Search results for: energy efficiency and quality.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7329

Search results for: energy efficiency and quality.

7239 Development of Solar Poly House Tunnel Dryer (STD) for Medicinal Plants

Authors: N. C. Shahi, Anupama Singh, A. E. Kate

Abstract:

There was a scenario present day that drying of fresh fruits and vegetables by indirect solar drying by using mechanical device; hence, an effort was made to develop a small scale solar tunnel dryer (STD). Drying of spinach is carried out to analyze the performance of the dryer and to study its drying characteristics. To evaluate the performance of dryer the independent variables were selected as air flow rate, loading density and shade net while collector efficiency, drying efficiency, overall efficiency and specific energy consumption were selected as responses during performing the experiments. The spinach was dried from initial moisture content 88.21-94.04% (w.b.) to final moisture content 3.50-5.13% (w.b.). The drying time considerably reduced as compared to open sun drying of spinach as sun drying took 15 h for drying. The average collector efficiency, drying efficiency and overall efficiency were in the range 28.73-61.15%, 11.63% to 22.13%, and 7.61-14.66%, respectively.

Keywords: Solar dryer, collector efficiency, drying efficiency, spinach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1820
7238 Assessment of the Benefits of Renewable Energy to the Azerbaijan Ecosystem

Authors: N. S. Imamverdiyev

Abstract:

The transition to renewable energy sources has become a critical component of global efforts to mitigate climate change and promote sustainable development. However, the deployment of renewable energy technologies can also have significant impacts on ecosystems and the services they provide, such as carbon sequestration, soil fertility, water quality, and biodiversity. These technologies also highlight the potential co-benefits of renewable energy deployment for ecosystem services, such as reducing greenhouse gas emissions and improving air and water quality. Renewable energy sources, such as wind, solar, hydro, and biomass, are increasingly being used to meet the world's energy needs due to their environmentally friendly nature and the desire to reduce greenhouse gas emissions. However, the expansion of renewable energy infrastructure can also impact ecosystem services, which are the benefits that humans derive from nature, such as clean water, air, and food. This geographic assessment aims to evaluate the relationship between renewable energy infrastructure and ecosystem services. Potential solutions such as the use of ecological benefit measures, biodiversity-friendly design of renewable energy infrastructure, and stakeholder participation in decision-making processes are being investigated to determine the positive effects of renewable energy infrastructure on ecosystem services.

Keywords: Renewable energy, solar energy, climate change, energy production.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 193
7237 Research on Regional Energy Saving Potential Based on Nonparametric Radial Adjustment and Slack Adjustment

Authors: Donglan Zha, Ning Ding

Abstract:

Taking the provincial capital, labor and energy as inputs, regional GDP as output from 1995 to 2007, the paper quantifies the vertical and lateral energy saving potential by introducing the radial adjustment and slack adjustment of DEA. The results show that by the vertical, the achievement of energy saving in 2007 is better than their respective historical performances. By horizontal, in 2007 it can be found that Tianjin, Liaoning, Shanghai and Yunnan do better in energy saving than other provinces. In national wide, the higher of energy efficiency, the larger of per capita GDP and the proportion of the tertiary industry in the national economy, the more open to the outside, the lower the energy saving potential demonstrates, while the energy endowment has negative effect on energy saving potential.

Keywords: radial adjustment; slack adjustment; regional disparity; energy saving potential

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1339
7236 Design and Implementation a New Energy Efficient Clustering Algorithm using Genetic Algorithm for Wireless Sensor Networks

Authors: Moslem Afrashteh Mehr

Abstract:

Wireless Sensor Networks consist of small battery powered devices with limited energy resources. once deployed, the small sensor nodes are usually inaccessible to the user, and thus replacement of the energy source is not feasible. Hence, One of the most important issues that needs to be enhanced in order to improve the life span of the network is energy efficiency. to overcome this demerit many research have been done. The clustering is the one of the representative approaches. in the clustering, the cluster heads gather data from nodes and sending them to the base station. In this paper, we introduce a dynamic clustering algorithm using genetic algorithm. This algorithm takes different parameters into consideration to increase the network lifetime. To prove efficiency of proposed algorithm, we simulated the proposed algorithm compared with LEACH algorithm using the matlab

Keywords: Wireless Sensor Networks, Clustering, Geneticalgorithm, Energy Consumption

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2884
7235 EAAC: Energy-Aware Admission Control Scheme for Ad Hoc Networks

Authors: Dilip Kumar S.M, Vijaya Kumar B.P.

