Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 840

Search results for: spatial texture

840 Segmentation of Breast Lesions in Ultrasound Images Using Spatial Fuzzy Clustering and Structure Tensors

Authors: Yan Xu, Toshihiro Nishimura

Abstract:

Segmentation in ultrasound images is challenging due to the interference from speckle noise and fuzziness of boundaries. In this paper, a segmentation scheme using fuzzy c-means (FCM) clustering incorporating both intensity and texture information of images is proposed to extract breast lesions in ultrasound images. Firstly, the nonlinear structure tensor, which can facilitate to refine the edges detected by intensity, is used to extract speckle texture. And then, a spatial FCM clustering is applied on the image feature space for segmentation. In the experiments with simulated and clinical ultrasound images, the spatial FCM clustering with both intensity and texture information gets more accurate results than the conventional FCM or spatial FCM without texture information.

Keywords: fuzzy c-means, spatial information, structure tensor, ultrasound image segmentation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1499
839 Multi-Scale Urban Spatial Evolution Analysis Based on Space Syntax: A Case Study in Modern Yangzhou, China

Authors: Dai Zhimei, Hua Chen

Abstract:

The exploration of urban spatial evolution is an important part of urban development research. Therefore, the evolutionary modern Yangzhou urban spatial texture was taken as the research object, and Spatial Syntax was used as the main research tool, this paper explored Yangzhou spatial evolution law and its driving factors from the urban street network scale, district scale and street scale. The study has concluded that at the urban scale, Yangzhou urban spatial evolution is the result of a variety of causes, including physical and geographical condition, policy and planning factors, and traffic conditions, and the evolution of space also has an impact on social, economic, environmental and cultural factors. At the district and street scales, changes in space will have a profound influence on the history of the city and the activities of people. At the end of the article, the matters needing attention during the evolution of urban space were summarized.

Keywords: Space Syntax, spatial texture, urban space, Yangzhou.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 354
838 A GPU Based Texture Mapping Technique for 3D Models Using Multi-View Images

Authors: In Lee, Kyung-Kyu Kang, Jaewoon Lee, Dongho Kim

Abstract:

Previous the 3D model texture generation from multi-view images and mapping algorithms has issues in the texture chart generation which are the self-intersection and the concentration of the texture in texture space. Also we may suffer from some problems due to the occluded areas, such as inside parts of thighs. In this paper we propose a texture mapping technique for 3D models using multi-view images on the GPU. We do texture mapping directly on the GPU fragment shader per pixel without generation of the texture map. And we solve for the occluded area using the 3D model depth information. Our method needs more calculation on the GPU than previous works, but it has shown real-time performance and previously mentioned problems do not occur.

Keywords: Texture Mapping, Multi-view Images, Camera Calibration, GPU Shader.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1623
837 Texture Based Weed Detection Using Multi Resolution Combined Statistical and Spatial Frequency (MRCSF)

Authors: R.S.Sabeenian, V.Palanisamy

Abstract:

Texture classification is a trendy and a catchy technology in the field of texture analysis. Textures, the repeated patterns, have different frequency components along different orientations. Our work is based on Texture Classification and its applications. It finds its applications in various fields like Medical Image Classification, Computer Vision, Remote Sensing, Agricultural Field, and Textile Industry. Weed control has a major effect on agriculture. A large amount of herbicide has been used for controlling weeds in agriculture fields, lawns, golf courses, sport fields, etc. Random spraying of herbicides does not meet the exact requirement of the field. Certain areas in field have more weed patches than estimated. So, we need a visual system that can discriminate weeds from the field image which will reduce or even eliminate the amount of herbicide used. This would allow farmers to not use any herbicides or only apply them where they are needed. A machine vision precision automated weed control system could reduce the usage of chemicals in crop fields. In this paper, an intelligent system for automatic weeding strategy Multi Resolution Combined Statistical & spatial Frequency is used to discriminate the weeds from the crops and to classify them as narrow, little and broad weeds.

Keywords: crop weed discrimination, MRCSF, MRFM, Weeddetection, Spatial Frequency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1518
836 Statistical Texture Analysis

Authors: G. N. Srinivasan, G. Shobha

Abstract:

This paper presents an overview of the methodologies and algorithms for statistical texture analysis of 2D images. Methods for digital-image texture analysis are reviewed based on available literature and research work either carried out or supervised by the authors.

