Search results for: texture descriptor
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 258

Search results for: texture descriptor

168 The Nature of the Complicated Fabric Textures: How to Represent in Primary Visual Cortex

Authors: J. L. Liu, L. Wang, B. Zhu, J. Zhou, W. D. Gao

Abstract:

Fabric textures are very common in our daily life. However, the representation of fabric textures has never been explored from neuroscience view. Theoretical studies suggest that primary visual cortex (V1) uses a sparse code to efficiently represent natural images. However, how the simple cells in V1 encode the artificial textures is still a mystery. So, here we will take fabric texture as stimulus to study the response of independent component analysis that is established to model the receptive field of simple cells in V1. We choose 140 types of fabrics to get the classical fabric textures as materials. Experiment results indicate that the receptive fields of simple cells have obvious selectivity in orientation, frequency and phase when drifting gratings are used to determine their tuning properties. Additionally, the distribution of optimal orientation and frequency shows that the patch size selected from each original fabric image has a significant effect on the frequency selectivity.

Keywords: Fabric Texture, Receptive Filed, Simple Cell, Spare Coding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1476
167 Stress Relaxation of Date at Different Temperature and Moisture Content of Product: A New Approach

Authors: D. Zare, M. Alirezaei, S.M. Nassiri

Abstract:

Iran is one of the greatest producers of date in the world. However due to lack of information about its viscoelastic properties, much of the production downgraded during harvesting and postharvesting processes. In this study the effect of temperature and moisture content of product were investigated on stress relaxation characteristics. Therefore, the freshly harvested date (kabkab) at tamar stage were put in controlled environment chamber to obtain different temperature levels (25, 35, 45, and 55 0C) and moisture contents (8.5, 8.7, 9.2, 15.3, 20, 32.2 %d.b.). A texture analyzer TAXT2 (Stable Microsystems, UK) was used to apply uniaxial compression tests. A chamber capable to control temperature was designed and fabricated around the plunger of texture analyzer to control the temperature during the experiment. As a new approach a CCD camera (A4tech, 30 fps) was mounted on a cylindrical glass probe to scan and record contact area between date and disk. Afterwards, pictures were analyzed using image processing toolbox of Matlab software. Individual date fruit was uniaxially compressed at speed of 1 mm/s. The constant strain of 30% of thickness of date was applied to the horizontally oriented fruit. To select a suitable model for describing stress relaxation of date, experimental data were fitted with three famous stress relaxation models including the generalized Maxwell, Nussinovitch, and Pelege. The constant in mentioned model were determined and correlated with temperature and moisture content of product using non-linear regression analysis. It was found that Generalized Maxwell and Nussinovitch models appropriately describe viscoelastic characteristics of date fruits as compared to Peleg mode.

Keywords: Stress relaxation, Viscoelastic properties, Date, Texture analyzer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1913
166 Multi-Scale Urban Spatial Evolution Analysis Based on Space Syntax: A Case Study in Modern Yangzhou, China

Authors: Dai Zhimei, Hua Chen

Abstract:

The exploration of urban spatial evolution is an important part of urban development research. Therefore, the evolutionary modern Yangzhou urban spatial texture was taken as the research object, and Spatial Syntax was used as the main research tool, this paper explored Yangzhou spatial evolution law and its driving factors from the urban street network scale, district scale and street scale. The study has concluded that at the urban scale, Yangzhou urban spatial evolution is the result of a variety of causes, including physical and geographical condition, policy and planning factors, and traffic conditions, and the evolution of space also has an impact on social, economic, environmental and cultural factors. At the district and street scales, changes in space will have a profound influence on the history of the city and the activities of people. At the end of the article, the matters needing attention during the evolution of urban space were summarized.

Keywords: Space Syntax, spatial texture, urban space, Yangzhou.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 780
165 Feature Extraction for Surface Classification – An Approach with Wavelets

Authors: Smriti H. Bhandari, S. M. Deshpande

Abstract:

Surface metrology with image processing is a challenging task having wide applications in industry. Surface roughness can be evaluated using texture classification approach. Important aspect here is appropriate selection of features that characterize the surface. We propose an effective combination of features for multi-scale and multi-directional analysis of engineering surfaces. The features include standard deviation, kurtosis and the Canny edge detector. We apply the method by analyzing the surfaces with Discrete Wavelet Transform (DWT) and Dual-Tree Complex Wavelet Transform (DT-CWT). We used Canberra distance metric for similarity comparison between the surface classes. Our database includes the surface textures manufactured by three machining processes namely Milling, Casting and Shaping. The comparative study shows that DT-CWT outperforms DWT giving correct classification performance of 91.27% with Canberra distance metric.

