Search results for: surveillance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 129

Search results for: surveillance

39 Towards Integrating Statistical Color Features for Human Skin Detection

Authors: Mohd Zamri Osman, Mohd Aizaini Maarof, Mohd Foad Rohani

Abstract:

Human skin detection recognized as the primary step in most of the applications such as face detection, illicit image filtering, hand recognition and video surveillance. The performance of any skin detection applications greatly relies on the two components: feature extraction and classification method. Skin color is the most vital information used for skin detection purpose. However, color feature alone sometimes could not handle images with having same color distribution with skin color. A color feature of pixel-based does not eliminate the skin-like color due to the intensity of skin and skin-like color fall under the same distribution. Hence, the statistical color analysis will be exploited such mean and standard deviation as an additional feature to increase the reliability of skin detector. In this paper, we studied the effectiveness of statistical color feature for human skin detection. Furthermore, the paper analyzed the integrated color and texture using eight classifiers with three color spaces of RGB, YCbCr, and HSV. The experimental results show that the integrating statistical feature using Random Forest classifier achieved a significant performance with an F1-score 0.969.

Keywords: Color space, neural network, random forest, skin detection, statistical feature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1953
38 Exploiting Global Self Similarity for Head-Shoulder Detection

Authors: Lae-Jeong Park, Jung-Ho Moon

Abstract:

People detection from images has a variety of applications such as video surveillance and driver assistance system, but is still a challenging task and more difficult in crowded environments such as shopping malls in which occlusion of lower parts of human body often occurs. Lack of the full-body information requires more effective features than common features such as HOG. In this paper, new features are introduced that exploits global self-symmetry (GSS) characteristic in head-shoulder patterns. The features encode the similarity or difference of color histograms and oriented gradient histograms between two vertically symmetric blocks. The domain-specific features are rapid to compute from the integral images in Viola-Jones cascade-of-rejecters framework. The proposed features are evaluated with our own head-shoulder dataset that, in part, consists of a well-known INRIA pedestrian dataset. Experimental results show that the GSS features are effective in reduction of false alarmsmarginally and the gradient GSS features are preferred more often than the color GSS ones in the feature selection.

Keywords: Pedestrian detection, cascade of rejecters, feature extraction, self-symmetry, HOG.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2400
37 FleGSens – Secure Area Monitoring Using Wireless Sensor Networks

Authors: Peter Rothenpieler, Daniela Kruger, Dennis Pfisterer, Stefan Fischer, Denise Dudek, Christian Haas, Martina Zitterbart

Abstract:

In the project FleGSens, a wireless sensor network (WSN) for the surveillance of critical areas and properties is currently developed which incorporates mechanisms to ensure information security. The intended prototype consists of 200 sensor nodes for monitoring a 500m long land strip. The system is focused on ensuring integrity and authenticity of generated alarms and availability in the presence of an attacker who may even compromise a limited number of sensor nodes. In this paper, two of the main protocols developed in the project are presented, a tracking protocol to provide secure detection of trespasses within the monitored area and a protocol for secure detection of node failures. Simulation results of networks containing 200 and 2000 nodes as well as the results of the first prototype comprising a network of 16 nodes are presented. The focus of the simulations and prototype are functional testing of the protocols and particularly demonstrating the impact and cost of several attacks.

Keywords: Wireless Sensor Network, Security, Trespass Detection, Testbed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1975
36 The Forensic Swing of Things: The Current Legal and Technical Challenges of IoT Forensics

Authors: Pantaleon Lutta, Mohamed Sedky, Mohamed Hassan

Abstract:

The inability of organizations to put in place management control measures for Internet of Things (IoT) complexities persists to be a risk concern. Policy makers have been left to scamper in finding measures to combat these security and privacy concerns. IoT forensics is a cumbersome process as there is no standardization of the IoT products, no or limited historical data are stored on the devices. This paper highlights why IoT forensics is a unique adventure and brought out the legal challenges encountered in the investigation process. A quadrant model is presented to study the conflicting aspects in IoT forensics. The model analyses the effectiveness of forensic investigation process versus the admissibility of the evidence integrity; taking into account the user privacy and the providers’ compliance with the laws and regulations. Our analysis concludes that a semi-automated forensic process using machine learning, could eliminate the human factor from the profiling and surveillance processes, and hence resolves the issues of data protection (privacy and confidentiality).