Keywords: Image Texture, Texture Analysis, Statistical Approaches, Structural approaches, spectral approaches, Morphological approaches, Fractals, Fourier Transforms, Gabor Filters, Wavelet transforms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 315
835 Unsupervised Segmentation using Fuzzy Logicbased Texture Spectrum for MRI Brain Images

Authors: G.Wiselin Jiji, L.Ganesan

Abstract:

Textures are replications, symmetries and combinations of various basic patterns, usually with some random variation one of the gray-level statistics. This article proposes a new approach to Segment texture images. The proposed approach proceeds in 2 stages. First, in this method, local texture information of a pixel is obtained by fuzzy texture unit and global texture information of an image is obtained by fuzzy texture spectrum. The purpose of this paper is to demonstrate the usefulness of fuzzy texture spectrum for texture Segmentation. The 2nd Stage of the method is devoted to a decision process, applying a global analysis followed by a fine segmentation, which is only focused on ambiguous points. The above Proposed approach was applied to brain image to identify the components of brain in turn, used to locate the brain tumor and its Growth rate.

Keywords: Fuzzy Texture Unit, Fuzzy Texture Spectrum, andPattern Recognition, segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1456
834 Texture and Twinning in Selective Laser Melting Ti-6Al-4V Alloys

Authors: N. Kazantseva, P. Krakhmalev, I. Yadroitsev, A. Fefelov, N. Vinogradova, I. Ezhov, T. Kurennykh

Abstract:

Martensitic texture-phase transition in Selective Laser Melting (SLM) Ti-6Al-4V (ELI) alloys was found. Electron Backscatter Diffraction (EBSD) analysis showed the initial cubic beta < 100 > (001) BCC texture. Such kind of texture is observed in BCC metals with flat rolling texture when axis is in the direction of rolling and the texture plane coincides with the plane of rolling. It was found that the texture of the parent BCC beta-phase determined the texture of low-temperature HCP alpha-phase limited the choice of its orientation variants. The {10-12} < -1011 > twinning system in titanium alloys after SLM was determined. Analysis of the oxygen contamination in SLM alloys was done. Comparison of the obtained results with the conventional titanium alloys is also provided.

Keywords: Additive technology, texture, Ti-6Al-4V, twins, oxygen content.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1070
833 Rock Textures Classification Based on Textural and Spectral Features

Authors: Tossaporn Kachanubal, Somkait Udomhunsakul

Abstract:

In this paper, we proposed a method to classify each type of natural rock texture. Our goal is to classify 26 classes of rock textures. First, we extract five features of each class by using principle component analysis combining with the use of applied spatial frequency measurement. Next, the effective node number of neural network was tested. We used the most effective neural network in classification process. The results from this system yield quite high in recognition rate. It is shown that high recognition rate can be achieved in separation of 26 stone classes.

Keywords: Texture classification, SFM, neural network, rock texture classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1758
832 A Multiresolution Approach for Noised Texture Classification based on the Co-occurrence Matrix and First Order Statistics

Authors: M. Ben Othmen, M. Sayadi, F. Fnaiech

Abstract:

Wavelet transform provides several important characteristics which can be used in a texture analysis and classification. In this work, an efficient texture classification method, which combines concepts from wavelet and co-occurrence matrices, is presented. An Euclidian distance classifier is used to evaluate the various methods of classification. A comparative study is essential to determine the ideal method. Using this conjecture, we developed a novel feature set for texture classification and demonstrate its effectiveness

Keywords: Classification, Wavelet, Co-occurrence, Euclidian Distance, Classifier, Texture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1192
831 Evaluation of Robust Feature Descriptors for Texture Classification

Authors: Jia-Hong Lee, Mei-Yi Wu, Hsien-Tsung Kuo

Abstract:

Texture is an important characteristic in real and synthetic scenes. Texture analysis plays a critical role in inspecting surfaces and provides important techniques in a variety of applications. Although several descriptors have been presented to extract texture features, the development of object recognition is still a difficult task due to the complex aspects of texture. Recently, many robust and scaling-invariant image features such as SIFT, SURF and ORB have been successfully used in image retrieval and object recognition. In this paper, we have tried to compare the performance for texture classification using these feature descriptors with k-means clustering. Different classifiers including K-NN, Naive Bayes, Back Propagation Neural Network , Decision Tree and Kstar were applied in three texture image sets - UIUCTex, KTH-TIPS and Brodatz, respectively. Experimental results reveal SIFTS as the best average accuracy rate holder in UIUCTex, KTH-TIPS and SURF is advantaged in Brodatz texture set. BP neuro network works best in the test set classification among all used classifiers.

