial part of maintaining a customer-oriented business in the telecommunications industry is understanding the reasons and factors that lead to customer churn. Competition between telecom companies has greatly increased in recent years, which has made it more important to understand customers’ needs in this strong market. For those who are looking to turn over their service providers, understanding their needs is especially important. Predictive churn is now a mandatory requirement for retaining customers in the telecommunications industry. Machine learning can be used to accomplish this. Churn Prediction has become a very important topic in terms of machine learning classification in the telecommunications industry. Understanding the factors of customer churn and how they behave is very important to building an effective churn prediction model. This paper aims to predict churn and identify factors of customers’ churn based on their past service usage history. Aiming at this objective, the study makes use of feature selection, normalization, and feature engineering. Then, this study compared the performance of four different machine learning algorithms on the Orange dataset: Logistic Regression, Random Forest, Decision Tree, and Gradient Boosting. Evaluation of the performance was conducted by using the F1 score and ROC-AUC. Comparing the results of this study with existing models has proven to produce better results. The results showed the Gradients Boosting with feature selection technique outperformed in this study by achieving a 99% F1-score and 99% AUC, and all other experiments achieved good results as well.
Keywords: Machine Learning, Gradient Boosting, Logistic Regression, Churn, Random Forest, Decision Tree, ROC, AUC, F1-score.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4082559 A Linguistic Analysis of the Inconsistencies in the Meaning of Some -er Suffix Morphemes
Authors: Amina Abubakar
Abstract:
English like any other language is rich by means of arbitrary, conventional, symbols which lend it to lot of inconsistencies in spelling, phonology, syntax, and morphology. The research examines the irregularities prevalent in the structure and meaning of some ‘er’ lexical items in English and its implication to vocabulary acquisition. It centers its investigation on the derivational suffix ‘er’, which changes the grammatical category of word. English language poses many challenges to Second Language Learners because of its irregularities, exceptions, and rules. One of the meaning of –er derivational suffix is someone or somebody who does something. This rule often confuses the learners when they meet with the exceptions in normal discourse. The need to investigate instances of such inconsistencies in the formation of –er words and the meanings given to such words by the students motivated this study. For this purpose, some senior secondary two (SS2) students in six randomly selected schools in the metropolis were provided a large number of alphabetically selected ‘er’ suffix ending words, The researcher opts for a test technique, which requires them to provide the meaning of the selected words with- er. The marking of the test was scored on the scale of 1-0, where correct formation of –er word and meaning is scored one while wrong formation and meaning is scored zero. The number of wrong and correct formations of –er words meaning were calculated using percentage. The result of this research shows that a large number of students made wrong generalization of the meaning of the selected -er ending words. This shows how enormous the inconsistencies are in English language and how are affect the learning of English. Findings from the study revealed that though students mastered the basic morphological rules but the errors are generally committed on those vocabulary items that are not frequently in use. The study arrives at this conclusion from the survey of their textbook and their spoken activities. Therefore, the researcher recommends that there should be effective reappraisal of language teaching through implementation of the designed curriculum to reflect on modern strategies of teaching language, identification, and incorporation of the exceptions in rigorous communicative activities in language teaching, language course books and tutorials, training and retraining of teachers on the strategies that conform to the new pedagogy.Keywords: ESL, derivational morpheme, inflectional morpheme, suffixes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19042558 Hazards Assessment of Radon Exhalation Rate and Radium Content in the Soil Samples in Iraqi Kurdistan Using Passive and Active Detecting Methods
Authors: Asaad H. Ismail, Mohamad S. Jaafar
Abstract:
This study aims to assess the environmental hazards from radon exhalation rate in the soil samples in selected locations in Iraqi Kurdistan, using passive (CR-39NTDs) and active (RAD7) detecting method. Radon concentration, effective radium content and radon exhalation rate were estimated in soil samples that collected at the depth level of 30 cm inside 124 houses. The results show that the emanation rate for radon gas was variation from location to other, depending on the geological formation. Most health risks come from emanation of radon and its daughter due to its contribution for indoor radon, so the results showed that there is a linear relationship between the ratio of soil and indoor radon concentration (CSoil Rn222/ Cindoor Rn222) and the effective radium content in soil samples. The results show that radon concentration has high and low values in Hajyawa city and Er. Tyrawa Qr, respectively. A comparison between our results with that mentioned in international reports was done.Keywords: Radon, CR-39NTDs, RAD7, Soil, Iraqi Kurdistan.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24052557 A Novel Prostate Segmentation Algorithm in TRUS Images
Authors: Ali Rafiee, Ahad Salimi, Ali Reza Roosta
Abstract:
Prostate cancer is one of the most frequent cancers in men and is a major cause of mortality in the most of countries. In many diagnostic and treatment procedures for prostate disease accurate detection of prostate boundaries in transrectal ultrasound (TRUS) images is required. This is a challenging and difficult task due to weak prostate boundaries, speckle noise and the short range of gray levels. In this paper a novel method for automatic prostate segmentation in TRUS images is presented. This method involves preprocessing (edge preserving noise reduction and smoothing) and prostate segmentation. The speckle reduction has been achieved by using stick filter and top-hat transform has been implemented for smoothing. A feed forward neural network and local binary pattern together have been use to find a point inside prostate object. Finally the boundary of prostate is extracted by the inside point and an active contour algorithm. A numbers of experiments are conducted to validate this method and results showed that this new algorithm extracted the prostate boundary with MSE less than 4.6% relative to boundary provided manually by physicians.
