Search results for: mathematical data analysis.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14053

Search results for: mathematical data analysis.

13963 Fish Locomotion for Innovative Marine Propulsion Systems

Authors: Omar B. Yaakob, Yasser M. Ahmed, Ahmad F. Said

Abstract:

There is an essential need for obtaining the mathematical representation of fish body undulations, which can be used for designing and building new innovative types of marine propulsion systems with less environmental impact. This research work presents a case study to derive the mathematical model for fish body movement. Observation and capturing image methods were used in this study in order to obtain a mathematical representation of Clariasbatrachus fish (catfish). An experiment was conducted by using an aquarium with dimension 0.609 m x 0.304 m x 0.304 m, and a 0.5 m ruler was attached at the base of the aquarium. Progressive Scan Monochrome Camera was positioned at 1.8 m above the base of the aquarium to provide swimming sequences. Seven points were marked on the fish body using white marker to indicate the fish movement and measuring the amplitude of undulation. Images from video recordings (20 frames/s) were analyzed frame by frame using local coordinate system, with time interval 0.05 s. The amplitudes of undulations were obtained for image analysis from each point that has been marked on fish body. A graph of amplitude of undulations versus time was plotted by using computer to derive a mathematical fit. The function for the graph is polynomial with nine orders.

Keywords: Fish locomotion, body undulation, steady and unsteady swimming modes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2202
13962 Optical Fiber Data Throughput in a Quantum Communication System

Authors: Arash Kosari, Ali Araghi

Abstract:

A mathematical model for an optical-fiber communication channel is developed which results in an expression that calculates the throughput and loss of the corresponding link. The data are assumed to be transmitted by using of separate photons with different polarizations. The derived model also shows the dependency of data throughput with length of the channel and depolarization factor. It is observed that absorption of photons affects the throughput in a more intensive way in comparison with that of depolarization. Apart from that, the probability of depolarization and the absorption of radiated photons are obtained.

Keywords: Absorption, data throughput, depolarization, optical fiber.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1684
13961 Mathematical Programming Models for Portfolio Optimization Problem: A Review

Authors: M. Mokhtar, A. Shuib, D. Mohamad

Abstract:

Portfolio optimization problem has received a lot of attention from both researchers and practitioners over the last six decades. This paper provides an overview of the current state of research in portfolio optimization with the support of mathematical programming techniques. On top of that, this paper also surveys the solution algorithms for solving portfolio optimization models classifying them according to their nature in heuristic and exact methods. To serve these purposes, 40 related articles appearing in the international journal from 2003 to 2013 have been gathered and analyzed. Based on the literature review, it has been observed that stochastic programming and goal programming constitute the highest number of mathematical programming techniques employed to tackle the portfolio optimization problem. It is hoped that the paper can meet the needs of researchers and practitioners for easy references of portfolio optimization.

Keywords: Portfolio optimization, Mathematical programming, Multi-objective programming, Solution approaches.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6573
13960 Comprehensive Analysis of Data Mining Tools

Authors: S. Sarumathi, N. Shanthi

Abstract:

Due to the fast and flawless technological innovation there is a tremendous amount of data dumping all over the world in every domain such as Pattern Recognition, Machine Learning, Spatial Data Mining, Image Analysis, Fraudulent Analysis, World Wide Web etc., This issue turns to be more essential for developing several tools for data mining functionalities. The major aim of this paper is to analyze various tools which are used to build a resourceful analytical or descriptive model for handling large amount of information more efficiently and user friendly. In this survey the diverse tools are illustrated with their extensive technical paradigm, outstanding graphical interface and inbuilt multipath algorithms in which it is very useful for handling significant amount of data more indeed.

Keywords: Classification, Clustering, Data Mining, Machine learning, Visualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2439
13959 Forthcoming Big Data on Smart Buildings and Cities: An Experimental Study on Correlations among Urban Data

Authors: Yu-Mi Song, Sung-Ah Kim, Dongyoun Shin

Abstract:

Cities are complex systems of diverse and inter-tangled activities. These activities and their complex interrelationships create diverse urban phenomena. And such urban phenomena have considerable influences on the lives of citizens. This research aimed to develop a method to reveal the causes and effects among diverse urban elements in order to enable better understanding of urban activities and, therefrom, to make better urban planning strategies. Specifically, this study was conducted to solve a data-recommendation problem found on a Korean public data homepage. First, a correlation analysis was conducted to find the correlations among random urban data. Then, based on the results of that correlation analysis, the weighted data network of each urban data was provided to people. It is expected that the weights of urban data thereby obtained will provide us with insights into cities and show us how diverse urban activities influence each other and induce feedback.