Keywords: Dual-tree complex wavelet transform, surface metrology, surface roughness, texture classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2245
164 An Efficient Motion Recognition System Based on LMA Technique and a Discrete Hidden Markov Model

Authors: Insaf Ajili, Malik Mallem, Jean-Yves Didier

Abstract:

Human motion recognition has been extensively increased in recent years due to its importance in a wide range of applications, such as human-computer interaction, intelligent surveillance, augmented reality, content-based video compression and retrieval, etc. However, it is still regarded as a challenging task especially in realistic scenarios. It can be seen as a general machine learning problem which requires an effective human motion representation and an efficient learning method. In this work, we introduce a descriptor based on Laban Movement Analysis technique, a formal and universal language for human movement, to capture both quantitative and qualitative aspects of movement. We use Discrete Hidden Markov Model (DHMM) for training and classification motions. We improve the classification algorithm by proposing two DHMMs for each motion class to process the motion sequence in two different directions, forward and backward. Such modification allows avoiding the misclassification that can happen when recognizing similar motions. Two experiments are conducted. In the first one, we evaluate our method on a public dataset, the Microsoft Research Cambridge-12 Kinect gesture data set (MSRC-12) which is a widely used dataset for evaluating action/gesture recognition methods. In the second experiment, we build a dataset composed of 10 gestures(Introduce yourself, waving, Dance, move, turn left, turn right, stop, sit down, increase velocity, decrease velocity) performed by 20 persons. The evaluation of the system includes testing the efficiency of our descriptor vector based on LMA with basic DHMM method and comparing the recognition results of the modified DHMM with the original one. Experiment results demonstrate that our method outperforms most of existing methods that used the MSRC-12 dataset, and a near perfect classification rate in our dataset.

Keywords: Human Motion Recognition, Motion representation, Laban Movement Analysis, Discrete Hidden Markov Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 728
163 Neural Network based Texture Analysis of Liver Tumor from Computed Tomography Images

Authors: K.Mala, V.Sadasivam, S.Alagappan

Abstract:

Advances in clinical medical imaging have brought about the routine production of vast numbers of medical images that need to be analyzed. As a result an enormous amount of computer vision research effort has been targeted at achieving automated medical image analysis. Computed Tomography (CT) is highly accurate for diagnosing liver tumors. This study aimed to evaluate the potential role of the wavelet and the neural network in the differential diagnosis of liver tumors in CT images. The tumors considered in this study are hepatocellular carcinoma, cholangio carcinoma, hemangeoma and hepatoadenoma. Each suspicious tumor region was automatically extracted from the CT abdominal images and the textural information obtained was used to train the Probabilistic Neural Network (PNN) to classify the tumors. Results obtained were evaluated with the help of radiologists. The system differentiates the tumor with relatively high accuracy and is therefore clinically useful.

Keywords: Fuzzy c means clustering, texture analysis, probabilistic neural network, LVQ neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2989
162 Input Textural Feature Selection By Mutual Information For Multispectral Image Classification

Authors: Mounir Ait kerroum, Ahmed Hammouch, Driss Aboutajdine

Abstract:

Texture information plays increasingly an important role in remotely sensed imagery classification and many pattern recognition applications. However, the selection of relevant textural features to improve this classification accuracy is not a straightforward task. This work investigates the effectiveness of two Mutual Information Feature Selector (MIFS) algorithms to select salient textural features that contain highly discriminatory information for multispectral imagery classification. The input candidate features are extracted from a SPOT High Resolution Visible(HRV) image using Wavelet Transform (WT) at levels (l = 1,2). The experimental results show that the selected textural features according to MIFS algorithms make the largest contribution to improve the classification accuracy than classical approaches such as Principal Components Analysis (PCA) and Linear Discriminant Analysis (LDA).

