Search results for: Variation Simulation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4162

Search results for: Variation Simulation

2992 The Application of FSI Techniques in Modeling of Realist Pulmonary Systems

Authors: Abdurrahim Bolukbasi, Hassan Athari, Dogan Ciloglu

Abstract:

The modeling lung respiratory system that has complex anatomy and biophysics presents several challenges including tissue-driven flow patterns and wall motion. Also, the pulmonary lung system because of that they stretch and recoil with each breath, has not static walls and structures. The direct relationship between air flow and tissue motion in the lung structures naturally prefers an FSI simulation technique. Therefore, in order to toward the realistic simulation of pulmonary breathing mechanics the development of a coupled FSI computational model is an important step. A simple but physiologically relevant three-dimensional deep long geometry is designed and fluid-structure interaction (FSI) coupling technique is utilized for simulating the deformation of the lung parenchyma tissue that produces airflow fields. The real understanding of respiratory tissue system as a complex phenomenon have been investigated with respect to respiratory patterns, fluid dynamics and tissue viscoelasticity and tidal breathing period. 

Keywords: Lung deformation and mechanics, tissue mechanics, viscoelasticity, fluid-structure interactions, ANSYS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2309
2991 Performance Evaluation of Refinement Method for Wideband Two-Beams Formation

Authors: C. Bunsanit

Abstract:

This paper presents the refinement method for two beams formation of wideband smart antenna. The refinement method for weighting coefficients is based on Fully Spatial Signal Processing by taking Inverse Discrete Fourier Transform (IDFT), and its simulation results are presented using MATLAB. The radiation pattern is created by multiplying the incoming signal with real weights and then summing them together. These real weighting coefficients are computed by IDFT method; however, the range of weight values is relatively wide. Therefore, for reducing this range, the refinement method is used. The radiation pattern concerns with five input parameters to control. These parameters are maximum weighting coefficient, wideband signal, direction of mainbeam, beamwidth, and maximum of minor lobe level. Comparison of the obtained simulation results between using refinement method and taking only IDFT shows that the refinement method works well for wideband two beams formation.

Keywords: Fully spatial signal processing, beam forming, refinement method, smart antenna, weighting coefficient, wideband.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1060
2990 Numerical Analysis of Plate Heat Exchanger Performance in Co-Current Fluid Flow Configuration

Authors: H. Dardour, S. Mazouz, A. Bellagi

Abstract:

For many industrial applications plate heat exchangers are demonstrating a large superiority over the other types of heat exchangers. The efficiency of such a device depends on numerous factors the effect of which needs to be analysed and accurately evaluated. In this paper we present a theoretical analysis of a cocurrent plate heat exchanger and the results of its numerical simulation. Knowing the hot and the cold fluid streams inlet temperatures, the respective heat capacities mCp and the value of the overall heat transfer coefficient, a 1-D mathematical model based on the steady flow energy balance for a differential length of the device is developed resulting in a set of N first order differential equations with boundary conditions where N is the number of channels.For specific heat exchanger geometry and operational parameters, the problem is numerically solved using the shooting method. The simulation allows the prediction of the temperature map in the heat exchanger and hence, the evaluation of its performances. A parametric analysis is performed to evaluate the influence of the R-parameter on the e-NTU values. For practical purposes effectiveness-NTU graphs are elaborated for specific heat exchanger geometry and different operating conditions.

Keywords: Plate heat exchanger, thermal performance, NTU, effectiveness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9627
2989 Grid-Connected Inverter Experimental Simulation and Droop Control Implementation

Authors: Nur Aisyah Jalalludin, Arwindra Rizqiawan, Goro Fujita

Abstract:

In this study, we aim to demonstrate a microgrid system experimental simulation for an easy understanding of a large-scale microgrid system. This model is required for industrial training and learning environments. However, in order to create an exact representation of a microgrid system, the laboratory-scale system must fulfill the requirements of a grid-connected inverter, in which power values are assigned to the system to cope with the intermittent output from renewable energy sources. Aside from that, during fluctuations in load capacity, the grid-connected system must be able to supply power from the utility grid side and microgrid side in a balanced manner. Therefore, droop control is installed in the inverter’s control board to maintain a balanced power sharing in both sides. This power control in a stand-alone condition and droop control in a grid-connected condition must be implemented in order to maintain a stabilized system. Based on the experimental results, power control and droop control can both be applied in the system by comparing the experimental and reference values.