Keywords: Prostate segmentation, stick filter, neural network, active contour.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19692556 Ethics, Identity and Organizational Learning –Challenges for South African Managers
Authors: Jacobus A. A. Lazenby
Abstract:
As a result of the ever-changing environment and the demands of rganisations- customers, it is important to recognise the importance of some important managerial challenges. It is the sincere belief that failure to meet these challenges, will ultimately contribute to inevitable problems for organisations. This recognition requires from managers and by implication organisations to be engaged in ethical behaviour, identity awareness and learning organisational behaviour. All these aspects actually reflect on the importance of intellectual capital as the competitive weapons for organisations in the future.Keywords: Ethical behaviour, identity awareness, learningbehaviour.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18792555 The Role of Chemokine Family, CXCL-10 Urine as a Marker Diagnosis of Active Lung Tuberculosis in HIV/AIDS Patients
Authors: Dwitya Elvira, Raveinal Masri, Rohayat Bilmahdi
Abstract:
Human Immunodeficiency Virus (HIV) pandemic increased significantly worldwide. The rise in cases of HIV/AIDS was also followed by an increase in the incidence of opportunistic infection, with tuberculosis being the most opportunistic infection found in HIV/AIDS and the main cause of mortality in HIV/AIDS patients. Diagnosis of tuberculosis in HIV/AIDS patients is often difficult because of the uncommon symptom in HIV/AIDS patients compared to those without the disease. Thus, diagnostic tools are required that are more effective and efficient to diagnose tuberculosis in HIV/AIDS. CXCL-10/IP-10 is a chemokine that binds to the CXCR3 receptor found in HIV/AIDS patients with a weakened immune system. Tuberculosis infection in HIV/AIDS activates chemokine IP-10 in urine, which is used as a marker for diagnosis of infection. The aim of this study was to prove whether IP-10 urine can be a biomarker diagnosis of active lung tuberculosis in HIV-AIDS patients. Design of this study is a cross sectional study involving HIV/AIDS patients with lung tuberculosis as the subject of this study. Forty-seven HIV/AIDS patients with tuberculosis based on clinical and biochemical laboratory were asked to collect urine samples and IP-10/CXCL-10 urine being measured using ELISA method with 18 healthy human urine samples as control. Forty-seven patients diagnosed as HIV/AIDS were included as a subject of this study. HIV/AIDS were more common in male than in women with the percentage in male 85.1% vs. 14.5% of women. In this study, most diagnosed patients were aged 31-40 years old, followed by those 21-30 years, and > 40 years old, with one case diagnosed at age less than 20 years of age. From the result of the urine IP-10 using ELISA method, there was significant increase of the mean value of IP-10 urine in patients with TB-HIV/AIDS co-infection compared to the healthy control with mean 61.05 pg/mL ± 78.01 pg/mL vs. mean 17.2 pg/mL. Based on this research, there was significant increase of urine IP-10/CXCL-10 in active lung tuberculosis with HIV/AIDS compared to the healthy control. From this finding, it is necessary to conduct further research into whether urine IP-10/CXCL-10 plays a significant role in TB-HIV/AIDS co-infection, which can also be used as a biomarker in the early diagnosis of TB-HIV.
