Search results for: shielding effectiveness
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1445

Search results for: shielding effectiveness

305 A Metallography Study of Secondary A226 Aluminium Alloy Used in Automotive Industries

Authors: Lenka Hurtalová, Eva Tillová, Mária Chalupová, Juraj Belan, Milan Uhríčik

Abstract:

The secondary alloy A226 is used for many automotive casting produced by mould casting and high pressure die casting. This alloy has excellent castability, good mechanical properties and cost-effectiveness. Production of primary aluminium alloys belong to heavy source fouling of life environs. The European Union calls for the emission reduction and reduction in energy consumption therefore increase production of recycled (secondary) aluminium cast alloys. The contribution is deal with influence of recycling on the quality of the casting made from A226 in automotive industry. The properties of the casting made from secondary aluminium alloys were compared with the required properties of primary aluminium alloys. The effect of recycling on microstructure was observed using combination different analytical techniques (light microscopy upon black-white etching, scanning electron microscopy - SEM upon deep etching and energy dispersive X-ray analysis - EDX). These techniques were used for the identification of the various structure parameters, which was used to compare secondary alloy microstructure with primary alloy microstructure.

Keywords: A226 secondary aluminium alloy, deep etching, mechanical properties, recycling foundry aluminium alloy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3308
304 NDENet: End-to-End Nighttime Dehazing and Enhancement

Authors: H. Baskar, A. S. Chakravarthy, P. Garg, D. Goel, A. S. Raj, K. Kumar, Lakshya, R. Parvatham, V. Sushant, B. Kumar Rout

Abstract:

In this paper, we present a computer vision task called nighttime dehaze-enhancement. This task aims to jointly perform dehazing and lightness enhancement. Our task fundamentally differs from nighttime dehazing – our goal is to jointly dehaze and enhance scenes, while nighttime dehazing aims to dehaze scenes under a nighttime setting. In order to facilitate further research on this task, we release a benchmark dataset called Reside-β Night dataset, consisting of 4122 nighttime hazed images from 2061 scenes and 2061 ground truth images. Moreover, we also propose a network called NDENet (Nighttime Dehaze-Enhancement Network), which jointly performs dehazing and low-light enhancement in an end-to-end manner. We evaluate our method on the proposed benchmark and achieve Structural Index Similarity (SSIM) of 0.8962 and Peak Signal to Noise Ratio (PSNR) of 26.25. We also compare our network with other baseline networks on our benchmark to demonstrate the effectiveness of our approach. We believe that nighttime dehaze-enhancement is an essential task particularly for autonomous navigation applications, and hope that our work will open up new frontiers in research. The code for our network is made publicly available.

Keywords: Dehazing, image enhancement, nighttime, computer vision.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 672
303 Power Flow Tracing Based Reactive Power Ancillary Service (AS) in Restructured Power Market

Authors: M. Susithra, R. Gnanadass

Abstract:

Ancillary services are support services which are essential for humanizing and enhancing the reliability and security of the electric power system. Reactive power ancillary service is one of the important ancillary services in a restructured electricity market which determines the cost of supplying ancillary services and finding of how this cost would change with respect to operating decisions. This paper presents a new formation that can be used to minimize the Independent System Operator (ISO)’s total payment for reactive power ancillary service. The modified power flow tracing algorithm estimates the availability of reserve reactive power for ancillary service. In order to find optimum reactive power dispatch, Biogeography based optimization method (BPO) is proposed. Market Reactive Clearing Price (MRCP) is then estimated and it encourages generator companies (GENCOs) to participate in an ancillary service. Finally, optimal weighting factor and real time utilization factor of reactive power give the minimum ISO’s total payment. The effectiveness of proposed design is verified using IEEE 30 bus system.

Keywords: Biogeography based optimization method, Power flow tracing method, Reactive generation capability curve and Reactive power ancillary service.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3235
302 Real-time Network Anomaly Detection Systems Based on Machine-Learning Algorithms

Authors: Zahra Ramezanpanah, Joachim Carvallo, Aurelien Rodriguez

Abstract:

This paper aims to detect anomalies in streaming data using machine learning algorithms. In this regard, we designed two separate pipelines and evaluated the effectiveness of each separately. The first pipeline, based on supervised machine learning methods, consists of two phases. In the first phase, we trained several supervised models using the UNSW-NB15 data set. We measured the efficiency of each using different performance metrics and selected the best model for the second phase. At the beginning of the second phase, we first, using Argus Server, sniffed a local area network. Several types of attacks were simulated and then sent the sniffed data to a running algorithm at short intervals. This algorithm can display the results of each packet of received data in real-time using the trained model. The second pipeline presented in this paper is based on unsupervised algorithms, in which a Temporal Graph Network (TGN) is used to monitor a local network. The TGN is trained to predict the probability of future states of the network based on its past behavior. Our contribution in this section is introducing an indicator to identify anomalies from these predicted probabilities.