Keywords: Droop control, droop characteristic, grid-connected inverter, microgrid, power control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3043
2988 Statistical Analysis of Stresses in Rigid Pavement

Authors: Aleš Florian, Lenka Ševelová, Rudolf Hela

Abstract:

Complex statistical analysis of stresses in concrete slab of the real type of rigid pavement is performed. The computational model of the pavement is designed as a spatial (3D) model, is based on a nonlinear variant of the finite element method that respects the structural nonlinearity, enables to model different arrangement of joints, and the entire model can be loaded by the thermal load. Interaction of adjacent slabs in joints and contact of the slab and the subsequent layer are modeled with help of special contact elements. Four concrete slabs separated by transverse and longitudinal joints and the additional subgrade layers and soil to the depth of about 3m are modeled. The thickness of individual layers, physical and mechanical properties of materials, characteristics of joints, and the temperature of the upper and lower surface of slabs are supposed to be random variables. The modern simulation technique Updated Latin Hypercube Sampling with 20 simulations is used for statistical analysis. As results, the estimates of basic statistics of the principal stresses s1 and s3 in 53 points on the upper and lower surface of the slabs are obtained.

Keywords: concrete, FEM, pavement, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1547
2987 Pore Model Prediction of CH4 Separation from HS Using PTMSP and γ -Alumina Membranes

Authors: H. Mukhtar, N. M. Noor, R. Nasir, D. F. Mohshim

Abstract:

The main aim of this work is to develop a model of hydrogen sulfide (H2S) separation from natural gas by using membrane separation technology. The model is developed by incorporating three diffusion mechanisms which are Knudsen, viscous and surface diffusion towards membrane selectivity and permeability. The findings from the simulation result shows that the permeability of the gas is dependent toward the pore size of the membrane, operating pressure, operating temperature as well as feed composition. The permeability of methane has the highest value for Poly (1-trimethylsilyl-1-propyne ) PTMSP membrane at pore size of 0.1nm and decreasing toward a minimum peak at pore range 1 to 1.5 nm as pore size increased before it increase again for pore size is greater than 1.5 nm. On the other hand, the permeability of hydrogen sulfide is found to increase almost proportionally with the increase of membrane pore size. Generally, the increase of pressure will increase the permeability of gas since more driving force is provided to the system while increasing of temperature would decrease the permeability due to the surface diffusion drop off effect. A corroboration of the simulation result also showed a good agreement with the experimental data.

Keywords: Hydrogen Sulfide, Methane, Inorganic Membrane, Organic Membrane, Pore Model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3678
2986 CFD Simulation for Flow Behavior in Boiling Water Reactor Vessel and Upper Pool under Decommissioning Condition

Authors: Y. T. Ku, S. W. Chen, J. R. Wang, C. Shih, Y. F. Chang

Abstract:

In order to respond the policy decision of non-nuclear homes, Tai Power Company (TPC) will provide the decommissioning project of Kuosheng Nuclear power plant (KSNPP) to meet the regulatory requirement in near future. In this study, the computational fluid dynamics (CFD) methodology has been employed to develop a flow prediction model for boiling water reactor (BWR) with upper pool under decommissioning stage. The model can be utilized to investigate the flow behavior as the vessel combined with upper pool and continuity cooling system. At normal operating condition, different parameters are obtained for the full fluid area, including velocity, mass flow, and mixing phenomenon in the reactor pressure vessel (RPV) and upper pool. Through the efforts of the study, an integrated simulation model will be developed for flow field analysis of decommissioning KSNPP under normal operating condition. It can be expected that a basis result for future analysis application of TPC can be provide from this study.

Keywords: CFD, BWR, decommissioning, upper pool.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 734
2985 Integration of Fixed and Variable Speed Wind Generator Dynamics with Multimachine AC Systems

Authors: A.H.M.A.Rahim

Abstract:

The impact of fixed speed squirrel cage type as well as variable speed doubly fed induction generators (DFIG) on dynamic performance of a multimachine power system has been investigated. Detailed models of the various components have been presented and the integration of asynchronous and synchronous generators has been carried out through a rotor angle based transform. Simulation studies carried out considering the conventional dynamic model of squirrel cage asynchronous generators show that integration, as such, could degrade to the AC system performance transiently. This article proposes a frequency or power controller which can effectively control the transients and restore normal operation of fixed speed induction generator quickly. Comparison of simulation results between classical cage and doubly-fed induction generators indicate that the doubly fed induction machine is more adaptable to multimachine AC system. Frequency controller installed in the DFIG system can also improve its transient profile.