Keywords: Cloud forensics, data protection laws, GDPR, IoT forensics, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1099
35 Early Onset Neonatal Sepsis Pathogens in Malaysian Hospitals: Determining Empiric Antibiotic

Authors: Nazedah Ain Ibrahim, Mohamed Mansor Manan

Abstract:

Information regarding early onset neonatal sepsis (EONS) pathogens may vary between regions. Global perspectives showed Group B Streptococcal (GBS) as the most common causative pathogens, but the widespread use of intrapartum antibiotics has changed the pathogens pattern towards gram negative microorganisms, especially E. coli. Objective of this study is to describe the pathogens isolated, to assess current treatment and risk of EONS. Records of 899 neonates born in three General Hospitals between 2009 until 2012 were retrospectively reviewed. Proven was found in 22 (3%) neonates. The majority was isolated with gram positive organisms, 17 (2.3%). All grams positive and most gram negative organisms showed sensitivity to the tested antibiotics. Only two rare gram negative organisms showed total resistant. Male was possible risk of proven EONS. Although proven EONS remains uncommon in Malaysia, nonetheless, the effect of intrapartum antibiotics still required continuous surveillance.

Keywords: Early onset neonatal sepsis, neonates, pathogens, gram positive, gram negative.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3052
34 Designing of Multi-Agent Rescue Robot: Development and Basic Experiments of Master-Slave Type Rescue Robots

Authors: J. Lin, T. C. Kuo, C. -Y. Gau, K. C. Liu, Y. J. Huang, J. D. Yu, Y. W. Lin

Abstract:

A multi-agent type robot for disaster response in calamity scene is proposed in this paper. The proposed grouped rescue robots can perform cooperative reconnaissance and surveillance to achieve a given rescue mission. The multi-agent rescue of dual set robot consists of one master set and three slave units. The research for this rescue robot system is going to detect at harmful environment where human is unreachable, such as the building is infected with virus or the factory has hazardous liquid in effluent. As a dual set robot, with Bluetooth and communication network, the master set can connect with slave units and send information back to computer by wireless and monitor. Therefore, rescuer can be informed the real-time information in a calamity area. Furthermore, each slave robot is able to obstacle avoidance by ultrasonic sensors, and encodes distance and location by compass. The master robot can integrate every devices information to increase the efficiency of prospected and research unknown area.

Keywords: Designing of multi-agent rescue robot, development and basic experiments of master-slave type rescue robots.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1552
33 Assesing Extension of Meeting System Performance in Information Technology in Defense and Aerospace Project

Authors: Hakan Gürkan, Ahmet Denker

Abstract:

The Ministry of Defense (MoD) spends hundreds of millions of dollars on software to support its infrastructure, operate its weapons and provide command, control, communications, computing, intelligence, surveillance, and reconnaissance (C4ISR) functions. These and other all new advanced systems have a common critical component is information technology. Defense and Aerospace environment is continuously striving to keep up with increasingly sophisticated Information Technology (IT) in order to remain effective in today-s dynamic and unpredictable threat environment. This makes it one of the largest and fastest growing expenses of Defense. Hundreds of millions of dollars spent a year on IT projects. But, too many of those millions are wasted on costly mistakes. Systems that do not work properly, new components that are not compatible with old once, trendily new applications that do not really satisfy defense needs or lost though poorly managed contracts. This paper investigates and compiles the effective strategies that aim to end exasperation with low returns and high cost of Information Technology Acquisition for defense; it tries to show how to maximize value while reducing time and expenditure.

Keywords: Iterative Process, Acquisition Management, Project management, Software Economics, Requirement analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1242
32 A Structural Support Vector Machine Approach for Biometric Recognition

Authors: Vishal Awasthi, Atul Kumar Agnihotri

Abstract:

Face is a non-intrusive strong biometrics for identification of original and dummy facial by different artificial means. Face recognition is extremely important in the contexts of computer vision, psychology, surveillance, pattern recognition, neural network, content based video processing. The availability of a widespread face database is crucial to test the performance of these face recognition algorithms. The openly available face databases include face images with a wide range of poses, illumination, gestures and face occlusions but there is no dummy face database accessible in public domain. This paper presents a face detection algorithm based on the image segmentation in terms of distance from a fixed point and template matching methods. This proposed work is having the most appropriate number of nodal points resulting in most appropriate outcomes in terms of face recognition and detection. The time taken to identify and extract distinctive facial features is improved in the range of 90 to 110 sec. with the increment of efficiency by 3%.

Keywords: Face recognition, Principal Component Analysis, PCA, Linear Discriminant Analysis, LDA, Improved Support Vector Machine, iSVM, elastic bunch mapping technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 493
31 Data Mining Techniques in Computer-Aided Diagnosis: Non-Invasive Cancer Detection

Authors: Florin Gorunescu

Abstract:

Diagnosis can be achieved by building a model of a certain organ under surveillance and comparing it with the real time physiological measurements taken from the patient. This paper deals with the presentation of the benefits of using Data Mining techniques in the computer-aided diagnosis (CAD), focusing on the cancer detection, in order to help doctors to make optimal decisions quickly and accurately. In the field of the noninvasive diagnosis techniques, the endoscopic ultrasound elastography (EUSE) is a recent elasticity imaging technique, allowing characterizing the difference between malignant and benign tumors. Digitalizing and summarizing the main EUSE sample movies features in a vector form concern with the use of the exploratory data analysis (EDA). Neural networks are then trained on the corresponding EUSE sample movies vector input in such a way that these intelligent systems are able to offer a very precise and objective diagnosis, discriminating between benign and malignant tumors. A concrete application of these Data Mining techniques illustrates the suitability and the reliability of this methodology in CAD.