Keywords: Texture classification, texture descriptor, SIFT, SURF, ORB.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1314
830 Enhancing capabilities of Texture Extraction for Color Image Retrieval

Authors: Pranam Janney, Sridhar G, Sridhar V.

Abstract:

Content-Based Image Retrieval has been a major area of research in recent years. Efficient image retrieval with high precision would require an approach which combines usage of both the color and texture features of the image. In this paper we propose a method for enhancing the capabilities of texture based feature extraction and further demonstrate the use of these enhanced texture features in Texture-Based Color Image Retrieval.

Keywords: Image retrieval, texture feature extraction, color extraction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1325
829 An Efficient Obstacle Detection Algorithm Using Colour and Texture

Authors: Chau Nguyen Viet, Ian Marshall

Abstract:

This paper presents a new classification algorithm using colour and texture for obstacle detection. Colour information is computationally cheap to learn and process. However in many cases, colour alone does not provide enough information for classification. Texture information can improve classification performance but usually comes at an expensive cost. Our algorithm uses both colour and texture features but texture is only needed when colour is unreliable. During the training stage, texture features are learned specifically to improve the performance of a colour classifier. The algorithm learns a set of simple texture features and only the most effective features are used in the classification stage. Therefore our algorithm has a very good classification rate while is still fast enough to run on a limited computer platform. The proposed algorithm was tested with a challenging outdoor image set. Test result shows the algorithm achieves a much better trade-off between classification performance and efficiency than a typical colour classifier.

Keywords: Colour, texture, classification, obstacle detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1518
828 Automatic Moment-Based Texture Segmentation

Authors: Tudor Barbu

Abstract:

An automatic moment-based texture segmentation approach is proposed in this paper. First, we describe the related work in this computer vision domain. Our texture feature extraction, the first part of the texture recognition process, produces a set of moment-based feature vectors. For each image pixel, a texture feature vector is computed as a sequence of area moments. Then, an automatic pixel classification approach is proposed. The feature vectors are clustered using an unsupervised classification algorithm, the optimal number of clusters being determined using a measure based on validation indexes. From the resulted pixel classes one determines easily the desired texture regions of the image.

Keywords: Image segmentation, moment-based texture analysis, automatic classification, validity indexes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2115
827 2D Gabor Functions and FCMI Algorithm for Flaws Detection in Ultrasonic Images

Authors: Kechida Ahmed, Drai Redouane, Khelil Mohamed

Abstract:

In this paper we present a new approach to detecting a flaw in T.O.F.D (Time Of Flight Diffraction) type ultrasonic image based on texture features. Texture is one of the most important features used in recognizing patterns in an image. The paper describes texture features based on 2D Gabor functions, i.e., Gaussian shaped band-pass filters, with dyadic treatment of the radial spatial frequency range and multiple orientations, which represent an appropriate choice for tasks requiring simultaneous measurement in both space and frequency domains. The most relevant features are used as input data on a Fuzzy c-mean clustering classifier. The classes that exist are only two: 'defects' or 'no defects'. The proposed approach is tested on the T.O.F.D image achieved at the laboratory and on the industrial field.

Keywords: 2D Gabor Functions, flaw detection, fuzzy c-mean clustering, non destructive testing, texture analysis, T.O.F.D Image (Time of Flight Diffraction).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1498
826 Computer Aided Classification of Architectural Distortion in Mammograms Using Texture Features

Authors: Birmohan Singh, V. K. Jain

Abstract:

Computer aided diagnosis systems provide vital opinion to radiologists in the detection of early signs of breast cancer from mammogram images. Architectural distortions, masses and microcalcifications are the major abnormalities. In this paper, a computer aided diagnosis system has been proposed for distinguishing abnormal mammograms with architectural distortion from normal mammogram. Four types of texture features GLCM texture, GLRLM texture, fractal texture and spectral texture features for the regions of suspicion are extracted. Support vector machine has been used as classifier in this study. The proposed system yielded an overall sensitivity of 96.47% and an accuracy of 96% for mammogram images collected from digital database for screening mammography database.