Keywords: Feature Selection, Texture, Mutual Information, Wavelet Transform, SVM classification, SPOT Imagery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1554
161 Influence of Proteolysis and Soluble Calcium Levels on Textural Changes in the Interior and Exterior of Iranian UF White Cheese during Ripening

Authors: I. Fathollahi, J. Hesari, S. Azadmard, S. Oustan

Abstract:

The relationships between Proteolysis and soluble calcium levels with hardness of cheese texture were investigated in Iranian UF white cheese during 90 d ripening. Cheeses were sampled in interior and exterior. Results showed that levels of proteolysis, soluble calcium and hardness of cheese texture changed significantly (p< 0.05) over ripening. Levels of proteolysis and hardness were significantly (p< 0.05) different in interior and exterior zones of cheeses. External zones of cheeses became softer and had higher levels of proteolysis compared to internal zones during ripening. The highest correlation coefficient (r2= 0.979; p<0.01) was observed between hardness and levels of pH 4.6-soluble nitrogen in exterior zones of cheese. These result showed that proteolysis can contribute to textural softening during ripening of Iranian UF white cheese.

Keywords: Calcium, Proteolysis, Softening, Ultrafiltration, White cheese.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2492
160 Neuro-fuzzy Classification System for Wireless-Capsule Endoscopic Images

Authors: Vassilis S. Kodogiannis, John N. Lygouras

Abstract:

In this research study, an intelligent detection system to support medical diagnosis and detection of abnormal lesions by processing endoscopic images is presented. The images used in this study have been obtained using the M2A Swallowable Imaging Capsule - a patented, video color-imaging disposable capsule. Schemes have been developed to extract texture features from the fuzzy texture spectra in the chromatic and achromatic domains for a selected region of interest from each color component histogram of endoscopic images. The implementation of an advanced fuzzy inference neural network which combines fuzzy systems and artificial neural networks and the concept of fusion of multiple classifiers dedicated to specific feature parameters have been also adopted in this paper. The achieved high detection accuracy of the proposed system has provided thus an indication that such intelligent schemes could be used as a supplementary diagnostic tool in endoscopy.

Keywords: Medical imaging, Computer aided diagnosis, Endoscopy, Neuro-fuzzy networks, Fuzzy integral.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1753
159 Color Image Segmentation Using SVM Pixel Classification Image

Authors: K. Sakthivel, R. Nallusamy, C. Kavitha

Abstract:

The goal of image segmentation is to cluster pixels into salient image regions. Segmentation could be used for object recognition, occlusion boundary estimation within motion or stereo systems, image compression, image editing, or image database lookup. In this paper, we present a color image segmentation using support vector machine (SVM) pixel classification. Firstly, the pixel level color and texture features of the image are extracted and they are used as input to the SVM classifier. These features are extracted using the homogeneity model and Gabor Filter. With the extracted pixel level features, the SVM Classifier is trained by using FCM (Fuzzy C-Means).The image segmentation takes the advantage of both the pixel level information of the image and also the ability of the SVM Classifier. The Experiments show that the proposed method has a very good segmentation result and a better efficiency, increases the quality of the image segmentation compared with the other segmentation methods proposed in the literature.

Keywords: Image Segmentation, Support Vector Machine, Fuzzy C–Means, Pixel Feature, Texture Feature, Homogeneity model, Gabor Filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6748
158 Relevant LMA Features for Human Motion Recognition

Authors: Insaf Ajili, Malik Mallem, Jean-Yves Didier

Abstract:

Motion recognition from videos is actually a very complex task due to the high variability of motions. This paper describes the challenges of human motion recognition, especially motion representation step with relevant features. Our descriptor vector is inspired from Laban Movement Analysis method. We propose discriminative features using the Random Forest algorithm in order to remove redundant features and make learning algorithms operate faster and more effectively. We validate our method on MSRC-12 and UTKinect datasets.

Keywords: Human motion recognition, Discriminative LMA features, random forest, features reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 773
157 Heavy Deformation and High-Temperature Annealing Microstructure and Texture Studies of TaHfNbZrTi Equiatomic Refractory High Entropy Alloy

Authors: Veeresham Mokali

Abstract:

The refractory alloys are crucial for high-temperature applications to improve performance and reduce cost. They are used in several applications such as aerospace, outer space, military and defense, nuclear powerplants, automobiles, and industry. The conventional refractory alloys show greater stability at high temperatures and in contrast they have operational limitations due to their low melting temperatures. However, there is a huge requirement to improve the refractory alloys’ operational temperatures and replace the conventional alloys. The newly emerging refractory high entropy alloys (RHEAs) could be alternative materials for conventional refractory alloys and fulfill the demands and requirements of various practical applications in the future. The RHEA TaHfNbZrTi was prepared through an arc melting process. The annealing behavior of severely deformed equiatomic RHEATaHfNbZrTi has been investigated. To obtain deformed condition, the alloy is cold-rolled to 90% thickness reduction and then subjected to an annealing process to observe recrystallization and microstructural evolution in the range of 800 °C to 1400 °C temperatures. The cold-rolled – 90% condition shows the presence of microstructural heterogeneity. The annealing microstructure of 800 °C temperature reveals that partial recrystallization and further annealing treatment carried out annealing treatment in the range of 850 °C to 1400 °C temperatures exhibits completely recrystallized microstructures, followed by coarsening with a degree of annealing temperature. The deformed and annealed conditions featured the development of body-centered cubic (BCC) fiber textures. The experimental investigation of heavy deformation and followed by high-temperature annealing up to 1400 °C temperature will contribute to the understanding of microstructure and texture evolution of emerging RHEAs.

Keywords: Refractory high entropy alloys, cold-rolling, annealing, microstructure, texture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 674
156 Parallelization and Optimization of SIFT Feature Extraction on Cluster System

Authors: Mingling Zheng, Zhenlong Song, Ke Xu, Hengzhu Liu

Abstract:

Scale Invariant Feature Transform (SIFT) has been widely applied, but extracting SIFT feature is complicated and time-consuming. In this paper, to meet the demand of the real-time applications, SIFT is parallelized and optimized on cluster system, which is named pSIFT. Redundancy storage and communication are used for boundary data to improve the performance, and before representation of feature descriptor, data reallocation is adopted to keep load balance in pSIFT. Experimental results show that pSIFT achieves good speedup and scalability.

Keywords: cluster, image matching, parallelization and optimization, SIFT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1863
155 3D Face Modeling based on 3D Dense Morphable Face Shape Model

Authors: Yongsuk Jang Kim, Sun-Tae Chung, Boogyun Kim, Seongwon Cho

Abstract:

Realistic 3D face model is more precise in representing pose, illumination, and expression of face than 2D face model so that it can be utilized usefully in various applications such as face recognition, games, avatars, animations, and etc. In this paper, we propose a 3D face modeling method based on 3D dense morphable shape model. The proposed 3D modeling method first constructs a 3D dense morphable shape model from 3D face scan data obtained using a 3D scanner. Next, the proposed method extracts and matches facial landmarks from 2D image sequence containing a face to be modeled, and then reconstructs 3D vertices coordinates of the landmarks using a factorization-based SfM technique. Then, the proposed method obtains a 3D dense shape model of the face to be modeled by fitting the constructed 3D dense morphable shape model into the reconstructed 3D vertices. Also, the proposed method makes a cylindrical texture map using 2D face image sequence. Finally, the proposed method generates a 3D face model by rendering the 3D dense face shape model using the cylindrical texture map. Through building processes of 3D face model by the proposed method, it is shown that the proposed method is relatively easy, fast and precise.

Keywords: 3D Face Modeling, 3D Morphable Shape Model, 3DReconstruction, 3D Correspondence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2429
154 Photogrammetry and GIS Integration for Archaeological Documentation of Ahl-Alkahf, Jordan

Authors: Rami Al-Ruzouq, Abdallah Al-Zoubi, Abdel-Rahman Abueladas, Petya Dimitrova

Abstract:

Protection and proper management of archaeological heritage are an essential process of studying and interpreting the generations present and future. Protecting the archaeological heritage is based upon multidiscipline professional collaboration. This study aims to gather data by different sources (Photogrammetry and Geographic Information System (GIS)) integrated for the purpose of documenting one the of significant archeological sites (Ahl-Alkahf, Jordan). 3D modeling deals with the actual image of the features, shapes and texture to represent reality as realistically as possible by using texture. The 3D coordinates that result of the photogrammetric adjustment procedures are used to create 3D-models of the study area. Adding Textures to the 3D-models surfaces gives a 'real world' appearance to the displayed models. GIS system combined all data, including boundary maps, indicating the location of archeological sites, transportation layer, digital elevation model and orthoimages. For realistic representation of the study area, 3D - GIS model prepared, where efficient generation, management and visualization of such special data can be achieved.