Keywords: Endoscopic ultrasound elastography, exploratorydata analysis, neural networks, non-invasive cancer detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1866
30 High Level Synthesis of Canny Edge Detection Algorithm on Zynq Platform

Authors: Hanaa M. Abdelgawad, Mona Safar, Ayman M. Wahba

Abstract:

Real time image and video processing is a demand in many computer vision applications, e.g. video surveillance, traffic management and medical imaging. The processing of those video applications requires high computational power. Thus, the optimal solution is the collaboration of CPU and hardware accelerators. In this paper, a Canny edge detection hardware accelerator is proposed. Edge detection is one of the basic building blocks of video and image processing applications. It is a common block in the pre-processing phase of image and video processing pipeline. Our presented approach targets offloading the Canny edge detection algorithm from processing system (PS) to programmable logic (PL) taking the advantage of High Level Synthesis (HLS) tool flow to accelerate the implementation on Zynq platform. The resulting implementation enables up to a 100x performance improvement through hardware acceleration. The CPU utilization drops down and the frame rate jumps to 60 fps of 1080p full HD input video stream.

Keywords: High Level Synthesis, Canny edge detection, Hardware accelerators, and Computer Vision.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5431
29 Subjective Quality Assessment for Impaired Videos with Varying Spatial and Temporal Information

Authors: Muhammad Rehan Usman, Muhammad Arslan Usman, Soo Young Shin

Abstract:

The new era of digital communication has brought up many challenges that network operators need to overcome. The high demand of mobile data rates require improved networks, which is a challenge for the operators in terms of maintaining the quality of experience (QoE) for their consumers. In live video transmission, there is a sheer need for live surveillance of the videos in order to maintain the quality of the network. For this purpose objective algorithms are employed to monitor the quality of the videos that are transmitted over a network. In order to test these objective algorithms, subjective quality assessment of the streamed videos is required, as the human eye is the best source of perceptual assessment. In this paper we have conducted subjective evaluation of videos with varying spatial and temporal impairments. These videos were impaired with frame freezing distortions so that the impact of frame freezing on the quality of experience could be studied. We present subjective Mean Opinion Score (MOS) for these videos that can be used for fine tuning the objective algorithms for video quality assessment.

Keywords: Frame freezing, mean opinion score, objective assessment, subjective evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1793
28 Sanitary Measures in Piggeries, Awareness and Risk Factors of African Swine Fever in Benue State, Nigeria

Authors: A. Asambe

Abstract:

A study was conducted to determine the level of compliance with sanitary measures in piggeries, and awareness and risk factors of African swine fever in Benue State, Nigeria. Questionnaires were distributed to 74 respondents consisting of piggery owners and attendants in different piggeries across 12 LGAs to collect data for this study. Sanitary measures in piggeries were observed to be generally very poor, though respondents admitted being aware of ASF. Piggeries located within a 1 km radius of a slaughter slab (OR=9.2, 95% CI - 3.0-28.8), piggeries near refuse dump sites (OR=3.0, 95% CI - 1.0-9.5) and piggeries where farm workers wear their work clothes outside of the piggery premises (OR=0.2, 95% CI - 0.1-0.7) showed higher chances of ASFV infection and were significantly associated (p < 0.0001), (p < 0.05) and (p < 0.01), and were identified as potential risk factors. The study concluded that pigs in Benue State are still at risk of an ASF outbreak. Proper sanitary and hygienic practices is advocated and emphasized in piggeries, while routine surveillance for ASFV antibodies in pigs in Benue State is strongly recommended to provide a reliable reference data base to plan for the prevention of any devastating ASF outbreak.

Keywords: African swine fever, awareness, piggery, risk factors, sanitary measures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 984
27 Using the PARIS Method for Multiple Criteria Decision Making in Unmanned Combat Aircraft Evaluation and Selection

Authors: C. Ardil

Abstract:

Unmanned combat aircraft (UCA) are expanding significantly in several defense industries, along with artificial intelligence improvements in highly precise technology. UCA is crucial in military settings for targeting enemy elements, and objects. UCA is also utilized for highly precise reconnaissance and surveillance tasks. To select the best alternative for critical missions, a methodical and effective strategy for UCA selection is required. Multiple criteria decision-making (MCDM) methodologies are ideally equipped to handle the complexity of alternative aircraft selection. To analyze UCA alternatives for the selection process, an integrated methodology built on the objective criteria weights and preference analysis for reference ideal solution (PARIS). First, the weights of essential elements are determined using the average weight (AW), standard deviation (SW) and entropy weight (EW) approach. The weights of the evaluation criteria affect the decision-making process. The aircraft choices in the decision problem are then ranked using objective criteria weights along with the PARIS technique. The validation and sensitivity analysis of the proposed MCDM approach are discussed.