Abstract:

The decisions made by admission control algorithms are based on the availability of network resources viz. bandwidth, energy, memory buffers, etc., without degrading the Quality-of-Service (QoS) requirement of applications that are admitted. In this paper, we present an energy-aware admission control (EAAC) scheme which provides admission control for flows in an ad hoc network based on the knowledge of the present and future residual energy of the intermediate nodes along the routing path. The aim of EAAC is to quantify the energy that the new flow will consume so that it can be decided whether the future residual energy of the nodes along the routing path can satisfy the energy requirement. In other words, this energy-aware routing admits a new flow iff any node in the routing path does not run out of its energy during the transmission of packets. The future residual energy of a node is predicted using the Multi-layer Neural Network (MNN) model. Simulation results shows that the proposed scheme increases the network lifetime. Also the performance of the MNN model is presented.

Keywords: Ad hoc networks, admission control, energy-aware routing, Quality-of-Service, future residual energy, neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1647
7234 Analysis of the Performance of a Solar Water Heating System with Flat Collector

Authors: Aurea Lúcia Georgi Vendramin, Carlos Itsuo Yamamoto, Carlos Eduardo Camargo Nogueira, Anderson Miguel Lenz, Samuel N. Souza Melegari

Abstract:

The thermal performance of a solar water heating with 1.00 m2 flat plate collectors in Cascavel - PR, is which presented in this article, paper presents the solution to leverage the marketing of solar heating systems through detailed constituent materials of the solar collector studies, these abundant materials in construction, such as expanded polyethylene, PVC, aluminum and glass tubes, mixing them with new materials to minimize loss of efficiency while decreasing its cost. The system was tested during months and the collector obtained maximum recorded temperature of outlet fluid of 55°C, while the maximum temperature of the water at the bottom of the hot water tank was 35°C. The average daily energy collected was 19.6 MJ/d; the energy supplied by the solar plate was 16.2 MJ/d; the loss in the feed pipe was 3.2 MJ/d; the solar fraction was 32.2%, the efficiency of the collector was 45.6% and the efficiency of the system was 37.8%.

Keywords: Recycled materials, energy efficiency, solar collector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3013
7233 Mathematical Model of Smoking Time Temperature Effect on Ribbed Smoked Sheets Quality

Authors: Rifah Ediati, Jajang

Abstract:

The quality of Ribbed Smoked Sheets (RSS) primarily based on color, dryness, and the presence or absence of fungus and bubbles. This quality is strongly influenced by the drying and fumigation process namely smoking process. Smoking that is held in high temperature long time will result scorched dark brown sheets, whereas if the temperature is too low or slow drying rate would resulted in less mature sheets and growth of fungus. Therefore need to find the time and temperature for optimum quality of sheets. Enhance, unmonitored heat and mass transfer during smoking process lead to high losses of energy balance. This research aims to generate simple empirical mathematical model describing the effect of smoking time and temperature to RSS quality of color, water content, fungus and bubbles. The second goal of study was to analyze energy balance during smoking process. Experimental study was conducted by measuring temperature, residence time and quality parameters of 16 sheets sample in smoking rooms. Data for energy consumption balance such as mass of fuel wood, mass of sheets being smoked, construction temperature, ambient temperature and relative humidity were taken directly along the smoking process. It was found that mathematical model correlating smoking temperature and time with color is Color = -169 - 0.184 T4 - 0.193 T3 - 0.160 0.405 T1 + T2 + 0.388 t1 +3.11 t2 + 3.92t3 + 0.215 t4 with R square 50.8% and with moisture is Moisture = -1.40-0.00123 T4 + 0.00032 T3 + 0.00260 T2 - 0.00292 T1 - 0.0105 t1 + 0.0290 t2 + 0.0452 t3 + 0.00061 t4 with R square of 49.9%. Smoking room energy analysis found useful energy was 27.8%. The energy stored in the material construction 7.3%. Lost of energy in conversion of wood combustion, ventilation and others were 16.6%. The energy flowed out through the contact of material construction with the ambient air was found to be the highest contribution to energy losses, it reached 48.3%.