Keywords: Doubly-fed generator, Induction generator, Multimachine system modeling, Wind energy systems

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2330
2984 Numerical Simulation of Fluid-Structure Interaction on Wedge Slamming Impact Using Particle Method

Authors: Sung-Chul Hwang, Di Ren, Sang-Moon Yoon, Jong-Chun Park, Abbas Khayyer, Hitoshi Gotoh

Abstract:

This paper presents a fully Lagrangian coupled Fluid-Structure Interaction (FSI) solver for simulations of fluid-structure interactions, which is based on the Moving Particle Semi-implicit (MPS) method to solve the governing equations corresponding to incompressible flows as well as elastic structures. The developed solver is verified by reproducing the high velocity impact loads of deformable thin wedges with three different materials such as mild steel, aluminium and tin during water entry. The present simulation results for aluminium are compared with analytical solution derived from the hydrodynamic Wagner model and linear Wan’s theory. And also, the impact pressure and strain on the water entry wedge with three different materials, such as mild steel, aluminium and tin, are simulated and the effects of hydro-elasticity are discussed.

Keywords: Fluid-structure interaction (FSI), Moving Particle Semi-implicit (MPS) method, Elastic structure, Incompressible fluid Wedge slamming impact.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2071
2983 A Review on Design and Fabrication of Fuel Fired Crucible Furnace

Authors: Oluwaseyi O. Taiwo, Adeolu A. Adediran, Abayomi A. Akinwande, Frank C. Okoyeh

Abstract:

The use of fuel fired crucible furnace is essential in the foundries of developing countries owing to the luxury of electricity. Fuel fired crucible furnace are commonly used in recycling, casting, research and training activities in tertiary institutions, therefore, several attempts are being made to improve the performance and service life of fuel fired crucible. The current study reviews the sequential stages involved in the designs and fabrication of fuel fired crucible furnace which include; design, material selection, modelling and simulation as well as performance evaluation. The study shows that selecting appropriate materials for the different units in the fabrication process is important to the efficiency and service life of fuel fired crucible furnaces. Also, efficiency and performance of fuel fired furnaces are independent of cost of fabrication and their capacity. The importance of modelling and simulation tools in the fabrication process are identified while their non-frequent usage in several works is observed. The need to widen performance evaluations in further studies beyond efficiency determination to give a more detailed assessment of fuel fired crucible furnaces is also observed.

Keywords: Crucible furnace, furnace design, fabrication, fuel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 419
2982 Effect of Shallow Groundwater Table on the Moisture Depletion Pattern in Crop Root Zone

Authors: Vijay Shankar

Abstract:

Different techniques for estimating seasonal water use from soil profile water depletion frequently do not account for flux below the root zone. Shallow water table contribution to supply crop water use may be important in arid and semi-arid regions. Development of predictive root uptake models, under influence of shallow water table makes it possible for planners to incorporate interaction between water table and root zone into design of irrigation projects. A model for obtaining soil moisture depletion from root zone and water movement below it is discussed with the objective to determine impact of shallow water table on seasonal moisture depletion patterns under water table depth variation, up to the bottom of root zone. The role of different boundary conditions has also been considered. Three crops: Wheat (Triticum aestivum), Corn (Zea mays) and Potato (Solanum tuberosum), common in arid & semi-arid regions, are chosen for the study. Using experimentally obtained soil moisture depletion values for potential soil moisture conditions, moisture depletion patterns using a non linear root uptake model have been obtained for different water table depths. Comparative analysis of the moisture depletion patterns under these conditions show a wide difference in percent depletion from different layers of root zone particularly top and bottom layers with middle layers showing insignificant variation in moisture depletion values. Moisture depletion in top layer, when the water table rises to root zone increases by 19.7%, 22.9% & 28.2%, whereas decrease in bottom layer is 68.8%, 61.6% & 64.9% in case of wheat, corn & potato respectively. The paper also discusses the causes and consequences of increase in moisture depletion from top layers and exceptionally high reduction in bottom layer, and the possible remedies for the same. The numerical model developed for the study can be used to help formulating irrigation strategies for areas where shallow groundwater of questionable quality is an option for crop production.

Keywords: Moisture Depletion, crop root zone, ground water table, irrigation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2007
2981 Assessment of Multi-Domain Energy Systems Modelling Methods

Authors: M. Stewart, Ameer Al-Khaykan, J. M. Counsell

Abstract:

Emissions are a consequence of electricity generation. A major option for low carbon generation, local energy systems featuring Combined Heat and Power with solar PV (CHPV) has significant potential to increase energy performance, increase resilience, and offer greater control of local energy prices while complementing the UK’s emissions standards and targets. Recent advances in dynamic modelling and simulation of buildings and clusters of buildings using the IDEAS framework have successfully validated a novel multi-vector (simultaneous control of both heat and electricity) approach to integrating the wide range of primary and secondary plant typical of local energy systems designs including CHP, solar PV, gas boilers, absorption chillers and thermal energy storage, and associated electrical and hot water networks, all operating under a single unified control strategy. Results from this work indicate through simulation that integrated control of thermal storage can have a pivotal role in optimizing system performance well beyond the present expectations. Environmental impact analysis and reporting of all energy systems including CHPV LES presently employ a static annual average carbon emissions intensity for grid supplied electricity. This paper focuses on establishing and validating CHPV environmental performance against conventional emissions values and assessment benchmarks to analyze emissions performance without and with an active thermal store in a notional group of non-domestic buildings. Results of this analysis are presented and discussed in context of performance validation and quantifying the reduced environmental impact of CHPV systems with active energy storage in comparison with conventional LES designs.