Keywords: unmanned combat aircraft (UCA), multiple criteria decision making, MCDM, PARIS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 474
26 RadMote: A Mobile Framework for Radiation Monitoring in Nuclear Power Plants

Authors: Javier Barbaran, Manuel Dıaz, Inaki Esteve, Bartolome Rubio

Abstract:

Wireless Sensor Networks (WSNs) have attracted the attention of many researchers. This has resulted in their rapid integration in very different areas such as precision agriculture,environmental monitoring, object and event detection and military surveillance. Due to the current WSN characteristics this technology is specifically useful in industrial areas where security, reliability and autonomy are basic, such as nuclear power plants, chemical plants, and others. In this paper we present a system based on WSNs to monitor environmental conditions around and inside a nuclear power plant, specifically, radiation levels. Sensor nodes, equipped with radiation sensors, are deployed in fixed positions throughout the plant. In addition, plant staff are also equipped with mobile devices with higher capabilities than sensors such as for example PDAs able to monitor radiation levels and other conditions around them. The system enables communication between PDAs, which form a Mobile Ad-hoc Wireless Network (MANET), and allows workers to monitor remote conditions in the plant. It is particularly useful during stoppage periods for inspection or in the event of an accident to prevent risk situations.

Keywords: MANETs, Mobile computing, Radiation monitoring, Wireless Sensor Networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2016
25 Incidence of Gastrointestinal Parasites among Workers in Major Abattoirs in Port Harcourt, Rivers State, Nigeria

Authors: L. B. Gboeloh, K. Elele

Abstract:

Gastrointestinal parasitic infections are common health problems in sub-Saharan Africa. A cross- sectional study was carried out to determine the prevalence of gastrointestinal parasites among workers in major abattoirs in Port Harcourt, Nigeria. These abattoirs are located in Trans-Amadi, Rumuodumaya, Mile III and Easter-by-Pass. Formol-ether concentration technique was used to isolate the ova and cysts from faecal samples. Out of 201 workers (herdsmen, butchers, and cleaners) investigated for the presence of these parasites, 89 (44.2%) were infected with one or more parasites. The prevalence of the parasites among herdsmen and cleaners was significantly (P<0.05) higher. However, there was no significant (P>0.05) difference in the prevalence of gastrointestinal parasites in relation to age. Parasites identified included Ascaris lumbricoide (33.3%), tapeworm (4.97%), Entamoeba histolytica (5.47%), hookworms (13.9%), Trichuris trichiura (9.95%), Gardia lamblia (3.48%), and Schistosoma mansoni (1.9%). The frequency of A. lumbricoide was significantly (P<0.05) higher than other parasites. Many workers (65.2%) had single infection than double (23.6%) and triple infection (11.2%). Sanitary improvements, increased level of personal hygiene, routine surveillance by public health practitioners and veterinary experts as well as hygienic operation using modern technologies to process meat at these abattoirs will go a long way to control occupational gastrointestinal parasites among workers.

Keywords: Abattoirs, Gastrointestinal parasites, Port Harcourt, Workers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2290
24 Optical Fish Tracking in Fishways using Neural Networks

Authors: Alvaro Rodriguez, Maria Bermudez, Juan R. Rabuñal, Jeronimo Puertas

Abstract:

One of the main issues in Computer Vision is to extract the movement of one or several points or objects of interest in an image or video sequence to conduct any kind of study or control process. Different techniques to solve this problem have been applied in numerous areas such as surveillance systems, analysis of traffic, motion capture, image compression, navigation systems and others, where the specific characteristics of each scenario determine the approximation to the problem. This paper puts forward a Computer Vision based algorithm to analyze fish trajectories in high turbulence conditions in artificial structures called vertical slot fishways, designed to allow the upstream migration of fish through obstructions in rivers. The suggested algorithm calculates the position of the fish at every instant starting from images recorded with a camera and using neural networks to execute fish detection on images. Different laboratory tests have been carried out in a full scale fishway model and with living fishes, allowing the reconstruction of the fish trajectory and the measurement of velocities and accelerations of the fish. These data can provide useful information to design more effective vertical slot fishways.