Keywords: RSS quality, temperature, time, smoking room, energy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2758
7232 The Research of Taiwan Green Building Materials (GBM) system and GBM Eco-Efficiency Model on Climate Change

Authors: Ting-Ting Hsieh, Che-Ming Chiang, Ming-Chin Ho, Kwang-Pang Lai

Abstract:

The globe Sustainability has become the subject of international attention, the key reason is that global climate change. Climate and disasters around the abnormal frequency multiplier, the global temperature of the catastrophe and disaster continue to occur throughout the world, as well as countries around the world. Currently there are many important international conferences and policy, it is a "global environmental sustainability " and "living human health " as the goal of development, including the APEC 2007 meeting to "climate Clean Energy" as the theme Sydney Declaration, 2008 World Economic Forum's "Carbon - promote Cool Earth energy efficiency improvement project", the EU proposed "Green Idea" program, the Japanese annual policy, "low-carbon society, sustainable eco-city environment (Eco City) "And from 2009 to 2010 to promote the "Eco-Point" to promote green energy and carbon reduction products .And the 2010 World Climate Change Conference (COP16 United Nations Climate Change Conference Copenhagen), the world has been the subject of Negative conservative "Environmental Protection ", "save energy consumption, " into a positive response to the "Sustainable " and" LOHAS", while Taiwan has actively put forward eco-cities, green building, green building materials and other related environmental response Measures, especially green building construction environment that is the basis of factors, the most widely used application level, and direct contact with human health and the key to sustainable planet. "Sustainable development "is a necessary condition for continuation of the Earth, "healthy and comfortable" is a necessary condition for the continuation of life, and improve the "quality" is a necessary condition for economic development, balance between the three is "to enhance the efficiency of ", According to the World Business Council for Sustainable Development (WBCSD) for the "environmental efficiency "(Eco-Efficiency) proposed: " the achievement of environmental efficiency, the price to be competitive in the provision of goods or services to meet people's needs, improve living Quality at the same time, the goods or services throughout the life cycle. Its impact on the environment and natural resource utilization and gradually reduced to the extent the Earth can load. "whichever is the economy "Economic" and " Ecologic". The research into the methodology to obtain the Taiwan Green Building Material Labeling product as the scope of the study, by investigating and weight analysis to explore green building environmental load (Ln) factor and the Green Building Quality (Qn) factor to Establish green building environmental efficiency assessment model (GBM Eco-Efficiency). And building materials for healthy green label products for priority assessment object, the object is set in the material evidence for the direct response to the environmental load from the floor class-based, explicit feedback correction to the Green Building environmental efficiency assessment model, "efficiency " as a starting point to achieve balance between human "health "and Earth "sustainable development of win-win strategy. The study is expected to reach 1.To establish green building materials and the quality of environmental impact assessment system, 2. To establish value of GBM Eco-Efficiency model, 3. To establish the GBM Eco-Efficiency model for application of green building material feedback mechanisms.

Keywords: Climate Change, Green Building Material (GBM), Eco-Efficiency, Life Cycle Assessment, Performance Evaluation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2331
7231 DRE - A Quality Metric for Component based Software Products

Authors: K. S. Jasmine, R. Vasantha

Abstract:

The overriding goal of software engineering is to provide a high quality system, application or a product. To achieve this goal, software engineers must apply effective methods coupled with modern tools within the context of a mature software process [2]. In addition, it is also must to assure that high quality is realized. Although many quality measures can be collected at the project levels, the important measures are errors and defects. Deriving a quality measure for reusable components has proven to be challenging task now a days. The results obtained from the study are based on the empirical evidence of reuse practices, as emerged from the analysis of industrial projects. Both large and small companies, working in a variety of business domains, and using object-oriented and procedural development approaches contributed towards this study. This paper proposes a quality metric that provides benefit at both project and process level, namely defect removal efficiency (DRE).

Keywords: Software Reuse, Defect density, Reuse metrics, Defect Removal efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2808
7230 Power Quality Evaluation of Electrical Distribution Networks

Authors: Mohamed Idris S. Abozaed, Suliman Mohamed Elrajoubi

Abstract:

Researches and concerns in power quality gained significant momentum in the field of power electronics systems over the last two decades globally. This sudden increase in the number of concerns over power quality problems is a result of the huge increase in the use of non-linear loads. In this paper, power quality evaluation of some distribution networks at Misurata - Libya has been done using a power quality and energy analyzer (Fluke 437 Series II). The results of this evaluation are used to minimize the problems of power quality. The analysis shows the main power quality problems that exist and the level of awareness of power quality issues with the aim of generating a start point which can be used as guidelines for researchers and end users in the field of power systems.