Keywords: Archaeology, close range photogrammetry, ortho-photo, 3D-GIS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2166
153 The Effect of Sea Buckthorn (Hippophae rhamnoides L.) Berries on Some Quality Characteristics of Cooked Pork Sausages

Authors: Anna M. Salejda, Urszula Tril, Grażyna Krasnowska

Abstract:

The aim of this study was to analyze selected quality characteristics of cooked pork sausages manufactured with the addition of Sea buckthorn (Hippophae rhamnoides L.) berries preparations. Stuffings of model sausages consisted of pork, backfat, water and additives such a curing salt and sodium isoascorbate. Functional additives used in production process were two preparations obtained from dried Sea buckthorn berries in form of powder and brew. Powder of dried berries was added in amount of 1 and 3 g, while water infusion as a replacement of 50 and 100% ice water included in meat products formula. Control samples were produced without functional additives. Experimental stuffings were heat treated in water bath and stored for 4 weeks under cooled conditions (4±1ºC). Physical parameters of colour, texture profile and technological parameters as acidity, weight losses and water activity were estimated. The effect of Sea buckthorn berries preparations on lipid oxidation during storage of final products was determine by TBARS method.

Studies have shown that addition of Sea buckthorn preparations to meat-fatty batters significant (P≤0.05) reduced the pH values of sausages samples after thermal treatment. Moreover, the addition of berries powder caused significant differences (P ≤ 0.05) in weight losses after cooking process. Analysis of results of texture profile analysis indicated, that utilization of infusion prepared from Sea buckthorn dried berries caused increase of springiness, gumminess and chewiness of final meat products. At the same time, the highest amount of Sea buckthorn berries powder in recipe caused the decrease of all measured texture parameters. Utilization of experimental preparations significantly decreased (P≤0.05) lightness (L* parameter of color) of meat products. Simultaneously, introduction of 1 and 3 grams of Sea buckthorn berries powder to meat-fatty batter increased redness (a* parameter) of samples under investigation. Higher content of substances reacting with thiobarbituric acid was observed in meat products produced without functional additives. It was observed that powder of Sea buckthorn berries added to meat-fatty batters caused higher protection against lipid oxidation in cooked sausages.

Keywords: Sea buckthorn, meat products, texture, color parameters, lipid oxidation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2871
152 Genetic-Based Multi Resolution Noisy Color Image Segmentation

Authors: Raghad Jawad Ahmed

Abstract:

Segmentation of a color image composed of different kinds of regions can be a hard problem, namely to compute for an exact texture fields. The decision of the optimum number of segmentation areas in an image when it contains similar and/or un stationary texture fields. A novel neighborhood-based segmentation approach is proposed. A genetic algorithm is used in the proposed segment-pass optimization process. In this pass, an energy function, which is defined based on Markov Random Fields, is minimized. In this paper we use an adaptive threshold estimation method for image thresholding in the wavelet domain based on the generalized Gaussian distribution (GGD) modeling of sub band coefficients. This method called Normal Shrink is computationally more efficient and adaptive because the parameters required for estimating the threshold depend on sub band data energy that used in the pre-stage of segmentation. A quad tree is employed to implement the multi resolution framework, which enables the use of different strategies at different resolution levels, and hence, the computation can be accelerated. The experimental results using the proposed segmentation approach are very encouraging.

Keywords: Color image segmentation, Genetic algorithm, Markov random field, Scale space filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577
151 Characterization of a Hypoeutectic Al Alloy Obtained by Selective Laser Melting

Authors: Jairo A. Muñoz, Alexander Komissarov, Alexander Gromov

Abstract:

In this investigation, a hypoeutectic AlSi11Cu alloy was printed. This alloy was obtained in powder form with an average particle size of 40 µm. Bars 20 mm in diameter and 100 mm in length were printed with the building direction parallel to the bars' longitudinal direction. The microstructural characterization demonstrated an Al matrix surrounded by a Si network forming a coral-like pattern. The microstructure of the alloy showed a heterogeneous behavior with a mixture of columnar and equiaxed grains. Likewise, the texture indicated that the columnar grains were preferentially oriented towards the building direction, while the equiaxed followed a texture dominated by the cube component. On the other hand, the as-printed material strength showed higher values than those obtained in the same alloy using conventional processes such as casting. In addition, strength and ductility differences were found in the printed material, depending on the measurement direction. The highest values were obtained in the radial direction (565 MPa maximum strength and 4.8% elongation to failure). The lowest values corresponded to the transverse direction (508 MPa maximum strength and 3.2 elongation to failure), which corroborate the material anisotropy.