Keywords: Computer Vision, Neural Network, Fishway, Fish Trajectory, Tracking

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2000
23 Outdoor Anomaly Detection with a Spectroscopic Line Detector

Authors: O. J. G. Somsen

Abstract:

One of the tasks of optical surveillance is to detect anomalies in large amounts of image data. However, if the size of the anomaly is very small, limited information is available to distinguish it from the surrounding environment. Spectral detection provides a useful source of additional information and may help to detect anomalies with a size of a few pixels or less. Unfortunately, spectral cameras are expensive because of the difficulty of separating two spatial in addition to one spectral dimension. We investigate the possibility of modifying a simple spectral line detector for outdoor detection. This may be especially useful if the area of interest forms a line, such as the horizon. We use a monochrome CCD that also enables detection into the near infrared. A simple camera is attached to the setup to determine which part of the environment is spectrally imaged. Our preliminary results indicate that sensitive detection of very small targets is indeed possible. Spectra could be taken from the various targets by averaging columns in the line image. By imaging a set of lines of various widths we found narrow lines that could not be seen in the color image but remained visible in the spectral line image. A simultaneous analysis of the entire spectra can produce better results than visual inspection of the line spectral image. We are presently developing calibration targets for spatial and spectral focusing and alignment with the spatial camera. This will present improved results and more use in outdoor application.

Keywords: Anomaly detection, spectroscopic line imaging, image analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1646
22 Futuristic Black Box Design Considerations and Global Networking for Real Time Monitoring of Flight Performance Parameters

Authors: K. Parandhama Gowd

Abstract:

The aim of this research paper is to conceptualize, discuss, analyze and propose alternate design methodologies for futuristic Black Box for flight safety. The proposal also includes global networking concepts for real time surveillance and monitoring of flight performance parameters including GPS parameters. It is expected that this proposal will serve as a failsafe real time diagnostic tool for accident investigation and location of debris in real time. In this paper, an attempt is made to improve the existing methods of flight data recording techniques and improve upon design considerations for futuristic FDR to overcome the trauma of not able to locate the block box. Since modern day communications and information technologies with large bandwidth are available coupled with faster computer processing techniques, the attempt made in this paper to develop a failsafe recording technique is feasible. Further data fusion/data warehousing technologies are available for exploitation.

Keywords: Flight data recorder (FDR), black box, diagnostic tool, global networking, cockpit voice and data recorder (CVDR), air traffic control (ATC), air traffic, telemetry, tracking and control centers ATTTCC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1453
21 SIFT Accordion: A Space-Time Descriptor Applied to Human Action Recognition

Authors: Olfa.Ben Ahmed, Mahmoud. Mejdoub, Chokri. Ben Amar

Abstract:

Recognizing human action from videos is an active field of research in computer vision and pattern recognition. Human activity recognition has many potential applications such as video surveillance, human machine interaction, sport videos retrieval and robot navigation. Actually, local descriptors and bag of visuals words models achieve state-of-the-art performance for human action recognition. The main challenge in features description is how to represent efficiently the local motion information. Most of the previous works focus on the extension of 2D local descriptors on 3D ones to describe local information around every interest point. In this paper, we propose a new spatio-temporal descriptor based on a spacetime description of moving points. Our description is focused on an Accordion representation of video which is well-suited to recognize human action from 2D local descriptors without the need to 3D extensions. We use the bag of words approach to represent videos. We quantify 2D local descriptor describing both temporal and spatial features with a good compromise between computational complexity and action recognition rates. We have reached impressive results on publicly available action data set

Keywords: Accordion, Bag of Features, Human action, Motion, Moving point, Space-Time Descriptor, SIFT, Video.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2107
20 Spread Spectrum Code Estimationby Particle Swarm Algorithm

Authors: Vahid R. Asghari, Mehrdad Ardebilipour

Abstract:

In the context of spectrum surveillance, a new method to recover the code of spread spectrum signal is presented, while the receiver has no knowledge of the transmitter-s spreading sequence. In our previous paper, we used Genetic algorithm (GA), to recover spreading code. Although genetic algorithms (GAs) are well known for their robustness in solving complex optimization problems, but nonetheless, by increasing the length of the code, we will often lead to an unacceptable slow convergence speed. To solve this problem we introduce Particle Swarm Optimization (PSO) into code estimation in spread spectrum communication system. In searching process for code estimation, the PSO algorithm has the merits of rapid convergence to the global optimum, without being trapped in local suboptimum, and good robustness to noise. In this paper we describe how to implement PSO as a component of a searching algorithm in code estimation. Swarm intelligence boasts a number of advantages due to the use of mobile agents. Some of them are: Scalability, Fault tolerance, Adaptation, Speed, Modularity, Autonomy, and Parallelism. These properties make swarm intelligence very attractive for spread spectrum code estimation. They also make swarm intelligence suitable for a variety of other kinds of channels. Our results compare between swarm-based algorithms and Genetic algorithms, and also show PSO algorithm performance in code estimation process.