Keywords: Architecture Distortion, GLCM Texture features, GLRLM Texture Features, Mammograms, Support Vector Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1852
825 Fusion of ETM+ Multispectral and Panchromatic Texture for Remote Sensing Classification

Authors: Mahesh Pal

Abstract:

This paper proposes to use ETM+ multispectral data and panchromatic band as well as texture features derived from the panchromatic band for land cover classification. Four texture features including one 'internal texture' and three GLCM based textures namely correlation, entropy, and inverse different moment were used in combination with ETM+ multispectral data. Two data sets involving combination of multispectral, panchromatic band and its texture were used and results were compared with those obtained by using multispectral data alone. A decision tree classifier with and without boosting were used to classify different datasets. Results from this study suggest that the dataset consisting of panchromatic band, four of its texture features and multispectral data was able to increase the classification accuracy by about 2%. In comparison, a boosted decision tree was able to increase the classification accuracy by about 3% with the same dataset.

Keywords: Internal texture; GLCM; decision tree; boosting; classification accuracy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1487
824 Texture Feature Extraction using Slant-Hadamard Transform

Authors: M. J. Nassiri, A. Vafaei, A. Monadjemi

Abstract:

Random and natural textures classification is still one of the biggest challenges in the field of image processing and pattern recognition. In this paper, texture feature extraction using Slant Hadamard Transform was studied and compared to other signal processing-based texture classification schemes. A parametric SHT was also introduced and employed for natural textures feature extraction. We showed that a subtly modified parametric SHT can outperform ordinary Walsh-Hadamard transform and discrete cosine transform. Experiments were carried out on a subset of Vistex random natural texture images using a kNN classifier.

Keywords: Texture Analysis, Slant Transform, Hadamard, DCT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2366
823 A Neural Approach for Color-Textured Images Segmentation

Authors: Khalid Salhi, El Miloud Jaara, Mohammed Talibi Alaoui

Abstract:

In this paper, we present a neural approach for unsupervised natural color-texture image segmentation, which is based on both Kohonen maps and mathematical morphology, using a combination of the texture and the image color information of the image, namely, the fractal features based on fractal dimension are selected to present the information texture, and the color features presented in RGB color space. These features are then used to train the network Kohonen, which will be represented by the underlying probability density function, the segmentation of this map is made by morphological watershed transformation. The performance of our color-texture segmentation approach is compared first, to color-based methods or texture-based methods only, and then to k-means method.

Keywords: Segmentation, color-texture, neural networks, fractal, watershed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1127
822 Unsupervised Texture Segmentation via Applying Geodesic Active Regions to Gaborian Feature Space

Authors: Yuan He, Yupin Luo, Dongcheng Hu

Abstract:

In this paper, we propose a novel variational method for unsupervised texture segmentation. We use a Gabor filter bank to extract texture features. Some of the filtered channels form a multidimensional Gaborian feature space. To avoid deforming contours directly in a vector-valued space we use a Gaussian mixture model to describe the statistical distribution of this space and get the boundary and region probabilities. Then a framework of geodesic active regions is applied based on them. In the end, experimental results are presented, and show that this method can obtain satisfied boundaries between different texture regions.

Keywords: Texture segmentation, Gabor filter, snakes, Geodesicactive regions

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1547
821 Frame Texture Classification Method (FTCM) Applied on Mammograms for Detection of Abnormalities

Authors: Kjersti Engan, Karl Skretting, Jostein Herredsvela, Thor Ole Gulsrud

Abstract:

Texture classification is an important image processing task with a broad application range. Many different techniques for texture classification have been explored. Using sparse approximation as a feature extraction method for texture classification is a relatively new approach, and Skretting et al. recently presented the Frame Texture Classification Method (FTCM), showing very good results on classical texture images. As an extension of that work the FTCM is here tested on a real world application as detection of abnormalities in mammograms. Some extensions to the original FTCM that are useful in some applications are implemented; two different smoothing techniques and a vector augmentation technique. Both detection of microcalcifications (as a primary detection technique and as a last stage of a detection scheme), and soft tissue lesions in mammograms are explored. All the results are interesting, and especially the results using FTCM on regions of interest as the last stage in a detection scheme for microcalcifications are promising.

Keywords: detection, mammogram, texture classification, dictionary learning, FTCM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1125
820 Spatial Variability of Some Soil Properties in Mountain Rangelands of Northern Iran

Authors: Zeinab Jafarian Jeloudar, Hossien Kavianpoor, Abazar Esmali Ouri, Ataollah Kavian

Abstract:

In this paper spatial variability of some chemical and physical soil properties were investigated in mountain rangelands of Nesho, Mazandaran province, Iran. 110 soil samples from 0-30 cm depth were taken with systematic method on grid 30×30 m2 in regions with different vegetation cover and transported to laboratory. Then soil chemical and physical parameters including Acidity (pH), Electrical conductivity, Caco3, Bulk density, Particle density, total phosphorus, total Nitrogen, available potassium, Organic matter, Saturation moisture, Soil texture (percentage of sand, silt and clay), Sodium, Calcium, magnesium were measured in laboratory. Data normalization was performed then was done statistical analysis for description of soil properties and geostatistical analysis for indication spatial correlation between these properties and were perpetrated maps of spatial distribution of soil properties using Kriging method. Results indicated that in the study area Saturation moisture and percentage of Sand had highest and lowest spatial correlation respectively.