Keywords: Big data, correlation analysis, data recommendation system, urban data network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1105
13958 Semantic Support for Hypothesis-Based Research from Smart Environment Monitoring and Analysis Technologies

Authors: T. S. Myers, J. Trevathan

Abstract:

Improvements in the data fusion and data analysis phase of research are imperative due to the exponential growth of sensed data. Currently, there are developments in the Semantic Sensor Web community to explore efficient methods for reuse, correlation and integration of web-based data sets and live data streams. This paper describes the integration of remotely sensed data with web-available static data for use in observational hypothesis testing and the analysis phase of research. The Semantic Reef system combines semantic technologies (e.g., well-defined ontologies and logic systems) with scientific workflows to enable hypothesis-based research. A framework is presented for how the data fusion concepts from the Semantic Reef architecture map to the Smart Environment Monitoring and Analysis Technologies (SEMAT) intelligent sensor network initiative. The data collected via SEMAT and the inferred knowledge from the Semantic Reef system are ingested to the Tropical Data Hub for data discovery, reuse, curation and publication.

Keywords: Information architecture, Semantic technologies Sensor networks, Ontologies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1715
13957 Do Students Really Understand Topology in the Lesson? A Case Study

Authors: Serkan Narli

Abstract:

This study aims to specify to what extent students understand topology during the lesson and to determine possible misconceptions. 14 teacher trainees registered at Secondary School Mathematics education department were observed in the topology lessons throughout a semester and data collected at the first topology lesson is presented here. Students- knowledge was evaluated using a written test right before and after the topology lesson. Thus, what the students learnt in terms of the definition and examples of topologic space were specified as well as possible misconceptions. The findings indicated that students did not fully comprehend the topic and misunderstandings were due to insufficient pre-requisite knowledge of abstract mathematical topics and mathematical notation.

Keywords: Mathematics Education, Teacher Education, Topology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1448
13956 Image Segmentation by Mathematical Morphology: An Approach through Linear, Bilinear and Conformal Transformation

Authors: Dibyendu Ghoshal, Pinaki Pratim Acharjya

Abstract:

Image segmentation process based on mathematical morphology has been studied in the paper. It has been established from the first principles of the morphological process, the entire segmentation is although a nonlinear signal processing task, the constituent wise, the intermediate steps are linear, bilinear and conformal transformation and they give rise to a non linear affect in a cumulative manner.

Keywords: Image segmentation, linear transform, bilinear transform, conformal transform, mathematical morphology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2192
13955 An In-Depth Analysis of Open Data Portals as an Emerging Public E-Service

Authors: Martin Lnenicka

Abstract:

Governments collect and produce large amounts of data. Increasingly, governments worldwide have started to implement open data initiatives and also launch open data portals to enable the release of these data in open and reusable formats. Therefore, a large number of open data repositories, catalogues and portals have been emerging in the world. The greater availability of interoperable and linkable open government data catalyzes secondary use of such data, so they can be used for building useful applications which leverage their value, allow insight, provide access to government services, and support transparency. The efficient development of successful open data portals makes it necessary to evaluate them systematic, in order to understand them better and assess the various types of value they generate, and identify the required improvements for increasing this value. Thus, the attention of this paper is directed particularly to the field of open data portals. The main aim of this paper is to compare the selected open data portals on the national level using content analysis and propose a new evaluation framework, which further improves the quality of these portals. It also establishes a set of considerations for involving businesses and citizens to create eservices and applications that leverage on the datasets available from these portals.