Keywords: Additive manufacturing, aluminium alloy, melting pools, tensile test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 698
150 Real-time ROI Acquisition for Unsupervised and Touch-less Palmprint

Authors: Yi Feng, Jingwen Li, Lei Huang, Changping Liu

Abstract:

In this paper we proposed a novel method to acquire the ROI (Region of interest) of unsupervised and touch-less palmprint captured from a web camera in real-time. We use Viola-Jones approach and skin model to get the target area in real time. Then an innovative course-to-fine approach to detect the key points on the hand is described. A new algorithm is used to find the candidate key points coarsely and quickly. In finely stage, we verify the hand key points with the shape context descriptor. To make the user much comfortable, it can process the hand image with different poses, even the hand is closed. Experiments show promising result by using the proposed method in various conditions.

Keywords: Palmprint recoginition, hand detection, touch-lesspalmprint, ROI localization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1726
149 Scale-Space Volume Descriptors for Automatic 3D Facial Feature Extraction

Authors: Daniel Chen, George Mamic, Clinton Fookes, Sridha Sridharan

Abstract:

An automatic method for the extraction of feature points for face based applications is proposed. The system is based upon volumetric feature descriptors, which in this paper has been extended to incorporate scale space. The method is robust to noise and has the ability to extract local and holistic features simultaneously from faces stored in a database. Extracted features are stable over a range of faces, with results indicating that in terms of intra-ID variability, the technique has the ability to outperform manual landmarking.

Keywords: Scale space volume descriptor, feature extraction, 3D facial landmarking

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1508
148 Sensory Characterization of Cookies with Chestnut Flour

Authors: Ljubica Dokić, Ivana Nikolić, Dragana Šoronja–Simović, Biljana Pajin, Nils Juul

Abstract:

In this work sensory characteristics of cookies with different amount of chestnut flour were determined by sensory and instrumental methods. The wheat flour for cookies was substituted with chestnut flour in three different levels (20, 40 and 60%) and the dough moisture was 22%. The control sample was with 100% of wheat flour. Sensory quality of the cookies was described using quantity descriptive method (QDA) by six trained members of descriptive panel. Instrumental evaluation included texture characterization by texture analyzer, the color measurements (CIE L*a*b* system) and determination by videometer.

The samples with 20% of chestnut flour were with highest ponderated score for overall sensory impression (17.6), which is very close to score for control sample (18). Increase in amount of chestnut flour caused decrease in scores for all sensory properties, thus overall sensory score decreased also. Compared to control sample and with increase in amount of chestnut flour, instrumental determination of the samples confirmed the sensory analysis results. The hardness of the cookies increased, as well as the values of red a* and yellow (b*) component coordinate, but the values for lightness (L*) decreased. Also the values, evaluated by videometer at defined wavelength, were the highest for control cookies and decreased with increase in amount of chestnut flour.

Keywords: Cookies, chestnut flour, sensory characteristics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2820
147 A Computer Aided Detection (CAD) System for Microcalcifications in Mammograms - MammoScan mCaD

Authors: Kjersti Engan, Thor Ole Gulsrud, Karl Fredrik Fretheim, Barbro Furebotten Iversen, Liv Eriksen

Abstract:

Clusters of microcalcifications in mammograms are an important sign of breast cancer. This paper presents a complete Computer Aided Detection (CAD) scheme for automatic detection of clustered microcalcifications in digital mammograms. The proposed system, MammoScan μCaD, consists of three main steps. Firstly all potential microcalcifications are detected using a a method for feature extraction, VarMet, and adaptive thresholding. This will also give a number of false detections. The goal of the second step, Classifier level 1, is to remove everything but microcalcifications. The last step, Classifier level 2, uses learned dictionaries and sparse representations as a texture classification technique to distinguish single, benign microcalcifications from clustered microcalcifications, in addition to remove some remaining false detections. The system is trained and tested on true digital data from Stavanger University Hospital, and the results are evaluated by radiologists. The overall results are promising, with a sensitivity > 90 % and a low false detection rate (approx 1 unwanted pr. image, or 0.3 false pr. image).