Keywords: Power Quality Disturbances, Power Quality Evaluation, Statistical Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3198
7229 The Evaluation of Low-Carbon Economy Jiangsu, China

Authors: Qiu Dong-Fang, Li Bao-bao, Min Xing

Abstract:

Low-carbon economy means the energy conservation and emission reduction. How to measure and evaluate the regional low-carbon economy is an important problem which should be solved immediately. This paper proposed the eco-efficiency ratio based on the ecological efficiency to evaluate the current situation of the low-carbon economy in Jiangsu province and to analyze the efficiency of the low-carbon economy in Jiangsu and other provinces, compared both advantages and disadvantages. And then this paper put forward some advices for the government to formulate the correct development policy of low-carbon economy, to improve the technology innovation capacity and the efficiency of resource allocation.

Keywords: Eco-efficiency ratio, Jiangsu, China, low-carbon economy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1523
7228 Illuminating the Policies Affecting Energy Security in Malaysia’s Electricity Sector

Authors: Hussain Ali Bekhet, Endang Jati Mat Sahid

Abstract:

For the past few decades, the Malaysian economy has expanded at an impressive pace, whilst, the Malaysian population has registered a relatively high growth rate. These factors had driven the growth of final energy demand. The ballooning energy demand coupled with the country’s limited indigenous energy resources have resulted in an increased of the country’s net import. Therefore, acknowledging the precarious position of the country’s energy self-sufficiency, this study has identified three main concerns regarding energy security, namely; over-dependence on fossil fuel, increasing energy import dependency, and increasing energy consumption per capita. This paper discusses the recent energy demand and supply trends, highlights the policies that are affecting energy security in Malaysia and suggests strategic options towards achieving energy security. The paper suggested that diversifying energy sources, reducing carbon content of energy, efficient utilization of energy and facilitating low-carbon industries could further enhance the effectiveness of the measures as the introduction of policies and initiatives will be more holistic.

Keywords: Energy security, electricity, energy policy, renewable energy, energy efficiency, Malaysia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1828
7227 Contribution of the Cogeneration Systems to Environment and Sustainability

Authors: Kemal Çomakli, Uğur Çakir, Ayşegül Çokgez Kuş, Erol Şahin

Abstract:

A lower consumption of thermal energy will contribute not only to a reduction in the running costs, but also in the reduction of pollutant emissions that contribute to the greenhouse effect. Cogeneration or CHP (Combined Heat and Power) is the system that produces power and usable heat simultaneously by decreasing the pollutant emissions and increasing the efficiency. Combined production of mechanical or electrical and thermal energy using a simple energy source, such as oil, coal, natural or liquefied gas, biomass or the sun; affords remarkable energy savings and frequently makes it possible to operate with greater efficiency when compared to a system producing heat and power separately. This study aims to bring out the contributions of cogeneration systems to the environment and sustainability by saving the energy and reducing the emissions. In this way we made a comprehensive investigation in the literature by focusing on the environmental aspects of the cogeneration systems. In the light of these studies we reached that, cogeneration systems must be consider in sustainability and their benefits on protecting the ecology must be investigated.

Keywords: Sustainability, cogeneration systems, energy economy, energy saving.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2658
7226 Application of Relative Regional Total Energy in Rotary Drums with Axial Segregation Characteristics

Authors: Qiuhua Miao, Peng Huang, Yifei Ding

Abstract:

Particles with different properties tend to be unevenly distributed along an axial direction of the rotating drum, which is usually ignored. Therefore, it is important to study the relationship between axial segregation characteristics and particle crushing efficiency in longer drums. In this paper, a relative area total energy (RRTE) index is proposed, which aims to evaluate the overall crushing energy distribution characteristics. Based on numerical simulation verification, the proposed RRTE index can reflect the overall grinding effect more comprehensively, clearly representing crushing energy distribution in different drum areas. Furthermore, the proposed method is applied to the relation between axial segregation and crushing energy in drums. Compared with the radial section, the collision loss energy of the axial section can better reflect the overall crushing effect in long drums. The axial segregation characteristics directly affect the total energy distribution between medium and abrasive, reducing overall crushing efficiency. Therefore, the axial segregation characteristics should be avoided as much as possible in the crushing of the long rotary drum.