Keywords: Big data, content analysis, criteria comparison, data quality, open data, open data portals, public sector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3082
13954 Role of Association Rule Mining in Numerical Data Analysis

Authors: Sudhir Jagtap, Kodge B. G., Shinde G. N., Devshette P. M

Abstract:

Numerical analysis naturally finds applications in all fields of engineering and the physical sciences, but in the 21st century, the life sciences and even the arts have adopted elements of scientific computations. The numerical data analysis became key process in research and development of all the fields [6]. In this paper we have made an attempt to analyze the specified numerical patterns with reference to the association rule mining techniques with minimum confidence and minimum support mining criteria. The extracted rules and analyzed results are graphically demonstrated. Association rules are a simple but very useful form of data mining that describe the probabilistic co-occurrence of certain events within a database [7]. They were originally designed to analyze market-basket data, in which the likelihood of items being purchased together within the same transactions are analyzed.

Keywords: Numerical data analysis, Data Mining, Association Rule Mining

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2861
13953 Analysis of Diverse Clustering Tools in Data Mining

Authors: S. Sarumathi, N. Shanthi, M. Sharmila

Abstract:

Clustering in data mining is an unsupervised learning technique of aggregating the data objects into meaningful groups such that the intra cluster similarity of objects are maximized and inter cluster similarity of objects are minimized. Over the past decades several clustering tools were emerged in which clustering algorithms are inbuilt and are easier to use and extract the expected results. Data mining mainly deals with the huge databases that inflicts on cluster analysis and additional rigorous computational constraints. These challenges pave the way for the emergence of powerful expansive data mining clustering softwares. In this survey, a variety of clustering tools used in data mining are elucidated along with the pros and cons of each software.

Keywords: Cluster Analysis, Clustering Algorithms, Clustering Techniques, Association, Visualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2201
13952 Application of Multi-Dimensional Principal Component Analysis to Medical Data

Authors: Naoki Yamamoto, Jun Murakami, Chiharu Okuma, Yutaro Shigeto, Satoko Saito, Takashi Izumi, Nozomi Hayashida

Abstract:

Multi-dimensional principal component analysis (PCA) is the extension of the PCA, which is used widely as the dimensionality reduction technique in multivariate data analysis, to handle multi-dimensional data. To calculate the PCA the singular value decomposition (SVD) is commonly employed by the reason of its numerical stability. The multi-dimensional PCA can be calculated by using the higher-order SVD (HOSVD), which is proposed by Lathauwer et al., similarly with the case of ordinary PCA. In this paper, we apply the multi-dimensional PCA to the multi-dimensional medical data including the functional independence measure (FIM) score, and describe the results of experimental analysis.

Keywords: multi-dimensional principal component analysis, higher-order SVD (HOSVD), functional independence measure (FIM), medical data, tensor decomposition

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2502
13951 Mathematical Modeling Experimental Approach of the Friction on the Tool-Chip Interface of Multicoated Carbide Turning Inserts

Authors: Samy E. Oraby, Ayman M. Alaskari

Abstract:

The importance of machining process in today-s industry requires the establishment of more practical approaches to clearly represent the intimate and severe contact on the tool-chipworkpiece interfaces. Mathematical models are developed using the measured force signals to relate each of the tool-chip friction components on the rake face to the operating cutting parameters in rough turning operation using multilayers coated carbide inserts. Nonlinear modeling proved to have high capability to detect the nonlinear functional variability embedded in the experimental data. While feedrate is found to be the most influential parameter on the friction coefficient and its related force components, both cutting speed and depth of cut are found to have slight influence. Greater deformed chip thickness is found to lower the value of friction coefficient as the sliding length on the tool-chip interface is reduced.

Keywords: Mathematical modeling, Cutting forces, Frictionforces, Friction coefficient and Chip ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3125
13950 No one Set of Parameter Values Can Simulate the Epidemics Due to SARS Occurring at Different Localities

Authors: Weerachi Sarakorn, I-Ming Tang

Abstract:

A mathematical model for the transmission of SARS is developed. In addition to dividing the population into susceptible (high and low risk), exposed, infected, quarantined, diagnosed and recovered classes, we have included a class called untraced. The model simulates the Gompertz curves which are the best representation of the cumulative numbers of probable SARS cases in Hong Kong and Singapore. The values of the parameters in the model which produces the best fit of the observed data for each city are obtained by using a differential evolution algorithm. It is seen that the values for the parameters needed to simulate the observed daily behaviors of the two epidemics are different.