Keywords: Chemokine, IP-10 urine, HIV/AIDS, Tuberculosis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11092554 Curriculum Based Measurement and Precision Teaching in Writing Empowerment Enhancement: Results from an Italian Learning Center
Authors: I. Pelizzoni, C. Cavallini, I. Salvaderi, F. Cavallini
Abstract:
We present the improvement in writing skills obtained by 94 participants (aged between six and 10 years) with special educational needs through a writing enhancement program based on fluency principles. The study was planned and conducted with a single-subject experimental plan for each of the participants, in order to confirm the results in the literature. These results were obtained using precision teaching (PT) methodology to increase the number of written graphemes per minute in the pre- and post-test, by curriculum based measurement (CBM). Results indicated an increase in the number of written graphemes for all participants. The average overall duration of the intervention is 144 minutes in five months of treatment. These considerations have been analyzed taking account of the complexity of the implementation of measurement systems in real operational contexts (an Italian learning center) and important aspects of replicability and cost-effectiveness of such interventions.
Keywords: Precision teaching, writing skills, CBM, Italian Learning Center.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7862553 Reducing the Imbalance Penalty through Artificial Intelligence Methods Geothermal Production Forecasting: A Case Study for Turkey
Abstract:
In addition to being rich in renewable energy resources, Turkey is one of the countries that promise potential in geothermal energy production with its high installed power, cheapness, and sustainability. Increasing imbalance penalties become an economic burden for organizations, since the geothermal generation plants cannot maintain the balance of supply and demand due to the inadequacy of the production forecasts given in the day-ahead market. A better production forecast reduces the imbalance penalties of market participants and provides a better imbalance in the day ahead market. In this study, using machine learning, deep learning and time series methods, the total generation of the power plants belonging to Zorlu Doğal Electricity Generation, which has a high installed capacity in terms of geothermal, was predicted for the first one-week and first two-weeks of March, then the imbalance penalties were calculated with these estimates and compared with the real values. These modeling operations were carried out on two datasets, the basic dataset and the dataset created by extracting new features from this dataset with the feature engineering method. According to the results, Support Vector Regression from traditional machine learning models outperformed other models and exhibited the best performance. In addition, the estimation results in the feature engineering dataset showed lower error rates than the basic dataset. It has been concluded that the estimated imbalance penalty calculated for the selected organization is lower than the actual imbalance penalty, optimum and profitable accounts.
Keywords: Machine learning, deep learning, time series models, feature engineering, geothermal energy production forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2042552 An Educational Data Mining System for Advising Higher Education Students
Authors: Heba Mohammed Nagy, Walid Mohamed Aly, Osama Fathy Hegazy
Abstract:
Educational data mining is a specific data mining field applied to data originating from educational environments, it relies on different approaches to discover hidden knowledge from the available data. Among these approaches are machine learning techniques which are used to build a system that acquires learning from previous data. Machine learning can be applied to solve different regression, classification, clustering and optimization problems.
In our research, we propose a “Student Advisory Framework” that utilizes classification and clustering to build an intelligent system. This system can be used to provide pieces of consultations to a first year university student to pursue a certain education track where he/she will likely succeed in, aiming to decrease the high rate of academic failure among these students. A real case study in Cairo Higher Institute for Engineering, Computer Science and Management is presented using real dataset collected from 2000−2012.The dataset has two main components: pre-higher education dataset and first year courses results dataset. Results have proved the efficiency of the suggested framework.
Keywords: Classification, Clustering, Educational Data Mining (EDM), Machine Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 52152551 The Formation of Motivational Sphere for Learning Activity under Conditions of Change of One of Its Leading Components
Authors: M. Rodionov, Z. Dedovets
Abstract:
This article discusses ways to implement a differentiated approach to developing academic motivation for mathematical studies which relies on defining the primary structural characteristics of motivation. The following characteristics are considered: features of realization of cognitive activity, meaningmaking characteristics, level of generalization and consistency of knowledge acquired by personal experience. The assessment of the present level of individual student understanding of each component of academic motivation is the basis for defining the relevant educational strategy for its further development.