Keywords: CHPV, thermal storage, control, dynamic simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1494
2980 Logistical Optimization of Nuclear Waste Flows during Decommissioning

Authors: G. Dottavio, M. F. Andrade, F. Renard, V. Cheutet, A.-L. L. S. Vercraene, P. Hoang, S. Briet, R. Dachicourt, Y. Baizet

Abstract:

An important number of technological equipment and high-skilled workers over long periods of time have to be mobilized during nuclear decommissioning processes. The related operations generate complex flows of waste and high inventory levels, associated to information flows of heterogeneous types. Taking into account that more than 10 decommissioning operations are on-going in France and about 50 are expected toward 2025: A big challenge is addressed today. The management of decommissioning and dismantling of nuclear installations represents an important part of the nuclear-based energy lifecycle, since it has an environmental impact as well as an important influence on the electricity cost and therefore the price for end-users. Bringing new technologies and new solutions into decommissioning methodologies is thus mandatory to improve the quality, cost and delay efficiency of these operations. The purpose of our project is to improve decommissioning management efficiency by developing a decision-support framework dedicated to plan nuclear facility decommissioning operations and to optimize waste evacuation by means of a logistic approach. The target is to create an easy-to-handle tool capable of i) predicting waste flows and proposing the best decommissioning logistics scenario and ii) managing information during all the steps of the process and following the progress: planning, resources, delays, authorizations, saturation zones, waste volume, etc. In this article we present our results from waste nuclear flows simulation during decommissioning process, including discrete-event simulation supported by FLEXSIM 3-D software. This approach was successfully tested and our works confirms its ability to improve this type of industrial process by identifying the critical points of the chain and optimizing it by identifying improvement actions. This type of simulation, executed before the start of the process operations on the basis of a first conception, allow ‘what-if’ process evaluation and help to ensure quality of the process in an uncertain context. The simulation of nuclear waste flows before evacuation from the site will help reducing the cost and duration of the decommissioning process by optimizing the planning and the use of resources, transitional storage and expensive radioactive waste containers. Additional benefits are expected for the governance system of the waste evacuation since it will enable a shared responsibility of the waste flows.

Keywords: Nuclear decommissioning, logistical optimization, decision-support framework, waste management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1529
2979 Study of the Process of Climate Change According to Data Simulation Using LARS-WG Software during 2010-2030: Case Study of Semnan Province

Authors: Leila Rashidian

Abstract:

Temperature rise on Earth has had harmful effects on the Earth's surface and has led to change in precipitation patterns all around the world. The present research was aimed to study the process of climate change according to the data simulation in future and compare these parameters with current situation in the studied stations in Semnan province including Garmsar, Shahrood and Semnan. In this regard, LARS-WG software, HADCM3 model and A2 scenario were used for the 2010-2030 period. In this model, climatic parameters such as maximum and minimum temperature, precipitation and radiation were used daily. The obtained results indicated that there will be a 4.4% increase in precipitation in Semnan province compared with the observed data, and in general, there will be a 1.9% increase in temperature. This temperature rise has significant impact on precipitation patterns. Most of precipitation will be raining (torrential rains in some cases). According to the results, from west to east, the country will experience more temperature rise and will be warmer.

Keywords: Climate change, Semnan province, LARS-WG model, climate parameters, HADCM3 model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1119
2978 Numerical Optimization Design of PEM Fuel Cell Performance Applying the Taguchi Method

Authors: Shan-Jen Cheng, Jr-Ming Miao, Sheng-Ju Wu

Abstract:

The purpose of this paper is applied Taguchi method on the optimization for PEMFC performance, and a representative Computational Fluid Dynamics (CFD) model is selectively performed for statistical analysis. The studied factors in this paper are pressure of fuel cell, operating temperature, the relative humidity of anode and cathode, porosity of gas diffusion electrode (GDE) and conductivity of GDE. The optimal combination for maximum power density is gained by using a three-level statistical method. The results confirmed that the robustness of the optimum design parameters influencing the performance of fuel cell are founded by pressure of fuel cell, 3atm; operating temperature, 353K; the relative humidity of anode, 50%; conductivity of GDE, 1000 S/m, but the relative humidity of cathode and porosity of GDE are pooled as error due to a small sum of squares. The present simulation results give designers the ideas ratify the effectiveness of the proposed robust design methodology for the performance of fuel cell.