Keywords: Relative regional total energy, crushing energy, axial segregation characteristics, rotary drum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 378
7225 A Particle Swarm Optimal Control Method for DC Motor by Considering Energy Consumption

Authors: Yingjie Zhang, Ming Li, Ying Zhang, Jing Zhang, Zuolei Hu

Abstract:

In the actual start-up process of DC motors, the DC drive system often faces a conflict between energy consumption and acceleration performance. To resolve the conflict, this paper proposes a comprehensive performance index that energy consumption index is added on the basis of classical control performance index in the DC motor starting process. Taking the comprehensive performance index as the cost function, particle swarm optimization algorithm is designed to optimize the comprehensive performance. Then it conducts simulations on the optimization of the comprehensive performance of the DC motor on condition that the weight coefficient of the energy consumption index should be properly designed. The simulation results show that as the weight of energy consumption increased, the energy efficiency was significantly improved at the expense of a slight sacrifice of fastness indicators with the comprehensive performance index method. The energy efficiency was increased from 63.18% to 68.48% and the response time reduced from 0.2875s to 0.1736s simultaneously compared with traditional proportion integrals differential controller in energy saving.

Keywords: Comprehensive performance index, energy consumption, acceleration performance, particle swarm optimal control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 642
7224 Analysis of Heat Exchanger Network of Distillation Unit of Shiraz Oil Refinery

Authors: J. Khorshidi, E. Zare, A.R. Khademi

Abstract:

The reduction of energy consumption through improvements in energy efficiency has become an important goal for all industries, in order to improve the efficiency of the economy, and to reduce the emissions of Co2 caused by power generation. The objective of this paper is to investigate opportunities to increase process energy efficiency at the distillation unit of Shiraz oil refinery in south of Iran. The main aim of the project is to locate energy savings by use of pinch technology and to assess them. At first all the required data of hot and cold streams in preheating section of distillation unit has been extracted from the available flow sheets and then pinch analysis has been conducted. The present case study is a threshold one which does not need any utilities. After running range, targeting several heat exchanger networks were designed with respect to operating conditions and different ΔTmin. The optimal value of ΔTmin was calculated to be 22.3 °C. Based on this optimal value, there will be 5% reduction in annual total cost of heat exchanger network.

Keywords: Pinch technology, heat exchanger network, operating cost.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1682
7223 Pathway to Reduce Industrial Energy Intensity for Energy Conservation at Chinese Provincial Level

Authors: Shengman Zhao, Yang Yu, Shenghui Cui

Abstract:

Using logarithmic mean Divisia decomposition technique, this paper analyzes the change in industrial energy intensity of Fujian Province in China, based on data sets of added value and energy consumption for 35 selected industrial sub-sectors from 1999 to 2009. The change in industrial energy intensity is decomposed into intensity effect and structure effect. Results show that the industrial energy intensity of Fujian Province has achieved a reduction of 51% over the past ten years. The structural change, a shift in the mix of industrial sub-sectors, made overwhelming contribution to the reduction. The impact of energy efficiency’s improvement was relatively small. However, the aggregate industrial energy intensity was very sensitive to both the changes in energy intensity and in production share of energy-intensive sub-sectors, such as production and supply of electric power, steam and hot water. Pathway to reduce industrial energy intensity for energy conservation in Fujian Province is proposed in the end.

Keywords: Decomposition analysis, energy intensity, Fujian Province, industry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1388
7222 Comparison of Machine Learning Models for the Prediction of System Marginal Price of Greek Energy Market

Authors: Ioannis P. Panapakidis, Marios N. Moschakis

Abstract:

The Greek Energy Market is structured as a mandatory pool where the producers make their bid offers in day-ahead basis. The System Operator solves an optimization routine aiming at the minimization of the cost of produced electricity. The solution of the optimization problem leads to the calculation of the System Marginal Price (SMP). Accurate forecasts of the SMP can lead to increased profits and more efficient portfolio management from the producer`s perspective. Aim of this study is to provide a comparative analysis of various machine learning models such as artificial neural networks and neuro-fuzzy models for the prediction of the SMP of the Greek market. Machine learning algorithms are favored in predictions problems since they can capture and simulate the volatilities of complex time series.