Keywords: Learning activity, mathematics, motivation, student.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19552550 Trust Building Mechanisms for Electronic Business Networks and Their Relation to eSkills
Authors: Radoslav Delina, Michal Tkáč
Abstract:
Globalization, supported by information and communication technologies, changes the rules of competitiveness and increases the significance of information, knowledge and network cooperation. In line with this trend, the need for efficient trust-building tools has emerged. The absence of trust building mechanisms and strategies was identified within several studies. Through trust development, participation on e-business network and usage of network services will increase and provide to SMEs new economic benefits. This work is focused on effective trust building strategies development for electronic business network platforms. Based on trust building mechanism identification, the questionnairebased analysis of its significance and minimum level of requirements was conducted. In the paper, we are confirming the trust dependency on e-Skills which play crucial role in higher level of trust into the more sophisticated and complex trust building ICT solutions.Keywords: Correlation analysis, decision trees, e-marketplace, trust building
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19272549 ICCFMS - Enhancing a Competitive Advantage for Thailand’s IT Entrepreneurs
Authors: T. Niracharapa, W. Angkana
Abstract:
Since information and communication technology (ICT) plays a critical role in enhancing national competitiveness, it is a driving force for social and economic growth and prosperity. The ASEAN Economic Community (AEC) will integrate this into ASEAN countries as a new mechanism and a measure that will improve economic performance as a global economy. Government policies may support or impede such harmonization. This study was to investigate, analyze the status of Thai IT entrepreneurs and define key strategies to enhance their competitive advantage. Data were collected based on in-depth interviews, questionnaires, focus groups, seminars and fieldwork on information technology excluding communication. SWOT was used as a tool to analyze the study. The results of this study can be used to enable the government to guide policy, measures and strategies for creating a competitive advantage for Thailand’s IT entrepreneurs in the global market.
Keywords: AEC, ASEAN, competitive advantage, IT entrepreneurs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20842548 Effectiveness and Usability Evaluation of 'Li2D' Courseware
Authors: Zuraini Hanim Zaini, Wan Fatimah Wan Ahmad
Abstract:
Multimedia courseware has been accepted as a tool that can support teaching and learning process. 'Li2D' courseware was developed to assist student-s visualization on the topic of Loci in Two Dimension. This paper describes an evaluation on the effectiveness and usability of a 'Li2D' courseware. The quasi experiment was used for the effectiveness evaluation. Usability evaluation was accomplished based on four constructs of usability, namely: efficiency, learnability, screen design and satisfaction. An evaluation on the multimedia elements was also conducted. A total of 63 students of Form Two are involved in the study. The students are divided into two groups: control and experimental. The experimental group had to interact with 'Li2D' courseware as part of the learning activities while the control group used the conventional learning methods. The results indicate that the experimental group performed better than the control group in understanding the Loci in Two Dimensions topic. In terms of usability, the results showed that the students agreed on the usability in multimedia elements in the 'Li2D' courseware.Keywords: Effectiveness, usability and multimedia elements, Loci in Two Dimensions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20932547 Design of an Ensemble Learning Behavior Anomaly Detection Framework
Authors: Abdoulaye Diop, Nahid Emad, Thierry Winter, Mohamed Hilia
Abstract:
Data assets protection is a crucial issue in the cybersecurity field. Companies use logical access control tools to vault their information assets and protect them against external threats, but they lack solutions to counter insider threats. Nowadays, insider threats are the most significant concern of security analysts. They are mainly individuals with legitimate access to companies information systems, which use their rights with malicious intents. In several fields, behavior anomaly detection is the method used by cyber specialists to counter the threats of user malicious activities effectively. In this paper, we present the step toward the construction of a user and entity behavior analysis framework by proposing a behavior anomaly detection model. This model combines machine learning classification techniques and graph-based methods, relying on linear algebra and parallel computing techniques. We show the utility of an ensemble learning approach in this context. We present some detection methods tests results on an representative access control dataset. The use of some explored classifiers gives results up to 99% of accuracy.Keywords: Cybersecurity, data protection, access control, insider threat, user behavior analysis, ensemble learning, high performance computing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11532546 The “Ecological Approach” to GIS Implementation in Low Income Countries’ and the Role of Universities: Union of Municipalities of Joumeh Case Study