Keywords: PEMFC, numerical simulation, optimization, Taguchi method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2523
2977 Neural Network Control of a Biped Robot Model with Composite Adaptation Low

Authors: Ahmad Forouzantabar

Abstract:

this paper presents a novel neural network controller with composite adaptation low to improve the trajectory tracking problems of biped robots comparing with classical controller. The biped model has 5_link and 6 degrees of freedom and actuated by Plated Pneumatic Artificial Muscle, which have a very high power to weight ratio and it has large stoke compared to similar actuators. The proposed controller employ a stable neural network in to approximate unknown nonlinear functions in the robot dynamics, thereby overcoming some limitation of conventional controllers such as PD or adaptive controllers and guarantee good performance. This NN controller significantly improve the accuracy requirements by retraining the basic PD/PID loop, but adding an inner adaptive loop that allows the controller to learn unknown parameters such as friction coefficient, therefore improving tracking accuracy. Simulation results plus graphical simulation in virtual reality show that NN controller tracking performance is considerably better than PD controller tracking performance.

Keywords: Biped robot, Neural network, Plated Pneumatic Artificial Muscle, Composite adaptation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1831
2976 Scenario Analysis of Indonesia's Energy Security by using a System-Dynamics Approach

Authors: Yudha Prambudia, Masaru Nakano

Abstract:

Due to rapid economic growth, Indonesia's energy needs is rapidly increasing. Indonesia-s primary energy consumption has doubled in 2007 compared to 2003. Indonesia's status change from oil net-exporter to oil net-importer country recently has increased Indonesia's concern over energy security. Due to this, oil import becomes center of attention in the dynamics of Indonesia's energy security. Conventional studies addressing Indonesia's energy security have focused on energy production sector. This study explores Indonesia-s energy security considering energy import sector by modeling and simulating Indonesia-s energy-related policies using system dynamics. Simulation result of Indonesia's energy security in 2020 in Business-As-Usual scenario shows that in term of supply demand ratio, energy security will be very high, but also it poses high dependence on energy import. The Alternative scenario result shows lower energy security in term of supply demand ratio and much lower dependence on energy import. It is also found that the Alternative scenario produce lower GDP growth.

Keywords: Energy security, modeling, simulation, system dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2103
2975 On the Performance of Information Criteria in Latent Segment Models

Authors: Jaime R. S. Fonseca

Abstract:

Nevertheless the widespread application of finite mixture models in segmentation, finite mixture model selection is still an important issue. In fact, the selection of an adequate number of segments is a key issue in deriving latent segments structures and it is desirable that the selection criteria used for this end are effective. In order to select among several information criteria, which may support the selection of the correct number of segments we conduct a simulation study. In particular, this study is intended to determine which information criteria are more appropriate for mixture model selection when considering data sets with only categorical segmentation base variables. The generation of mixtures of multinomial data supports the proposed analysis. As a result, we establish a relationship between the level of measurement of segmentation variables and some (eleven) information criteria-s performance. The criterion AIC3 shows better performance (it indicates the correct number of the simulated segments- structure more often) when referring to mixtures of multinomial segmentation base variables.

Keywords: Quantitative Methods, Multivariate Data Analysis, Clustering, Finite Mixture Models, Information Theoretical Criteria, Simulation experiments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1498
2974 Numerical Investigations on Dynamic Stall of a Pitching-Plunging Helicopter Blade Airfoil

Authors: Xie Kai, Laith K. Abbas, Chen Dongyang, Yang Fufeng, Rui Xiaoting

Abstract:

Effect of plunging motion on the pitch oscillating NACA0012 airfoil is investigated using computational fluid dynamics (CFD). A simulation model based on overset grid technology and k - ω shear stress transport (SST) turbulence model is established, and the numerical simulation results are compared with available experimental data and other simulations. Two cases of phase angle φ = 0, μ which represents the phase difference between the pitching and plunging motions of an airfoil are performed. Airfoil vortex generation, moving, and shedding are discussed in detail. Good agreements have been achieved with the available literature. The upward plunging motion made the equivalent angle of attack less than the actual one during pitching analysis. It is observed that the formation of the stall vortex is suppressed, resulting in a decrease in the lift coefficient and a delay of the stall angle. However, the downward plunging motion made the equivalent angle of attack higher the actual one.