Keywords: Code estimation, Particle Swarm Optimization(PSO), Spread spectrum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2135
19 Texture Feature Extraction of Infrared River Ice Images using Second-Order Spatial Statistics

Authors: Bharathi P. T, P. Subashini

Abstract:

Ice cover County has a significant impact on rivers as it affects with the ice melting capacity which results in flooding, restrict navigation, modify the ecosystem and microclimate. River ices are made up of different ice types with varying ice thickness, so surveillance of river ice plays an important role. River ice types are captured using infrared imaging camera which captures the images even during the night times. In this paper the river ice infrared texture images are analysed using first-order statistical methods and secondorder statistical methods. The second order statistical methods considered are spatial gray level dependence method, gray level run length method and gray level difference method. The performance of the feature extraction methods are evaluated by using Probabilistic Neural Network classifier and it is found that the first-order statistical method and second-order statistical method yields low accuracy. So the features extracted from the first-order statistical method and second-order statistical method are combined and it is observed that the result of these combined features (First order statistical method + gray level run length method) provides higher accuracy when compared with the features from the first-order statistical method and second-order statistical method alone.

Keywords: Gray Level Difference Method, Gray Level Run Length Method, Kurtosis, Probabilistic Neural Network, Skewness, Spatial Gray Level Dependence Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2908
18 A Four-Step Ortho-Rectification Procedure for Geo-Referencing Video Streams from a Low-Cost UAV

Authors: B. O. Olawale, C. R. Chatwin, R. C. D. Young, P. M. Birch, F. O. Faithpraise, A. O. Olukiran

Abstract:

In this paper, we present a four-step ortho-rectification procedure for real-time geo-referencing of video data from a low-cost UAV equipped with a multi-sensor system. The basic procedures for the real-time ortho-rectification are: (1) decompilation of the video stream into individual frames; (2) establishing the interior camera orientation parameters; (3) determining the relative orientation parameters for each video frame with respect to each other; (4) finding the absolute orientation parameters, using a self-calibration bundle and adjustment with the aid of a mathematical model. Each ortho-rectified video frame is then mosaicked together to produce a mosaic image of the test area, which is then merged with a well referenced existing digital map for the purpose of geo-referencing and aerial surveillance. A test field located in Abuja, Nigeria was used to evaluate our method. Video and telemetry data were collected for about fifteen minutes, and they were processed using the four-step ortho-rectification procedure. The results demonstrated that the geometric measurement of the control field from ortho-images is more accurate when compared with those from original perspective images when used to pin point the exact location of targets on the video imagery acquired by the UAV. The 2-D planimetric accuracy when compared with the 6 control points measured by a GPS receiver is between 3 to 5 metres.

Keywords: Geo-referencing, ortho-rectification, video frame, self-calibration, UAV, target tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1614
17 Visual Text Analytics Technologies for Real-Time Big Data: Chronological Evolution and Issues

Authors: Siti Azrina B. A. Aziz, Siti Hafizah A. Hamid

Abstract:

New approaches to analyze and visualize data stream in real-time basis is important in making a prompt decision by the decision maker. Financial market trading and surveillance, large-scale emergency response and crowd control are some example scenarios that require real-time analytic and data visualization. This situation has led to the development of techniques and tools that support humans in analyzing the source data. With the emergence of Big Data and social media, new techniques and tools are required in order to process the streaming data. Today, ranges of tools which implement some of these functionalities are available. In this paper, we present chronological evolution evaluation of technologies for supporting of real-time analytic and visualization of the data stream. Based on the past research papers published from 2002 to 2014, we gathered the general information, main techniques, challenges and open issues. The techniques for streaming text visualization are identified based on Text Visualization Browser in chronological order. This paper aims to review the evolution of streaming text visualization techniques and tools, as well as to discuss the problems and challenges for each of identified tools.

Keywords: Information visualization, visual analytics, text mining, visual text analytics tools, big data visualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1002
16 Target Detection using Adaptive Progressive Thresholding Based Shifted Phase-Encoded Fringe-Adjusted Joint Transform Correlator

Authors: Inder K. Purohit, M. Nazrul Islam, K. Vijayan Asari, Mohammad A. Karim

Abstract:

A new target detection technique is presented in this paper for the identification of small boats in coastal surveillance. The proposed technique employs an adaptive progressive thresholding (APT) scheme to first process the given input scene to separate any objects present in the scene from the background. The preprocessing step results in an image having only the foreground objects, such as boats, trees and other cluttered regions, and hence reduces the search region for the correlation step significantly. The processed image is then fed to the shifted phase-encoded fringe-adjusted joint transform correlator (SPFJTC) technique which produces single and delta-like correlation peak for a potential target present in the input scene. A post-processing step involves using a peak-to-clutter ratio (PCR) to determine whether the boat in the input scene is authorized or unauthorized. Simulation results are presented to show that the proposed technique can successfully determine the presence of an authorized boat and identify any intruding boat present in the given input scene.