Keywords: SARS, mathematical modelling, differential evolution algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1448
13949 Methods for Analyzing the Energy Efficiencyand Cost Effectiveness of Evaporative Cooling Air Conditioning

Authors: A Fouda, Z. Melikyan

Abstract:

Air conditioning systems of houses consume large quantity of electricity. To reducing energy consumption for air conditioning purposes it is becoming attractive the use of evaporative cooling air conditioning which is less energy consuming compared to air chillers. But, it is obvious that higher energy efficiency of evaporative cooling is not enough to judge whether evaporative cooling economically is competitive with other types of cooling systems. To proving the higher energy efficiency and cost effectiveness of the evaporative cooling competitive analysis of various types of cooling system should be accomplished. For noted purpose optimization mathematical model for each system should be composed based on system approach analysis. In this paper different types of evaporative cooling-heating systems are discussed and methods for increasing their energy efficiency and as well as determining of their design parameters are developed. The optimization mathematical models for each of them are composed with help of which least specific costs for each of them are reviled. The comparison of specific costs proved that the most efficient and cost effective is considered the “direct evaporating" system if it is applicable for given climatic conditions. Next more universal and applicable for many climatic conditions system providing least cost of heating and cooling is considered the “direct evaporating" system.

Keywords: air, conditioning, system, evaporative cooling, mathematical model, optimization, thermoeconomic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1771
13948 A New Fuzzy Mathematical Model in Recycling Collection Networks: A Possibilistic Approach

Authors: B. Vahdani, R. Tavakkoli-Moghaddam, A. Baboli, S. M. Mousavi

Abstract:

Focusing on the environmental issues, including the reduction of scrap and consumer residuals, along with the benefiting from the economic value during the life cycle of goods/products leads the companies to have an important competitive approach. The aim of this paper is to present a new mixed nonlinear facility locationallocation model in recycling collection networks by considering multi-echelon, multi-suppliers, multi-collection centers and multifacilities in the recycling network. To make an appropriate decision in reality, demands, returns, capacities, costs and distances, are regarded uncertain in our model. For this purpose, a fuzzy mathematical programming-based possibilistic approach is introduced as a solution methodology from the recent literature to solve the proposed mixed-nonlinear programming model (MNLP). The computational experiments are provided to illustrate the applicability of the designed model in a supply chain environment and to help the decision makers to facilitate their analysis.

Keywords: Location-allocation model, recycling collection networks, fuzzy mathematical programming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2098
13947 Non-negative Principal Component Analysis for Face Recognition

Authors: Zhang Yan, Yu Bin

Abstract:

Principle component analysis is often combined with the state-of-art classification algorithms to recognize human faces. However, principle component analysis can only capture these features contributing to the global characteristics of data because it is a global feature selection algorithm. It misses those features contributing to the local characteristics of data because each principal component only contains some levels of global characteristics of data. In this study, we present a novel face recognition approach using non-negative principal component analysis which is added with the constraint of non-negative to improve data locality and contribute to elucidating latent data structures. Experiments are performed on the Cambridge ORL face database. We demonstrate the strong performances of the algorithm in recognizing human faces in comparison with PCA and NREMF approaches.

Keywords: classification, face recognition, non-negativeprinciple component analysis (NPCA)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1695
13946 Maya Semantic Technique: A Mathematical Technique Used to Determine Partial Semantics for Declarative Sentences

Authors: Marcia T. Mitchell

Abstract:

This research uses computational linguistics, an area of study that employs a computer to process natural language, and aims at discerning the patterns that exist in declarative sentences used in technical texts. The approach is mathematical, and the focus is on instructional texts found on web pages. The technique developed by the author and named the MAYA Semantic Technique is used here and organized into four stages. In the first stage, the parts of speech in each sentence are identified. In the second stage, the subject of the sentence is determined. In the third stage, MAYA performs a frequency analysis on the remaining words to determine the verb and its object. In the fourth stage, MAYA does statistical analysis to determine the content of the web page. The advantage of the MAYA Semantic Technique lies in its use of mathematical principles to represent grammatical operations which assist processing and accuracy if performed on unambiguous text. The MAYA Semantic Technique is part of a proposed architecture for an entire web-based intelligent tutoring system. On a sample set of sentences, partial semantics derived using the MAYA Semantic Technique were approximately 80% accurate. The system currently processes technical text in one domain, namely Cµ programming. In this domain all the keywords and programming concepts are known and understood.