Authors: A. Iaaly, O. Jadayel, R. Jadayel
Abstract:
This paper explores the effectiveness of approaches used for the implementation of technology within central governments specifically Geographic Information Systems (GIS). It examines the extent to which various strategies to GIS implementation and its roll out to users within an organization is crucial for its long term assimilation. Depending on the contextual requirements, various implementation strategies exist spanning from the most revolutionary to the most evolutionary, which have an influence on the success of GIS projects and the realization of resulting business benefits within the central governments. This research compares between two strategies of GIS implementation within the Lebanese Municipalities. The first strategy is the “Technological Approach” which is focused on technology acquisition, overlaid on existing governmental frameworks. This approach gives minimal attention to capability building and the long term sustainability of the implemented program. The second strategy, referred to as the “Ecological Approach”, is naturally oriented to the function of the organization. This approach stresses on fostering the evolution of the program and on building the human capabilities. The Union of the Joumeh Municipalities will be presented as a case study under the “Ecological Approach” and the role of the GIS Center at the University of Balamand will be highlighted. Thus, this research contributes to the development of knowledge on technology implementation and the vital role of academia in the specific context of the Lebanese public sector so that this experience may pave the way for further applications.Keywords: Ecological Approach, GIS, low income countries, technological approach.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14202545 Bi-lingual Handwritten Character and Numeral Recognition using Multi-Dimensional Recurrent Neural Networks (MDRNN)
Authors: Kandarpa Kumar Sarma
Abstract:
The key to the continued success of ANN depends, considerably, on the use of hybrid structures implemented on cooperative frame-works. Hybrid architectures provide the ability to the ANN to validate heterogeneous learning paradigms. This work describes the implementation of a set of Distributed and Hybrid ANN models for Character Recognition applied to Anglo-Assamese scripts. The objective is to describe the effectiveness of Hybrid ANN setups as innovative means of neural learning for an application like multilingual handwritten character and numeral recognition.Keywords: Assamese, Feature, Recurrent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15322544 Multi-Sensor Target Tracking Using Ensemble Learning
Authors: Bhekisipho Twala, Mantepu Masetshaba, Ramapulana Nkoana
Abstract:
Multiple classifier systems combine several individual classifiers to deliver a final classification decision. However, an increasingly controversial question is whether such systems can outperform the single best classifier, and if so, what form of multiple classifiers system yields the most significant benefit. Also, multi-target tracking detection using multiple sensors is an important research field in mobile techniques and military applications. In this paper, several multiple classifiers systems are evaluated in terms of their ability to predict a system’s failure or success for multi-sensor target tracking tasks. The Bristol Eden project dataset is utilised for this task. Experimental and simulation results show that the human activity identification system can fulfil requirements of target tracking due to improved sensors classification performances with multiple classifier systems constructed using boosting achieving higher accuracy rates.
Keywords: Single classifier, machine learning, ensemble learning, multi-sensor target tracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5982543 Modeling, Analysis and Control of a Smart Composite Structure
Authors: Nader H. Ghareeb, Mohamed S. Gaith, Sayed M. Soleimani
Abstract:
In modern engineering, weight optimization has a priority during the design of structures. However, optimizing the weight can result in lower stiffness and less internal damping, causing the structure to become excessively prone to vibration. To overcome this problem, active or smart materials are implemented. The coupled electromechanical properties of smart materials, used in the form of piezoelectric ceramics in this work, make these materials well-suited for being implemented as distributed sensors and actuators to control the structural response. The smart structure proposed in this paper is composed of a cantilevered steel beam, an adhesive or bonding layer, and a piezoelectric actuator. The static deflection of the structure is derived as function of the piezoelectric voltage, and the outcome is compared to theoretical and experimental results from literature. The relation between the voltage and the piezoelectric moment at both ends of the actuator is also investigated and a reduced finite element model of the smart structure is created and verified. Finally, a linear controller is implemented and its ability to attenuate the vibration due to the first natural frequency is demonstrated.