Keywords: Dynamic stall, pitching-plunging, computational fluid dynamics, helicopter blade rotor, airfoil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1098
2973 The Current Practices of Analysis of Reinforced Concrete Panels Subjected to Blast Loading

Authors: Palak J. Shukla, Atul K. Desai, Chentankumar D. Modhera

Abstract:

For any country in the world, it has become a priority to protect the critical infrastructure from looming risks of terrorism. In any infrastructure system, the structural elements like lower floors, exterior columns, walls etc. are key elements which are the most susceptible to damage due to blast load. The present study revisits the state of art review of the design and analysis of reinforced concrete panels subjected to blast loading. Various aspects in association with blast loading on structure, i.e. estimation of blast load, experimental works carried out previously, the numerical simulation tools, various material models, etc. are considered for exploring the current practices adopted worldwide. Discussion on various parametric studies to investigate the effect of reinforcement ratios, thickness of slab, different charge weight and standoff distance is also made. It was observed that for the simulation of blast load, CONWEP blast function or equivalent numerical equations were successfully employed by many researchers. The study of literature indicates that the researches were carried out using experimental works and numerical simulation using well known generalized finite element methods, i.e. LS-DYNA, ABAQUS, AUTODYN. Many researchers recommended to use concrete damage model to represent concrete and plastic kinematic material model to represent steel under action of blast loads for most of the numerical simulations. Most of the studies reveal that the increase reinforcement ratio, thickness of slab, standoff distance was resulted in better blast resistance performance of reinforced concrete panel. The study summarizes the various research results and appends the present state of knowledge for the structures exposed to blast loading.

Keywords: Blast phenomenon, experimental methods, material models, numerical methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1098
2972 Parametric Study of Confined Turbulent Impinging Slot Jets upon a Flat Plate

Authors: A. M. Tahsini, S. Tadayon Mousavi

Abstract:

In the present paper, a numerical investigation has been carried out to classify and clarify the effects of paramount parameters on turbulent impinging slot jets. The effects of nozzle-s exit turbulent intensity, distance between nozzle and impinging plate are studied at Reynolds number 5000 and 20000. In addition, the effect of Mach number that is varied between 0.3-0.8 at a constant Reynolds number 133000 is investigated to elucidate the effect of compressibility in impinging jet upon a flat plate. The wall that is located at the same level with nozzle-s exit confines the flow. A compressible finite volume solver is implemented for simulation the flow behavior. One equation Spalart-Allmaras turbulent model is used to simulate turbulent flow at this study. Assessment of the Spalart-Allmaras turbulent model at high nozzle to plate distance, and giving enough insights to characterize the effect of Mach number at high Reynolds number for the complex impinging jet flow are the remarkable results of this study.

Keywords: Impinging jet, Numerical simulation, Turbulence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2450
2971 Simulation and Optimization of Mechanisms made of Micro-molded Components

Authors: Albert Albers, Pablo Enrique Leslabay

Abstract:

The Institute of Product Development is dealing with the development, design and dimensioning of micro components and systems as a member of the Collaborative Research Centre 499 “Design, Production and Quality Assurance of Molded micro components made of Metallic and Ceramic Materials". Because of technological restrictions in the miniaturization of conventional manufacturing techniques, shape and material deviations cannot be scaled down in the same proportion as the micro parts, rendering components with relatively wide tolerance fields. Systems that include such components should be designed with this particularity in mind, often requiring large clearance. On the end, the output of such systems results variable and prone to dynamical instability. To save production time and resources, every study of these effects should happen early in the product development process and base on computer simulation to avoid costly prototypes. A suitable method is proposed here and exemplary applied to a micro technology demonstrator developed by the CRC499. It consists of a one stage planetary gear train in a sun-planet-ring configuration, with input through the sun gear and output through the carrier. The simulation procedure relies on ordinary Multi Body Simulation methods and subsequently adds other techniques to further investigate details of the system-s behavior and to predict its response. The selection of the relevant parameters and output functions followed the engineering standards for regular sized gear trains. The first step is to quantify the variability and to reveal the most critical points of the system, performed through a whole-mechanism Sensitivity Analysis. Due to the lack of previous knowledge about the system-s behavior, different DOE methods involving small and large amount of experiments were selected to perform the SA. In this particular case the parameter space can be divided into two well defined groups, one of them containing the gear-s profile information and the other the components- spatial location. This has been exploited to explore the different DOE techniques more promptly. A reduced set of parameters is derived for further investigation and to feed the final optimization process, whether as optimization parameters or as external perturbation collective. The 10 most relevant perturbation factors and 4 to 6 prospective variable parameters are considered in a new, simplified model. All of the parameters are affected by the mentioned production variability. The objective functions of interest are based on scalar output-s variability measures, so the problem becomes an optimization under robustness and reliability constrains. The study shows an initial step on the development path of a method to design and optimize complex micro mechanisms composed of wide tolerated elements accounting for the robustness and reliability of the systems- output.