Keywords: Natural language understanding, computational linguistics, knowledge representation, linguistic theories.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1671
13945 Promoting Mathematical Understanding Using ICT in Teaching and Learning

Authors: Kamel Hashem, Ibrahim Arman

Abstract:

Information and Communication Technologies (ICT) in mathematical education is a very active field of research and innovation, where learning is understood to be meaningful and grasping multiple linked representation rather than rote memorization, a great amount of literature offering a wide range of theories, learning approaches, methodologies and interpretations, are generally stressing the potentialities for teaching and learning using ICT. Despite the utilization of new learning approaches with ICT, students experience difficulties in learning concepts relevant to understanding mathematics, much remains unclear about the relationship between the computer environment, the activities it might support, and the knowledge that might emerge from such activities. Many questions that might arise in this regard: to what extent does the use of ICT help students in the process of understanding and solving tasks or problems? Is it possible to identify what aspects or features of students' mathematical learning can be enhanced by the use of technology? This paper will highlight the interest of the integration of information and communication technologies (ICT) into the teaching and learning of mathematics (quadratic functions), it aims to investigate the effect of four instructional methods on students- mathematical understanding and problem solving. Quantitative and qualitative methods are used to report about 43 students in middle school. Results showed that mathematical thinking and problem solving evolves as students engage with ICT activities and learn cooperatively.

Keywords: Dynamic Geometry Software, Information and Communication Technologies, Visualization, Mathematical Education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1853
13944 HIV Treatment Planning on a case-by-CASE Basis

Authors: Marios M. Hadjiandreou, Raul Conejeros, Ian Wilson

Abstract:

This study presents a mathematical modeling approach to the planning of HIV therapies on an individual basis. The model replicates clinical data from typical-progressors to AIDS for all stages of the disease with good agreement. Clinical data from rapid-progressors and long-term non-progressors is also matched by estimation of immune system parameters only. The ability of the model to reproduce these phenomena validates the formulation, a fact which is exploited in the investigation of effective therapies. The therapy investigation suggests that, unlike continuous therapy, structured treatment interruptions (STIs) are able to control the increase in both the drug-sensitive and drug-resistant virus population and, hence, prevent the ultimate progression from HIV to AIDS. The optimization results further suggest that even patients characterised by the same progression type can respond very differently to the same treatment and that the latter should be designed on a case-by-case basis. Such a methodology is presented here.

Keywords: AIDS, chemotherapy, mathematical modeling, optimal control, progression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1684
13943 Coalescing Data Marts

Authors: N. Parimala, P. Pahwa

Abstract:

OLAP uses multidimensional structures, to provide access to data for analysis. Traditionally, OLAP operations are more focused on retrieving data from a single data mart. An exception is the drill across operator. This, however, is restricted to retrieving facts on common dimensions of the multiple data marts. Our concern is to define further operations while retrieving data from multiple data marts. Towards this, we have defined six operations which coalesce data marts. While doing so we consider the common as well as the non-common dimensions of the data marts.

Keywords: Data warehouse, Dimension, OLAP, Star Schema.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1559
13942 Flow Duration Curves and Recession Curves Connection through a Mathematical Link

Authors: Elena Carcano, Mirzi Betasolo

Abstract:

This study helps Public Water Bureaus in giving reliable answers to water concession requests. Rapidly increasing water requests can be supported provided that further uses of a river course are not totally compromised, and environmental features are protected as well. Strictly speaking, a water concession can be considered a continuous drawing from the source and causes a mean annual streamflow reduction. Therefore, deciding if a water concession is appropriate or inappropriate seems to be easily solved by comparing the generic demand to the mean annual streamflow value at disposal. Still, the immediate shortcoming for such a comparison is that streamflow data are information available only for few catchments and, most often, limited to specific sites. Subsequently, comparing the generic water demand to mean daily discharge is indeed far from being completely satisfactory since the mean daily streamflow is greater than the water withdrawal for a long period of a year. Consequently, such a comparison appears to be of little significance in order to preserve the quality and the quantity of the river. In order to overcome such a limit, this study aims to complete the information provided by flow duration curves introducing a link between Flow Duration Curves (FDCs) and recession curves and aims to show the chronological sequence of flows with a particular focus on low flow data. The analysis is carried out on 25 catchments located in North-Eastern Italy for which daily data are provided. The results identify groups of catchments as hydrologically homogeneous, having the lower part of the FDCs (corresponding streamflow interval is streamflow Q between 300 and 335, namely: Q(300), Q(335)) smoothly reproduced by a common recession curve. In conclusion, the results are useful to provide more reliable answers to water request, especially for those catchments which show similar hydrological response and can be used for a focused regionalization approach on low flow data. A mathematical link between streamflow duration curves and recession curves is herein provided, thus furnishing streamflow duration curves information upon a temporal sequence of data. In such a way, by introducing assumptions on recession curves, the chronological sequence upon low flow data can also be attributed to FDCs, which are known to lack this information by nature.