Keywords: Deregulated energy market, forecasting, machine learning, system marginal price, energy efficiency and quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1311
7221 The Long-Term Effects of Using the Energy Box on Energy Poor Households in the Private Rental Sector in the Netherlands

Authors: B. E. Weber, N. Vrielink, M. G. Rietbergen

Abstract:

This paper explores the long-term effects of the Energy Box trajectory on households in the private rental sector, specifically households experiencing energy poverty. The concept of energy poverty has been getting increasing attention among policymakers over the past few years. In the Netherlands, as far as we know, there are no national policies on alleviating energy poverty, which negatively impacts energy-poor households. The Energy Box can help households experiencing energy poverty by stimulating them to improve the energy efficiency of their home by changing their energy-saving behavior. Important long-term effects are that respondents indicate that they live in a more environmentally friendly way and that they save money on their energy bills. Households feel engaged with the concept of energy-saving and can see the benefits of changing their energy-saving behavior. Respondents perceived the Energy Box as a means to live more environmentally friendly, instead of it solely being a means to save money on energy bills. The findings show that most respondents signed up for the Energy Box are interested in energy-saving as a lifestyle choice instead of a financial choice, which would likely be the case for households experiencing energy poverty.

Keywords: Energy-saving behavior, energy poverty, poverty, private rental sector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 444
7220 The National Energy Strategy for Saudi Arabia

Authors: Ziyad Aljarboua

Abstract:

In this paper, we present a technical and an economic assessment of several sources of renewable energy in Saudi Arabia; mainly solar, wind, hydro and biomass. We analyze the environmental and climatic conditions in relation to these sources and give an overview of some of the existing clean energy technologies. Using standardized cost and efficiency data, we carry out a cost benefit analysis to understand the economic factors influencing the sustainability of energy production from renewable sources in light of the energy cost and demand in the Saudi market. Finally, we take a look at the Saudi petroleum industry and the existing sources of conventional energy and assess the potential of building a successful market for renewable energy under the constraints imposed by the flow of subsidized cheap oil. We show that while some renewable energy resources are well suited for distributed or grid connected generation in the kingdom, their viability is greatly undercut by the well developed and well capitalized oil industry.

Keywords: Energy strategy, energy policy, renewable energy, Saudi Arabia, oil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3750
7219 A New Suburb Renovation Concept

Authors: A. Soikkeli, L. Sorri

Abstract:

Finnish national research project, User- and Business-oriented Suburb Renovation Concept (KLIKK), was started in January 2012 and will end in June 2014. The perspective of energy efficiency is emphasised in the project, but also it addresses what improving the energy efficiency of suburban apartment buildings means from the standpoint of architecturally valuable buildings representing different periods. The project will also test the impacts of stricter energy efficiency requirements on renovation projects.

The primary goal of the project is to develop a user-oriented, industrial, economic renovation concept for suburban apartment building renovation, extension and construction of additional storeys. The concept will make it possible to change from performance- and cost-based operation to novel service- and user-oriented, site-specifically tailored renovation methods utilizing integrated order and delivery chains.

The present project is collaborating with Ministry of the Environment and participating cities in developing a new type of lighter town planning model for suburban renovations and in-fill construction. To support this, the project will simultaneously develop practices for environmental impact assessment tools in renovation and suburban supplementary and in-fill construction.

 

Keywords: Energy efficiency, Prefabrication, Renovation concept, Suburbs, Sustainability, User-Orientated.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2037
7218 A Comprehensive Review of Adaptive Building Energy Management Systems Based on Users’ Feedback

Authors: P. Nafisi Poor, P. Javid

Abstract:

Over the past few years, the idea of adaptive buildings and specifically, adaptive building energy management systems (ABEMS) has become popular. Well-performed management in terms of energy is to create a balance between energy consumption and user comfort; therefore, in new energy management models, efficient energy consumption is not the sole factor and the user's comfortability is also considered in the calculations. One of the main ways of measuring this factor is by analyzing user feedback on the conditions to understand whether they are satisfied with conditions or not. This paper provides a comprehensive review of recent approaches towards energy management systems based on users' feedbacks and subsequently performs a comparison between them premised upon their efficiency and accuracy to understand which approaches were more accurate and which ones resulted in a more efficient way of minimizing energy consumption while maintaining users' comfortability. It was concluded that the highest accuracy rate among the presented works was 95% accuracy in determining satisfaction and up to 51.08% energy savings can be achieved without disturbing user’s comfort. Considering the growing interest in designing and developing adaptive buildings, these studies can support diverse inquiries about this subject and can be used as a resource to support studies and researches towards efficient energy consumption while maintaining the comfortability of users.