Keywords: Micro molded components, Optimization, Robustness und Reliability, Simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1492
2970 Method for Auto-Calibrate Projector and Color-Depth Systems for Spatial Augmented Reality Applications

Authors: R. Estrada, A. Henriquez, R. Becerra, C. Laguna

Abstract:

Spatial Augmented Reality is a variation of Augmented Reality where the Head-Mounted Display is not required. This variation of Augmented Reality is useful in cases where the need for a Head-Mounted Display itself is a limitation. To achieve this, Spatial Augmented Reality techniques substitute the technological elements of Augmented Reality; the virtual world is projected onto a physical surface. To create an interactive spatial augmented experience, the application must be aware of the spatial relations that exist between its core elements. In this case, the core elements are referred to as a projection system and an input system, and the process to achieve this spatial awareness is called system calibration. The Spatial Augmented Reality system is considered calibrated if the projected virtual world scale is similar to the real-world scale, meaning that a virtual object will maintain its perceived dimensions when projected to the real world. Also, the input system is calibrated if the application knows the relative position of a point in the projection plane and the RGB-depth sensor origin point. Any kind of projection technology can be used, light-based projectors, close-range projectors, and screens, as long as it complies with the defined constraints; the method was tested on different configurations. The proposed procedure does not rely on a physical marker, minimizing the human intervention on the process. The tests are made using a Kinect V2 as an input sensor and several projection devices. In order to test the method, the constraints defined were applied to a variety of physical configurations; once the method was executed, some variables were obtained to measure the method performance. It was demonstrated that the method obtained can solve different arrangements, giving the user a wide range of setup possibilities.

Keywords: Color depth sensor, human computer interface, interactive surface, spatial augmented reality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 546
2969 A New Quadrature Rule Derived from Spline Interpolation with Error Analysis

Authors: Hadi Taghvafard

Abstract:

We present a new quadrature rule based on the spline interpolation along with the error analysis. Moreover, some error estimates for the reminder when the integrand is either a Lipschitzian function, a function of bounded variation or a function whose derivative belongs to Lp are given. We also give some examples to show that, practically, the spline rule is better than the trapezoidal rule.

Keywords: Quadrature, Spline interpolation, Trapezoidal rule, Numericalintegration, Error analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2199
2968 Electrical Properties of Starch/Chitosan-Nh4no3 Polymer Electrolyte

Authors: A.S.A. Khiar, A.K. Arof

Abstract:

Starch/chitosan blend have been prepared via the solution casting technique. Ionic conductivity for the system was conducted over a wide range of frequency between 50 Hz-1 MHz and at temperatures between 303 K and 373 K. Sample with 35 wt% of NH4NO3 shows the highest conductivity of 3.89 ± 0.79 x 10-5 Scm-1 at room temperature. Conductivity-temperature relationship suggests that samples are Arrhenian. Power law exponent was obtained through dielectric loss variation and the trend suggests that the conduction mechanism of the ions can be represented by the correlated barrier hopping (CBH) model.

Keywords: starch, chitosan, permittivity, power exponent law

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2704
2967 Real Time Data Communication with FlightGear Using Simulink over a UDP Protocol

Authors: Adil Loya, Ali Haider, Arslan A. Ghaffor, Abubaker Siddique

Abstract:

Simulation and modelling of Unmanned Aerial Vehicle (UAV) has gained wide popularity in front of aerospace community. The demand of designing and modelling optimized control system for UAV has increased ten folds since last decade, as next generation warfare is dependent on unmanned technologies. Therefore, this research focuses on the simulation of nonlinear UAV dynamics on Simulink and its integration with Flightgear. There has been lots of research on implementation of optimizing control using Simulink, however, there are fewer known techniques to simulate these dynamics over Flightgear and a tedious technique of acquiring data has been tackled in this research horizon. Sending data to Flightgear is easy but receiving it from Simulink is not that straight forward, i.e. we can only receive control data on the output. However, in this research we have managed to get the data out from the Flightgear by implementation of level 2 s-function block within Simulink. Moreover, the results captured from Flightgear over a Universal Datagram Protocol (UDP) communication are then compared with the attitude signal that were sent previously. This provide useful information regarding the difference in outputs attained from Simulink to Flightgear. It was found that values received on Simulink were in high agreement with that of the Flightgear output. And complete study has been conducted in a discrete way.