Keywords: Chronological sequence of discharges, recession curves, streamflow duration curves, water concession.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 594
13941 Data and Spatial Analysis for Economy and Education of 28 E.U. Member-States for 2014

Authors: Alexiou Dimitra, Fragkaki Maria

Abstract:

The objective of the paper is the study of geographic, economic and educational variables and their contribution to determine the position of each member-state among the EU-28 countries based on the values of seven variables as given by Eurostat. The Data Analysis methods of Multiple Factorial Correspondence Analysis (MFCA) Principal Component Analysis and Factor Analysis have been used. The cross tabulation tables of data consist of the values of seven variables for the 28 countries for 2014. The data are manipulated using the CHIC Analysis V 1.1 software package. The results of this program using MFCA and Ascending Hierarchical Classification are given in arithmetic and graphical form. For comparison reasons with the same data the Factor procedure of Statistical package IBM SPSS 20 has been used. The numerical and graphical results presented with tables and graphs, demonstrate the agreement between the two methods. The most important result is the study of the relation between the 28 countries and the position of each country in groups or clouds, which are formed according to the values of the corresponding variables.

Keywords: Multiple factorial correspondence analysis, principal component analysis, factor analysis, E.U.-28 countries, statistical package IBM SPSS 20, CHIC Analysis V 1.1 Software, Eurostat.eu statistics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1085
13940 EEG Correlates of Trait and Mathematical Anxiety during Lexical and Numerical Error-Recognition Tasks

Authors: Alexander N. Savostyanov, Tatiana A. Dolgorukova, Elena A. Esipenko, Mikhail S. Zaleshin, Margherita Malanchini, Anna V. Budakova, Alexander E. Saprygin, Tatiana A. Golovko, Yulia V. Kovas

Abstract:

EEG correlates of mathematical and trait anxiety level were studied in 52 healthy Russian-speakers during execution of error-recognition tasks with lexical, arithmetic and algebraic conditions. Event-related spectral perturbations were used as a measure of brain activity. The ERSP plots revealed alpha/beta desynchronizations within a 500-3000 ms interval after task onset and slow-wave synchronization within an interval of 150-350 ms. Amplitudes of these intervals reflected the accuracy of error recognition, and were differently associated with the three conditions. The correlates of anxiety were found in theta (4-8 Hz) and beta2 (16- 20 Hz) frequency bands. In theta band the effects of mathematical anxiety were stronger expressed in lexical, than in arithmetic and algebraic condition. The mathematical anxiety effects in theta band were associated with differences between anterior and posterior cortical areas, whereas the effects of trait anxiety were associated with inter-hemispherical differences. In beta1 and beta2 bands effects of trait and mathematical anxiety were directed oppositely. The trait anxiety was associated with increase of amplitude of desynchronization, whereas the mathematical anxiety was associated with decrease of this amplitude. The effect of mathematical anxiety in beta2 band was insignificant for lexical condition but was the strongest in algebraic condition. EEG correlates of anxiety in theta band could be interpreted as indexes of task emotionality, whereas the reaction in beta2 band is related to tension of intellectual resources.