Keywords: Adaptive buildings, energy efficiency, intelligent buildings, user comfortability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 677
7217 Contribution to the Success of the Energy Audit in the Industrial Environment: A Case Study about Audit of Interior Lighting for an Industrial Site in Morocco

Authors: Abdelkarim Ait Brik, Abdelaziz Khoukh, Mustapha Jammali, Hamid Chaikhy

Abstract:

The energy audit is the essential initial step to ensure a good definition of energy control actions. The in-depth study of the various energy-consuming equipments makes it possible to determine the actions and investments with best cost for the company. The analysis focuses on the energy consumption of production equipment and utilities (lighting, heating, air conditioning, ventilation, transport). Successful implementation of this approach requires, however, to take into account a number of prerequisites. This paper proposes a number of useful recommendations concerning the energy audit in order to achieve better results, and a case study concerning the lighting audit of a Moroccan company by showing the gains that can be made through this audit.

Keywords: Energy audit, energy diagnosis, consumption, electricity, energy efficiency, lighting audit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 939
7216 Recent Advances in Energy Materials for Hot Sections of Modern Gas-Turbine Engines

Authors: Zainul Huda

Abstract:

This presentation reviews recent advances in superalloys and thermal barrier coating (TBC) for application in hot sections of energy-efficient gas-turbine engines. It has been reviewed that in the modern combined-cycle gas turbines (CCGT) applying single-crystal energy materials (SC superalloys) and thermal barrier coatings (TBC), and – in one design – closed-loop steam cooling, thermal efficiency can reach more than 60%. These technological advancements contribute to profitable and clean power generation with reduced emission. Alternatively, the use of advanced superalloys (e.g. GTD-111 superalloy, Allvac 718Plus superalloy) and advanced thermal barrier coatings (TBC) in modern gas-turbines has been shown to yield higher energy-efficiency in power generation.

Keywords: Energy materials, gas turbine engines, superalloy, thermal barrier coating

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2741
7215 Energy Efficiency Analysis of Discharge Modes of an Adiabatic Compressed Air Energy Storage System

Authors: Shane D. Inder, Mehrdad Khamooshi

Abstract:

Efficient energy storage is a crucial factor in facilitating the uptake of renewable energy resources. Among the many options available for energy storage systems required to balance imbalanced supply and demand cycles, compressed air energy storage (CAES) is a proven technology in grid-scale applications. This paper reviews the current state of micro scale CAES technology and describes a micro-scale advanced adiabatic CAES (A-CAES) system, where heat generated during compression is stored for use in the discharge phase. It will also describe a thermodynamic model, developed in EES (Engineering Equation Solver) to evaluate the performance and critical parameters of the discharge phase of the proposed system. Three configurations are explained including: single turbine without preheater, two turbines with preheaters, and three turbines with preheaters. It is shown that the micro-scale A-CAES is highly dependent upon key parameters including; regulator pressure, air pressure and volume, thermal energy storage temperature and flow rate and the number of turbines. It was found that a micro-scale AA-CAES, when optimized with an appropriate configuration, could deliver energy input to output efficiency of up to 70%.

Keywords: CAES, adiabatic compressed air energy storage, expansion phase, micro generation, thermodynamic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1117
7214 Methods for Analyzing the Energy Efficiencyand Cost Effectiveness of Evaporative Cooling Air Conditioning

Authors: A Fouda, Z. Melikyan

Abstract:

Air conditioning systems of houses consume large quantity of electricity. To reducing energy consumption for air conditioning purposes it is becoming attractive the use of evaporative cooling air conditioning which is less energy consuming compared to air chillers. But, it is obvious that higher energy efficiency of evaporative cooling is not enough to judge whether evaporative cooling economically is competitive with other types of cooling systems. To proving the higher energy efficiency and cost effectiveness of the evaporative cooling competitive analysis of various types of cooling system should be accomplished. For noted purpose optimization mathematical model for each system should be composed based on system approach analysis. In this paper different types of evaporative cooling-heating systems are discussed and methods for increasing their energy efficiency and as well as determining of their design parameters are developed. The optimization mathematical models for each of them are composed with help of which least specific costs for each of them are reviled. The comparison of specific costs proved that the most efficient and cost effective is considered the “direct evaporating" system if it is applicable for given climatic conditions. Next more universal and applicable for many climatic conditions system providing least cost of heating and cooling is considered the “direct evaporating" system.