Keywords: Chemical and physical soil properties, Iran, Spatial variability, Nesho Rangeland

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1781
819 Face Texture Reconstruction for Illumination Variant Face Recognition

Authors: Pengfei Xiong, Lei Huang, Changping Liu

Abstract:

In illumination variant face recognition, existing methods extracting face albedo as light normalized image may lead to loss of extensive facial details, with light template discarded. To improve that, a novel approach for realistic facial texture reconstruction by combining original image and albedo image is proposed. First, light subspaces of different identities are established from the given reference face images; then by projecting the original and albedo image into each light subspace respectively, texture reference images with corresponding lighting are reconstructed and two texture subspaces are formed. According to the projections in texture subspaces, facial texture with normal light can be synthesized. Due to the combination of original image, facial details can be preserved with face albedo. In addition, image partition is applied to improve the synthesization performance. Experiments on Yale B and CMUPIE databases demonstrate that this algorithm outperforms the others both in image representation and in face recognition.

Keywords: texture reconstruction, illumination, face recognition, subspaces

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1200
818 Texture Feature Extraction of Infrared River Ice Images using Second-Order Spatial Statistics

Authors: Bharathi P. T, P. Subashini

Abstract:

Ice cover County has a significant impact on rivers as it affects with the ice melting capacity which results in flooding, restrict navigation, modify the ecosystem and microclimate. River ices are made up of different ice types with varying ice thickness, so surveillance of river ice plays an important role. River ice types are captured using infrared imaging camera which captures the images even during the night times. In this paper the river ice infrared texture images are analysed using first-order statistical methods and secondorder statistical methods. The second order statistical methods considered are spatial gray level dependence method, gray level run length method and gray level difference method. The performance of the feature extraction methods are evaluated by using Probabilistic Neural Network classifier and it is found that the first-order statistical method and second-order statistical method yields low accuracy. So the features extracted from the first-order statistical method and second-order statistical method are combined and it is observed that the result of these combined features (First order statistical method + gray level run length method) provides higher accuracy when compared with the features from the first-order statistical method and second-order statistical method alone.

Keywords: Gray Level Difference Method, Gray Level Run Length Method, Kurtosis, Probabilistic Neural Network, Skewness, Spatial Gray Level Dependence Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2616
817 Spatial thinking Issues: Towards Rural Sociological Research Agenda in the Third Millennium

Authors: Abdel-Samad M. Ali

Abstract:

Does the spatial perspective provide a common thread for rural sociology? Have rural sociologists succeeded in bringing order to their data using spatial analysis models and techniques? A trial answer to such questions, as touchstones of theoretical and applied sociological studies in rural areas, is the point at issue in the present paper. Spatial analyses have changed the way rural sociologists approach scientific problems. Rural sociology is spatial by nature because much, if not most, of its research topics has a spatial “awareness." However, such spatial awareness is not quite the same as spatial analysis because it is not typically associated with underlying theories and hypotheses about spatial patterns that are designed to be tested for their specific spatial content. This paper presents pressing issues for future research to reintroduce mainstream rural sociology to the concept of space.

Keywords: Maps, Rural Sociology, Space, Spatial variations

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1668
816 Evaluation of Texture of Packhams Pears

Authors: Raquel P. F. Guiné, Bruno L. Marques

Abstract:

The textural parameters, together with appearance and flavor, are sensory attributes of great importance for the product to be accepted by the consumer. The objective of the present study was the evaluation of the textural attributes of Packhams pears in the fresh state, after drying in a chamber with forced convection at 50ºC, lyophilized and re-hydrated. In texture analysis it was used the method of Texture Profile Analysis (TPA). The parameters analyzed were hardness, cohesiveness, adhesiveness, elasticity and chewiness. From the results obtained is possible to see that the drying operation greatly affected some textural properties of the pears, so that the hardness diminished very much with drying, for both drying methods.