Keywords: EEG, brain activity, lexical and numerical error-recognition tasks, mathematical and trait anxiety.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1936
13939 A Competitive Replica Placement Methodology for Ad Hoc Networks

Authors: Samee Ullah Khan, C. Ardil

Abstract:

In this paper, a mathematical model for data object replication in ad hoc networks is formulated. The derived model is general, flexible and adaptable to cater for various applications in ad hoc networks. We propose a game theoretical technique in which players (mobile hosts) continuously compete in a non-cooperative environment to improve data accessibility by replicating data objects. The technique incorporates the access frequency from mobile hosts to each data object, the status of the network connectivity, and communication costs. The proposed technique is extensively evaluated against four well-known ad hoc network replica allocation methods. The experimental results reveal that the proposed approach outperforms the four techniques in both the execution time and solution quality

Keywords: Data replication, auctions, static allocation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1401
13938 Robust Regression and its Application in Financial Data Analysis

Authors: Mansoor Momeni, Mahmoud Dehghan Nayeri, Ali Faal Ghayoumi, Hoda Ghorbani

Abstract:

This research is aimed to describe the application of robust regression and its advantages over the least square regression method in analyzing financial data. To do this, relationship between earning per share, book value of equity per share and share price as price model and earning per share, annual change of earning per share and return of stock as return model is discussed using both robust and least square regressions, and finally the outcomes are compared. Comparing the results from the robust regression and the least square regression shows that the former can provide the possibility of a better and more realistic analysis owing to eliminating or reducing the contribution of outliers and influential data. Therefore, robust regression is recommended for getting more precise results in financial data analysis.

Keywords: Financial data analysis, Influential data, Outliers, Robust regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1932
13937 A Method for Analysis of Industrial Distributed Embedded Systems

Authors: Dmitry A. Mikoyelov

Abstract:

The paper presents a set of guidelines for analysis of industrial embedded distributed systems and introduces a mathematical model derived from these guidelines. In this study, the author examines a set of modern communication technologies that are or possibly can be used to build communication links between the subsystems of a distributed embedded system. An investigation of these guidelines results in a algorithm for analysis of specific use cases of target technologies. A goal of the paper acts as an important base for ongoing research on comparison of communication technologies. The author describes the principles of the model and presents results of the test calculations. Practical implementation of target technologies and empirical experiment data are based on a practical experience during the design and test of specific distributed systems in Latvian market.

Keywords: Distributed embedded system, analytical model, communication technology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1520
13936 Multidimensional and Data Mining Analysis for Property Investment Risk Analysis

Authors: Nur Atiqah Rochin Demong, Jie Lu, Farookh Khadeer Hussain

Abstract:

Property investment in the real estate industry has a high risk due to the uncertainty factors that will affect the decisions made and high cost. Analytic hierarchy process has existed for some time in which referred to an expert-s opinion to measure the uncertainty of the risk factors for the risk analysis. Therefore, different level of experts- experiences will create different opinion and lead to the conflict among the experts in the field. The objective of this paper is to propose a new technique to measure the uncertainty of the risk factors based on multidimensional data model and data mining techniques as deterministic approach. The propose technique consist of a basic framework which includes four modules: user, technology, end-user access tools and applications. The property investment risk analysis defines as a micro level analysis as the features of the property will be considered in the analysis in this paper.

Keywords: Uncertainty factors, data mining, multidimensional data model, risk analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2922
13935 Prospective Mathematics Teachers' Views about Using Flash Animations in Mathematics Lessons

Authors: Esra Bukova-Güzel, Berna Cantürk-Günhan

Abstract:

The purpose of the study is to determine secondary prospective mathematics teachers- views related to using flash animations in mathematics lessons and to reveal how the sample presentations towards different mathematical concepts altered their views. This is a case study involving three secondary prospective mathematics teachers from a state university in Turkey. The data gathered from two semi-structural interviews. Findings revealed that these animations help understand mathematics meaningfully, relate mathematics and real world, visualization, and comprehend the importance of mathematics. The analysis of the data indicated that the sample presentations enhanced participants- views about using flash animations in mathematics lessons.

Keywords: Instructional technology, animations, prospective mathematics teachers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2343
13934 Cluster Analysis for the Statistical Modeling of Aesthetic Judgment Data Related to Comics Artists

Authors: George E. Tsekouras, Evi Sampanikou

Abstract:

We compare three categorical data clustering algorithms with respect to the problem of classifying cultural data related to the aesthetic judgment of comics artists. Such a classification is very important in Comics Art theory since the determination of any classes of similarities in such kind of data will provide to art-historians very fruitful information of Comics Art-s evolution. To establish this, we use a categorical data set and we study it by employing three categorical data clustering algorithms. The performances of these algorithms are compared each other, while interpretations of the clustering results are also given.

Keywords: Aesthetic judgment, comics artists, cluster analysis, categorical data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1634