Keywords: Adaptive progressive thresholding, fringe adjusted filters, image segmentation, joint transform correlation, synthetic discriminant function

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1207
15 Breast Cancer Survivability Prediction via Classifier Ensemble

Authors: Mohamed Al-Badrashiny, Abdelghani Bellaachia

Abstract:

This paper presents a classifier ensemble approach for predicting the survivability of the breast cancer patients using the latest database version of the Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute. The system consists of two main components; features selection and classifier ensemble components. The features selection component divides the features in SEER database into four groups. After that it tries to find the most important features among the four groups that maximizes the weighted average F-score of a certain classification algorithm. The ensemble component uses three different classifiers, each of which models different set of features from SEER through the features selection module. On top of them, another classifier is used to give the final decision based on the output decisions and confidence scores from each of the underlying classifiers. Different classification algorithms have been examined; the best setup found is by using the decision tree, Bayesian network, and Na¨ıve Bayes algorithms for the underlying classifiers and Na¨ıve Bayes for the classifier ensemble step. The system outperforms all published systems to date when evaluated against the exact same data of SEER (period of 1973-2002). It gives 87.39% weighted average F-score compared to 85.82% and 81.34% of the other published systems. By increasing the data size to cover the whole database (period of 1973-2014), the overall weighted average F-score jumps to 92.4% on the held out unseen test set.

Keywords: Classifier ensemble, breast cancer survivability, data mining, SEER.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1671
14 Design of a 5-Joint Mechanical Arm with User-Friendly Control Program

Authors: Amon Tunwannarux, Supanunt Tunwannarux

Abstract:

This paper describes the design concepts and implementation of a 5-Joint mechanical arm for a rescue robot named CEO Mission II. The multi-joint arm is a five degree of freedom mechanical arm with a four bar linkage, which can be stretched to 125 cm. long. It is controlled by a teleoperator via the user-friendly control and monitoring GUI program. With Inverse Kinematics principle, we developed the method to control the servo angles of all arm joints to get the desired tip position. By clicking the determined tip position or dragging the tip of the mechanical arm on the computer screen to the desired target point, the robot will compute and move its multi-joint arm to the pose as seen on the GUI screen. The angles of each joint are calculated and sent to all joint servos simultaneously in order to move the mechanical arm to the desired pose at once. The operator can also use a joystick to control the movement of this mechanical arm and the locomotion of the robot. Many sensors are installed at the tip of this mechanical arm for surveillance from the high level and getting the vital signs of victims easier and faster in the urban search and rescue tasks. It works very effectively and easy to control. This mechanical arm and its software were developed as a part of the CEO Mission II Rescue Robot that won the First Runner Up award and the Best Technique award from the Thailand Rescue Robot Championship 2006. It is a low cost, simple, but functioning 5-Jiont mechanical arm which is built from scratch, and controlled via wireless LAN 802.11b/g. This 5-Jiont mechanical arm hardware concept and its software can also be used as the basic mechatronics to many real applications.

Keywords: Multi-joint, mechanical arm, inverse kinematics, rescue robot, GUI control program.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1814
13 Modified Energy and Link Failure Recovery Routing Algorithm for Wireless Sensor Network

Authors: M. Jayekumar, V. Nagarajan

Abstract:

Wireless sensor network finds role in environmental monitoring, industrial applications, surveillance applications, health monitoring and other supervisory applications. Sensing devices form the basic operational unit of the network that is self-battery powered with limited life time. Sensor node spends its limited energy for transmission, reception, routing and sensing information. Frequent energy utilization for the above mentioned process leads to network lifetime degradation. To enhance energy efficiency and network lifetime, we propose a modified energy optimization and node recovery post failure method, Energy-Link Failure Recovery Routing (E-LFRR) algorithm. In our E-LFRR algorithm, two phases namely, Monitored Transmission phase and Replaced Transmission phase are devised to combat worst case link failure conditions. In Monitored Transmission phase, the Actuator Node monitors and identifies suitable nodes for shortest path transmission. The Replaced Transmission phase dispatches the energy draining node at early stage from the active link and replaces it with the new node that has sufficient energy. Simulation results illustrate that this combined methodology reduces overhead, energy consumption, delay and maintains considerable amount of alive nodes thereby enhancing the network performance.