Keywords: aerospace, flight control, FlightGear, communication, Simulink

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1089
2966 Risk Assessment in Durations and Costs for Construction of Industrial Facilities in Egypt Using Equations and Computer

Authors: M. Kamal Elbokl, Negadi Kheira

Abstract:

Risk Evaluation is an important step in protecting your workers and your business, as well as complying with the law. It helps you focus on the risks that really matter in your workplace – the ones with the potential to cause real harm. We are in this paper introduce basics of risk assessment then we mention some of ways to risk evaluation by computer especially Monte Carlo simulation and Microsoft project.

We use Program Evaluation and Review Technique (PERT) to deal with Risks in Industrial Facilities in Evaluation and Assessment for this risk. Using PERT Technique in Microsoft Project by the PERT toolbar and using PERTMASTER Program with Primavera Program we evaluate many hazards and make calculations for that by mathematical equation to make right decisions. We define and calculate risk factor and risk severity to ranking the type of the risk then dealing with it using in that many ways like probability computation, curves, and tables. By introducing variables in the equation of functions in computer programs we calculate the risk in the time and the cost in general case and then mention some examples in industrial facilities field.

Keywords: Risk, Industrial Facilities, PERT, Monte Carlo Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1926
2965 Collaborative Design System based on Object- Oriented Modeling of Supply Chain Simulation: A Case Study of Thai Jewelry Industry

Authors: Somlak Wannarumon, Apichai Ritvirool, Thana Boonrit

Abstract:

The paper proposes a new concept in developing collaborative design system. The concept framework involves applying simulation of supply chain management to collaborative design called – 'SCM–Based Design Tool'. The system is developed particularly to support design activities and to integrate all facilities together. The system is aimed to increase design productivity and creativity. Therefore, designers and customers can collaborate by the system since conceptual design. JAG: Jewelry Art Generator based on artificial intelligence techniques is integrated into the system. Moreover, the proposed system can support users as decision tool and data propagation. The system covers since raw material supply until product delivery. Data management and sharing information are visually supported to designers and customers via user interface. The system is developed on Web–assisted product development environment. The prototype system is presented for Thai jewelry industry as a system prototype demonstration, but applicable for other industry.

Keywords: Collaborative design, evolutionary art, jewelry design, supply chain management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1726
2964 Collaborative Design System based on Object-Oriented Modeling of Supply Chain Simulation: A Case Study of Thai Jewelry Industry

Authors: Somlak Wannarumon, Apichai Ritvirool, Thana Boonrit

Abstract:

The paper proposes a new concept in developing collaborative design system. The concept framework involves applying simulation of supply chain management to collaborative design called – 'SCM–Based Design Tool'. The system is developed particularly to support design activities and to integrate all facilities together. The system is aimed to increase design productivity and creativity. Therefore, designers and customers can collaborate by the system since conceptual design. JAG: Jewelry Art Generator based on artificial intelligence techniques is integrated into the system. Moreover, the proposed system can support users as decision tool and data propagation. The system covers since raw material supply until product delivery. Data management and sharing information are visually supported to designers and customers via user interface. The system is developed on Web–assisted product development environment. The prototype system is presented for Thai jewelry industry as a system prototype demonstration, but applicable for other industry.

Keywords: Collaborative design, evolutionary art, jewelry design, supply chain management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1529
2963 Using A Hybrid Algorithm to Improve the Quality of Services in Multicast Routing Problem

Authors: Mohammad Reza Karami Nejad

Abstract:

A hybrid learning automata-genetic algorithm (HLGA) is proposed to solve QoS routing optimization problem of next generation networks. The algorithm complements the advantages of the learning Automato Algorithm(LA) and Genetic Algorithm(GA). It firstly uses the good global search capability of LA to generate initial population needed by GA, then it uses GA to improve the Quality of Service(QoS) and acquiring the optimization tree through new algorithms for crossover and mutation operators which are an NP-Complete problem. In the proposed algorithm, the connectivity matrix of edges is used for genotype representation. Some novel heuristics are also proposed for mutation, crossover, and creation of random individuals. We evaluate the performance and efficiency of the proposed HLGA-based algorithm in comparison with other existing heuristic and GA-based algorithms by the result of simulation. Simulation results demonstrate that this paper proposed algorithm not only has the fast calculating speed and high accuracy but also can improve the efficiency in Next Generation Networks QoS routing. The proposed algorithm has overcome all of the previous algorithms in the literature.

Keywords: Routing, Quality of Service, Multicaset, Learning Automata, Genetic, Next Generation Networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1714