Keywords: Active linear control, Lyapunov stability theorem, piezoelectricity, smart structure, static deflection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14972542 The Sustainable Strategies Research for Renewal of “Villages in City”: A Case Study of Liuzhou in Southwestern China
Authors: Kai Zhang
Abstract:
Transformation under the reconfiguration of urban-rural relation in Liuzhou city has never been as radical and visible as it has been since the tremendous turn of the last century in China. Huanjiang village is located in Linhuashan Scenic Area in the middle east of Liuzhou city, with spectacular landscape and traditional features. Nowadays Huanjiang village has become a so-called "village in city", which is considered full of great potential for development because of the economic value of regional advantages during the urban sprawl. Communities of village found it difficult to acclimatize with the dramatic changes, which later led to numerous problems including ecological damage, unemployment of landless farmers and loss of traditional culture. Government has started up a series of renewal planings to resolve the problems, which are based on advanced technology and conform to sustainable and integrated strategies of city planning considering the original context and historical culture, superseding the traditional arrangements based on the guide of extensive economic growth. This paper aims to elaborate the context of Liuzhou city and Huanjiang village offered to both the traditional and sustainable planning approaches, in order to understand challenges and solutions of the rebuilding process. Through the analysis of the place relevant to architecture, society and culture, it will establish the corresponding systematic strategies. Considering the local features, it concludes with a comprehensive perspective on organic renewal in the case of Huanjiang village.
Keywords: China, Liuzhou, sustainable strategy, urban renewal, village in city.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7932541 Dynamic Load Balancing Strategy for Grid Computing
Authors: Belabbas Yagoubi, Yahya Slimani
Abstract:
Workload and resource management are two essential functions provided at the service level of the grid software infrastructure. To improve the global throughput of these software environments, workloads have to be evenly scheduled among the available resources. To realize this goal several load balancing strategies and algorithms have been proposed. Most strategies were developed in mind, assuming homogeneous set of sites linked with homogeneous and fast networks. However for computational grids we must address main new issues, namely: heterogeneity, scalability and adaptability. In this paper, we propose a layered algorithm which achieve dynamic load balancing in grid computing. Based on a tree model, our algorithm presents the following main features: (i) it is layered; (ii) it supports heterogeneity and scalability; and, (iii) it is totally independent from any physical architecture of a grid.
Keywords: Grid computing, load balancing, workload, tree based model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31412540 Using Project MIND - Math Is Not Difficult Strategies to Help Children with Autism Improve Mathematics Skills
Authors: Hui Fang Huang Su, Leanne Lai, Pei-Fen Li, Mei-Hwei Ho, Yu-Wen Chiu
Abstract:
This study aimed to provide a practical, systematic, and comprehensive intervention for children with Autism Spectrum Disorder (ASD). A pilot study of quasi-experimental pre-post intervention with control group design was conducted to evaluate if the mathematical intervention (Project MIND - Math Is Not Difficult) increases the math comprehension of children with ASD Children with ASD in the primary grades (K-1, 2) participated in math interventions to enhance their math comprehension and cognitive ability. The Bracken basic concept scale was used to evaluate subjects’ language skills, cognitive development, and school readiness. The study found that our systemic interventions of Project MIND significantly improved the mathematical and cognitive abilities in children with autism. The results of this study may lead to a major change in effective and adequate health care services for children with ASD and their families. All statistical analyses were performed with the IBM SPSS Statistics Version 25 for Windows. The significant level was set at 0.05 P-value.Keywords: Young Children, Autism, Mathematics, Curriculum, teaching and learning, children with special needs, Project MIND.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9312539 Investigations of Free-to-Roll Motions and its Active Control under Pitch-up Maneuvers
Authors: Tanveer A. Khan, Xue Y. Deng, Yan K. Wang, Xu Si-Wen
Abstract:
Experiments have been carried out at sub-critical Reynolds number to investigate free-to-roll motions induced by forebody and/or wings complex flow on a 30° swept back nonslender wings-slender body-model for static and dynamic (pitch-up) cases. For the dynamic (pitch-up) case it has been observed that roll amplitude decreases and lag increases with increase in pitching speed. Decrease in roll amplitude with increase in pitch rate is attributed to low disturbing rolling moment due to weaker interaction between forebody and wing flow components. Asymmetric forebody vortices dominate and control the roll motion of the model in dynamic case when non-dimensional pitch rate ≥ 1x10-2. Effectiveness of the active control scheme utilizing rotating nose with artificial tip perturbation is observed to be low in the angle of attack region where the complex flow over the wings has contributions from both forebody and wings.Keywords: Artificial Tip Perturbation, ExperimentalInvestigations, Forebody Asymmetric Vortices, Non-slender Wings-Body Model, Wing Rock
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1520