Keywords: Drying, pear, texture, hardness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1625
815 Himmapan Creatures: The Tactile Texture Designed for the Blind

Authors: Chantana Insra

Abstract:

The main purpose of this research aimed to create tactile texture designed media for the blind used for extra learning outside classrooms in order to enhance imagination of the blind about Himmapan creatures, furthermore, the main objective of the research focused on improving the visual disabled perception to be equal to normal people. The target group of the research is blinded students studying in The Bangkok school for the blind between grade 4-6 in the second semester of 2011 who are able to read the braille language. The research methodology consisted of the field study and the documentary study related to the blind, tactile texture designed media and Himmapan creatures. 10 pictures of tactile texture designed media were created in the designing process which began after the analysis had conducted based the primary and secondary data. The works had presented to experts in the visual disabled field who evaluated the works. After approval, the works used as prototype to teach the blind. KeywordsBlind, Himmapan Creatures, Tactile Texture.

Keywords: Blind, Himmapan Creatures, Tactile Texture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1773
814 A New Voting Approach to Texture Defect Detection Based on Multiresolutional Decomposition

Authors: B. B. M. Moasheri, S. Azadinia

Abstract:

Wavelets have provided the researchers with significant positive results, by entering the texture defect detection domain. The weak point of wavelets is that they are one-dimensional by nature so they are not efficient enough to describe and analyze two-dimensional functions. In this paper we present a new method to detect the defect of texture images by using curvelet transform. Simulation results of the proposed method on a set of standard texture images confirm its correctness. Comparing the obtained results indicates the ability of curvelet transform in describing discontinuity in two-dimensional functions compared to wavelet transform

Keywords: Curvelet, Defect detection, Wavelet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1304
813 Muscle: The Tactile Texture Designed for the Blind

Authors: Chantana Insra

Abstract:

The research objective focuses on creating a prototype media of the tactile texture of muscles for educational institutes to help visually impaired students learn massage extra learning materials further than the ordinary curriculum. This media is designed as an extra learning material. The population in this study was 30 blinded students between 4th - 6th grades who were able to read Braille language. The research was conducted during the second semester in 2012 at The Bangkok School for the Blind. The method in choosing the population in the study was purposive sampling. The methodology of the research includes collecting data related to visually impaired people, the production of the tactile texture media, human anatomy and Thai traditional massage from literature reviews and field studies. This information was used for analyzing and designing 14 tactile texture pictures presented to experts to evaluate and test the media.

Keywords: Blind, Tactile Texture, Muscle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1610
812 Spatial Econometric Approaches for Count Data: An Overview and New Directions

Authors: Paula Simões, Isabel Natário

Abstract:

This paper reviews a number of theoretical aspects for implementing an explicit spatial perspective in econometrics for modelling non-continuous data, in general, and count data, in particular. It provides an overview of the several spatial econometric approaches that are available to model data that are collected with reference to location in space, from the classical spatial econometrics approaches to the recent developments on spatial econometrics to model count data, in a Bayesian hierarchical setting. Considerable attention is paid to the inferential framework, necessary for structural consistent spatial econometric count models, incorporating spatial lag autocorrelation, to the corresponding estimation and testing procedures for different assumptions, to the constrains and implications embedded in the various specifications in the literature. This review combines insights from the classical spatial econometrics literature as well as from hierarchical modeling and analysis of spatial data, in order to look for new possible directions on the processing of count data, in a spatial hierarchical Bayesian econometric context.

Keywords: Spatial data analysis, spatial econometrics, Bayesian hierarchical models, count data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2142
811 Characterization of Pure Nickel Coatings Fabricated under Pulse Current Conditions

Authors: M. Sajjadnejad, H. Omidvar, M. Javanbakht, A. Mozafari

Abstract:

Pure nickel coatings have been successfully electrodeposited on copper substrates by the pulse plating technique. The influence of current density, duty cycle and pulse frequency on the surface morphology, crystal orientation, and microhardness was determined. It was found that the crystallite size of the deposit increases with increasing current density and duty cycle. The crystal orientation progressively changed from a random texture at 1 A/dm2 to (200) texture at 10 A/dm2. Increasing pulse frequency resulted in increased texture coefficient and peak intensity of (111) reflection. An increase in duty cycle resulted in considerable increase in texture coefficient and peak intensity of (311) reflection. Coatings obtained at high current densities and duty cycle present a mixed morphology of small and large grains. Maximum microhardness of 193 Hv was achieved at 4 A/dm2, 10 Hz and duty cycle of 50%. Nickel coatings with (200) texture are ductile while (111) texture improves the microhardness of the coatings.

Keywords: Current density, Duty cycle, Microstructure, Nickel, Pulse frequency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1937