Keywords: Actuator node, energy efficient routing, energy hole, link failure recovery, link utilization, wireless sensor network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1192
12 Dengue Disease Mapping with Standardized Morbidity Ratio and Poisson-gamma Model: An Analysis of Dengue Disease in Perak, Malaysia

Authors: N. A. Samat, S. H. Mohd Imam Ma’arof

Abstract:

Dengue disease is an infectious vector-borne viral disease that is commonly found in tropical and sub-tropical regions, especially in urban and semi-urban areas, around the world and including Malaysia. There is no currently available vaccine or chemotherapy for the prevention or treatment of dengue disease. Therefore prevention and treatment of the disease depend on vector surveillance and control measures. Disease risk mapping has been recognized as an important tool in the prevention and control strategies for diseases. The choice of statistical model used for relative risk estimation is important as a good model will subsequently produce a good disease risk map. Therefore, the aim of this study is to estimate the relative risk for dengue disease based initially on the most common statistic used in disease mapping called Standardized Morbidity Ratio (SMR) and one of the earliest applications of Bayesian methodology called Poisson-gamma model. This paper begins by providing a review of the SMR method, which we then apply to dengue data of Perak, Malaysia. We then fit an extension of the SMR method, which is the Poisson-gamma model. Both results are displayed and compared using graph, tables and maps. Results of the analysis shows that the latter method gives a better relative risk estimates compared with using the SMR. The Poisson-gamma model has been demonstrated can overcome the problem of SMR when there is no observed dengue cases in certain regions. However, covariate adjustment in this model is difficult and there is no possibility for allowing spatial correlation between risks in adjacent areas. The drawbacks of this model have motivated many researchers to propose other alternative methods for estimating the risk.

Keywords: Dengue disease, Disease mapping, Standardized Morbidity Ratio, Poisson-gamma model, Relative risk.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3294
11 Incidence of Pathogenic Bacteria in Cakes and Tarts Displayed for Sale in Tripoli, Libya

Authors: Sabrin M. Al-Jafaeri, Nuri S. Madi, Mohamed H. Nahaisi

Abstract:

This study was conducted to investigate the incidence of pathogenic bacteria: Salmonella, Shigella, Escherichia coli O157 and Staphylococcus aureus in cakes and tarts collected from thirtyfive confectionery producing and selling premises located within Tripoli city, Libya. The results revealed an incidence of S. aureus with 94.4 and 48.0 %, E. coli O157 with 14.7 and 4.0 % and Salmonella sp. with 5.9 and 8.0 % in cakes and tarts samples respectively; while Shigella was not detected in all samples. In order to determine the source of these pathogenic bacteria, cotton swabs were taken from the hands of workers on the production line, the surfaces of preparation tables and cream whipping instruments. The results showed that the cotton swabs obtained from the hands of workers contained S. aureus and Salmonella sp. with an incidence of 42.9 and 2.9 %, the cotton swabs obtained from the surfaces of preparation tables 22.9 and 2.9 % and the cotton swabs obtained from the cream whipping instruments 14.3 and 0.0 % respectively; while E. coli O157 and Shigella sp. were not detected in all swabs. Additionally, other bacteria were isolated from the hands of workers and the Surfaces of producing equipments included: Aeromonas sp., Pseudomonas sp., E. coli, Klebsiella sp., Enterobacter sp., Citrobacter sp., Proteus sp., Serratia sp. and Acinetobacter sp. These results indicate that some of the cakes and tarts might pose threat to consumer's health. Meanwhile, occurrences of pathogenic bacteria on the hands of those who are working in production line and the surfaces of equipments reflect poor hygienic practices at most confectionery premises examined in this study. Thus, firm and continuous surveillance of these premises is needed to insure the consumer's health and safety.

Keywords: Pathogenic bacteria, Cakes, Tarts, Confectionery producing and selling premises.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2606
10 Lightweight and Seamless Distributed Scheme for the Smart Home

Authors: Muhammad Mehran Arshad Khan, Chengliang Wang, Zou Minhui, Danyal Badar Soomro

Abstract:

Security of the smart home in terms of behavior activity pattern recognition is a totally dissimilar and unique issue as compared to the security issues of other scenarios. Sensor devices (low capacity and high capacity) interact and negotiate each other by detecting the daily behavior activity of individuals to execute common tasks. Once a device (e.g., surveillance camera, smart phone and light detection sensor etc.) is compromised, an adversary can then get access to a specific device and can damage daily behavior activity by altering the data and commands. In this scenario, a group of common instruction processes may get involved to generate deadlock. Therefore, an effective suitable security solution is required for smart home architecture. This paper proposes seamless distributed Scheme which fortifies low computational wireless devices for secure communication. Proposed scheme is based on lightweight key-session process to upheld cryptic-link for trajectory by recognizing of individual’s behavior activities pattern. Every device and service provider unit (low capacity sensors (LCS) and high capacity sensors (HCS)) uses an authentication token and originates a secure trajectory connection in network. Analysis of experiments is revealed that proposed scheme strengthens the devices against device seizure attack by recognizing daily behavior activities, minimum utilization memory space of LCS and avoids network from deadlock. Additionally, the results of a comparison with other schemes indicate that scheme manages efficiency in term of computation and communication.

Keywords: Authentication, key-session, security, wireless sensors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 877