Keywords: mammogram, microcalcifications, detection, CAD, MammoScan μCaD, VarMet, dictionary learning, texture, FTCM, classification, adaptive thresholding

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1807
146 Face Recognition using a Kernelization of Graph Embedding

Authors: Pang Ying Han, Hiew Fu San, Ooi Shih Yin

Abstract:

Linearization of graph embedding has been emerged as an effective dimensionality reduction technique in pattern recognition. However, it may not be optimal for nonlinearly distributed real world data, such as face, due to its linear nature. So, a kernelization of graph embedding is proposed as a dimensionality reduction technique in face recognition. In order to further boost the recognition capability of the proposed technique, the Fisher-s criterion is opted in the objective function for better data discrimination. The proposed technique is able to characterize the underlying intra-class structure as well as the inter-class separability. Experimental results on FRGC database validate the effectiveness of the proposed technique as a feature descriptor.

Keywords: Face recognition, Fisher discriminant, graph embedding, kernelization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1701
145 Hand Vein Image Enhancement With Radon Like Features Descriptor

Authors: Randa Boukhris Trabelsi, Alima Damak Masmoudi, Dorra Sellami Masmoudi

Abstract:

Nowadays, hand vein recognition has attracted more attentions in identification biometrics systems. Generally, hand vein image is acquired with low contrast and irregular illumination. Accordingly, if you have a good preprocessing of hand vein image, we can easy extracted the feature extraction even with simple binarization. In this paper, a proposed approach is processed to improve the quality of hand vein image. First, a brief survey on existing methods of enhancement is investigated. Then a Radon Like features method is applied to preprocessing hand vein image. Finally, experiments results show that the proposed method give the better effective and reliable in improving hand vein images.

Keywords: Hand Vein, Enhancement, Contrast, RLF, SDME

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2240
144 Diagnosis of the Abdominal Aorta Aneurysm in Magnetic Resonance Imaging Images

Authors: W. Kultangwattana, K. Somkantha, P. Phuangsuwan

Abstract:

This paper presents a technique for diagnosis of the abdominal aorta aneurysm in magnetic resonance imaging (MRI) images. First, our technique is designed to segment the aorta image in MRI images. This is a required step to determine the volume of aorta image which is the important step for diagnosis of the abdominal aorta aneurysm. Our proposed technique can detect the volume of aorta in MRI images using a new external energy for snakes model. The new external energy for snakes model is calculated from Law-s texture. The new external energy can increase the capture range of snakes model efficiently more than the old external energy of snakes models. Second, our technique is designed to diagnose the abdominal aorta aneurysm by Bayesian classifier which is classification models based on statistical theory. The feature for data classification of abdominal aorta aneurysm was derived from the contour of aorta images which was a result from segmenting of our snakes model, i.e., area, perimeter and compactness. We also compare the proposed technique with the traditional snakes model. In our experiment results, 30 images are trained, 20 images are tested and compared with expert opinion. The experimental results show that our technique is able to provide more accurate results than 95%.

Keywords: Adbominal Aorta Aneurysm, Bayesian Classifier, Snakes Model, Texture Feature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1592
143 Texture Feature Extraction of Infrared River Ice Images using Second-Order Spatial Statistics

Authors: Bharathi P. T, P. Subashini

Abstract:

Ice cover County has a significant impact on rivers as it affects with the ice melting capacity which results in flooding, restrict navigation, modify the ecosystem and microclimate. River ices are made up of different ice types with varying ice thickness, so surveillance of river ice plays an important role. River ice types are captured using infrared imaging camera which captures the images even during the night times. In this paper the river ice infrared texture images are analysed using first-order statistical methods and secondorder statistical methods. The second order statistical methods considered are spatial gray level dependence method, gray level run length method and gray level difference method. The performance of the feature extraction methods are evaluated by using Probabilistic Neural Network classifier and it is found that the first-order statistical method and second-order statistical method yields low accuracy. So the features extracted from the first-order statistical method and second-order statistical method are combined and it is observed that the result of these combined features (First order statistical method + gray level run length method) provides higher accuracy when compared with the features from the first-order statistical method and second-order statistical method alone.

Keywords: Gray Level Difference Method, Gray Level Run Length Method, Kurtosis, Probabilistic Neural Network, Skewness, Spatial Gray Level Dependence Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2909
142 Systematic Functional Analysis Methods for Design Retrieval and Documentation

Authors: L. Zehtaban, D. Roller

Abstract:

Apart from geometry, functionality is one of the most significant hallmarks of a product. The functionality of a product can be considered as the fundamental justification for a product existence. Therefore a functional analysis including a complete and reliable descriptor has a high potential to improve product development process in various fields especially in knowledge-based design. One of the important applications of the functional analysis and indexing is in retrieval and design reuse concept. More than 75% of design activity for a new product development contains reusing earlier and existing design know-how. Thus, analysis and categorization of product functions concluded by functional indexing, influences directly in design optimization. This paper elucidates and evaluates major classes for functional analysis by discussing their major methods. Moreover it is finalized by presenting a noble hybrid approach for functional analysis.