Keywords: air, conditioning, system, evaporative cooling, mathematical model, optimization, thermoeconomic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1771
7213 Adaptive Design of Large Prefabricated Concrete Panels Collective Housing

Authors: Daniel M. Muntean, Viorel Ungureanu

Abstract:

More than half of the urban population in Romania lives today in residential buildings made out of large prefabricated reinforced concrete panels. Since their initial design was made in the 1960’s, these housing units are now being technically and morally outdated, consuming large amounts of energy for heating, cooling, ventilation and lighting, while failing to meet the needs of the contemporary life-style. Due to their widespread use, the design of a system that improves their energy efficiency would have a real impact, not only on the energy consumption of the residential sector, but also on the quality of life that it offers. Furthermore, with the transition of today’s existing power grid to a “smart grid”, buildings could become an active element for future electricity networks by contributing in micro-generation and energy storage. One of the most addressed issues today is to find locally adapted strategies that can be applied considering the 20-20-20 EU policy criteria and to offer sustainable and innovative solutions for the cost-optimal energy performance of buildings adapted on the existing local market. This paper presents a possible adaptive design scenario towards sustainable retrofitting of these housing units. The apartments are transformed in order to meet the current living requirements and additional extensions are placed on top of the building, replacing the unused roof space, acting not only as housing units, but as active solar energy collection systems. An adaptive building envelope is ensured in order to achieve overall air-tightness and an elevator system is introduced to facilitate access to the upper levels.

Keywords: Adaptive building, energy efficiency, retrofitting, residential buildings, smart grid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1035
7212 Cold Analysis for Dispersion, Attenuation and RF Efficiency Characteristics of a Gyrotron Cavity

Authors: R. K. Singh

Abstract:

In the present paper, a gyrotron cavity is analyzed in the absence of electron beam for dispersion, attenuation and RF efficiency. For all these characteristics, azimuthally symmetric TE0n modes have been considered. The attenuation characteristics for TE0n modes indicated decrease in attenuation constant as the frequency is increased. Interestingly, the lowest order TE01 mode resulted in lowest attenuation. Further, three different cavity wall materials have been selected for attenuation characteristics. The cavity made of material with higher conductivity resulted in lower attenuation. The effect of material electrical conductivity on the RF efficiency has also been observed and has been found that the RF efficiency rapidly decreases as the electrical conductivity of the cavity material decreases. The RF efficiency rapidly decreases with increasing diffractive quality factor. The ohmic loss variation as a function of frequency of operation for three different cavities made of copper, aluminum and nickel has been observed. The ohmic losses are lowest for the copper cavity and hence the highest RF efficiency.

Keywords: Gyrotron, dispersion, attenuation, quality factor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1868
7211 Defining a Pathway to Zero Energy Building: A Case Study on Retrofitting an Old Office Building into a Net Zero Energy Building for Hot-Humid Climate

Authors: Kwame B. O. Amoah

Abstract:

This paper focuses on retrofitting an old existing office building to a net-zero energy building (NZEB). An existing small office building in Melbourne, Florida, was chosen as a case study to integrate state-of-the-art design strategies and energy-efficient building systems to improve building performance and reduce energy consumption. The study aimed to explore possible ways to maximize energy savings and renewable energy generation sources to cover the building's remaining energy needs necessary to achieve net-zero energy goals. A series of retrofit options were reviewed and adopted with some significant additional decision considerations. Detailed processes and considerations leading to zero energy are well documented in this study, with lessons learned adequately outlined. Based on building energy simulations, multiple design considerations were investigated, such as emerging state-of-the-art technologies, material selection, improvements to the building envelope, optimization of the HVAC, lighting systems, and occupancy loads analysis, as well as the application of renewable energy sources. The comparative analysis of simulation results was used to determine how specific techniques led to energy saving and cost reductions. The research results indicate that this small office building can meet net-zero energy use after appropriate design manipulations and renewable energy sources.

Keywords: Energy consumption, building energy analysis, energy retrofits, energy-efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 340
7210 Energy and Exergy Performance Optimization on a Real Gas Turbine Power Plant

Authors: Farhat Hajer, Khir Tahar, Cherni Rafik, Dakhli Radhouen, Ammar Ben Brahim

Abstract:

This paper presents the energy and exergy optimization of a real gas turbine power plant performance of 100 MW of power, installed in the South East of Tunisia. A simulation code is established using the EES (Engineering Equation Solver) software. The parameters considered are those of the actual operating conditions of the gas turbine thermal power station under study. The results show that thermal and exergetic efficiency decreases with the increase of the ambient temperature. Air excess has an important effect on the thermal efficiency. The emission of NOx rises in the summer and decreases in the winter. The obtained rates of NOx are compared with measurements results.

Keywords: Efficiency, exergy, gas turbine, temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 596