Keywords: Functional analysis, design reuse, functionalindexing and representation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5173
141 Effect of Thistle Ecotype in the Physical-Chemical and Sensorial Properties of Serra da Estrela Cheese

Authors: Raquel P. F. Guiné, Marlene I. C. Tenreiro, Ana C. Correia, Paulo Barracosa, Paula M. R. Correia

Abstract:

The objective of this study was to evaluate the physical and chemical characteristics of Serra da Estrela cheese and compare these results with those of the sensory analysis. For the study were taken six samples of Serra da Estrela cheese produced with 6 different ecotypes of thistle in a dairy situated in Penalva do Castelo. The chemical properties evaluated were moisture content, protein, fat, ash, chloride and pH; the physical properties studied were color and texture; and finally a sensory evaluation was undertaken. The results showed moisture varying in the range 40- 48%, protein in the range 15-20%, fat between 41-45%, ash between 3.9-5.0% and chlorides varying from 1.2 to 3.0%. The pH varied from 4.8 to 5.4. The textural properties revealed that the crust hardness is relatively low (maximum 7.3 N), although greater than flesh firmness (maximum 1.7 N), and also that these cheeses are in fact soft paste type, with measurable stickiness and intense adhesiveness. The color analysis showed that the crust is relatively light (L* over 50), and with a predominant yellow coloration (b* around 20 or over) although with a slight greenish tone (a* negative). The results of the sensory analysis did not show great variability for most of the attributes measured, although some differences were found in attributes such as crust thickness, crust uniformity, and creamy flesh.

Keywords: Chemical composition, color, sensorial analysis, Serra da Estrela cheese, texture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2102
140 3D Dense Correspondence for 3D Dense Morphable Face Shape Model

Authors: Tae in Seol, Sun-Tae Chung, Seongwon Cho

Abstract:

Realistic 3D face model is desired in various applications such as face recognition, games, avatars, animations, and etc. Construction of 3D face model is composed of 1) building a face shape model and 2) rendering the face shape model. Thus, building a realistic 3D face shape model is an essential step for realistic 3D face model. Recently, 3D morphable model is successfully introduced to deal with the various human face shapes. 3D dense correspondence problem should be precedently resolved for constructing a realistic 3D dense morphable face shape model. Several approaches to 3D dense correspondence problem in 3D face modeling have been proposed previously, and among them optical flow based algorithms and TPS (Thin Plate Spline) based algorithms are representative. Optical flow based algorithms require texture information of faces, which is sensitive to variation of illumination. In TPS based algorithms proposed so far, TPS process is performed on the 2D projection representation in cylindrical coordinates of the 3D face data, not directly on the 3D face data and thus errors due to distortion in data during 2D TPS process may be inevitable. In this paper, we propose a new 3D dense correspondence algorithm for 3D dense morphable face shape modeling. The proposed algorithm does not need texture information and applies TPS directly on 3D face data. Through construction procedures, it is observed that the proposed algorithm constructs realistic 3D face morphable model reliably and fast.

Keywords: 3D Dense Correspondence, 3D Morphable Face Shape Model, 3D Face Modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2188
139 Facial Recognition on the Basis of Facial Fragments

Authors: Tetyana Baydyk, Ernst Kussul, Sandra Bonilla Meza

Abstract:

There are many articles that attempt to establish the role of different facial fragments in face recognition. Various approaches are used to estimate this role. Frequently, authors calculate the entropy corresponding to the fragment. This approach can only give approximate estimation. In this paper, we propose to use a more direct measure of the importance of different fragments for face recognition. We propose to select a recognition method and a face database and experimentally investigate the recognition rate using different fragments of faces. We present two such experiments in the paper. We selected the PCNC neural classifier as a method for face recognition and parts of the LFW (Labeled Faces in the Wild) face database as training and testing sets. The recognition rate of the best experiment is comparable with the recognition rate obtained using the whole face.

Keywords: Face recognition, Labeled Faces in the Wild (LFW) database, Random Local Descriptor (RLD), random features.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1014