Keywords: Cyber-security, Intrusion Detection Systems, Temporal Graph Network, Anomaly Detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 505
301 Effectiveness of Moringa oleifera Coagulant Protein as Natural Coagulant aid in Removal of Turbidity and Bacteria from Turbid Waters

Authors: B. Bina, M.H. Mehdinejad, Gunnel Dalhammer, Guna RajaraoM. Nikaeen, H. Movahedian Attar

Abstract:

Coagulation of water involves the use of coagulating agents to bring the suspended matter in the raw water together for settling and the filtration stage. Present study is aimed to examine the effects of aluminum sulfate as coagulant in conjunction with Moringa Oleifera Coagulant Protein as coagulant aid on turbidity, hardness, and bacteria in turbid water. A conventional jar test apparatus was employed for the tests. The best removal was observed at a pH of 7 to 7.5 for all turbidities. Turbidity removal efficiency was resulted between % 80 to % 99 by Moringa Oleifera Coagulant Protein as coagulant aid. Dosage of coagulant and coagulant aid decreased with increasing turbidity. In addition, Moringa Oleifera Coagulant Protein significantly has reduced the required dosage of primary coagulant. Residual Al+3 in treated water were less than 0.2 mg/l and meets the environmental protection agency guidelines. The results showed that turbidity reduction of % 85.9- % 98 paralleled by a primary Escherichia coli reduction of 1-3 log units (99.2 – 99.97%) was obtained within the first 1 to 2 h of treatment. In conclusions, Moringa Oleifera Coagulant Protein as coagulant aid can be used for drinking water treatment without the risk of organic or nutrient release. We demonstrated that optimal design method is an efficient approach for optimization of coagulation-flocculation process and appropriate for raw water treatment.

Keywords: MOCP, Coagulant aid, turbidity removal, E.coliremoval, water, treatment

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3541
300 Active Islanding Detection Method Using Intelligent Controller

Authors: Kuang-Hsiung Tan, Chih-Chan Hu, Chien-Wu Lan, Shih-Sung Lin, Te-Jen Chang

Abstract:

An active islanding detection method using disturbance signal injection with intelligent controller is proposed in this study. First, a DC\AC power inverter is emulated in the distributed generator (DG) system to implement the tracking control of active power, reactive power outputs and the islanding detection. The proposed active islanding detection method is based on injecting a disturbance signal into the power inverter system through the d-axis current which leads to a frequency deviation at the terminal of the RLC load when the utility power is disconnected. Moreover, in order to improve the transient and steady-state responses of the active power and reactive power outputs of the power inverter, and to further improve the performance of the islanding detection method, two probabilistic fuzzy neural networks (PFNN) are adopted to replace the traditional proportional-integral (PI) controllers for the tracking control and the islanding detection. Furthermore, the network structure and the online learning algorithm of the PFNN are introduced in detail. Finally, the feasibility and effectiveness of the tracking control and the proposed active islanding detection method are verified with experimental results.

Keywords: Distributed generators, probabilistic fuzzy neural network, islanding detection, non-detection zone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1422
299 Optimal Rest Interval between Sets in Robot-Based Upper-Arm Rehabilitation

Authors: Virgil Miranda, Gissele Mosqueda, Pablo Delgado, Yimesker Yihun

Abstract:

Muscular fatigue affects the muscle activation that is needed for producing the desired clinical outcome. Integrating optimal muscle relaxation periods into a variety of health care rehabilitation protocols is important to maximize the efficiency of the therapy. In this study, four muscle relaxation periods (30, 60, 90 and 120 seconds) and their effectiveness in producing consistent muscle activation of the muscle biceps brachii between sets of an elbow flexion and extension task were investigated among a sample of 10 subjects with no disabilities. The same resting periods were then utilized in a controlled exoskeleton-based exercise for a sample size of 5 subjects and have shown similar results. On average, the muscle activity of the biceps brachii decreased by 0.3% when rested for 30 seconds, and it increased by 1.25%, 0.76% and 0.82% when using muscle relaxation periods of 60, 90 and 120 seconds, respectively. The preliminary results suggest that a muscle relaxation period of about 60 seconds is needed for optimal continuous muscle activation within rehabilitation regimens. Robot-based rehabilitation is good to produce repetitive tasks with the right intensity and knowing the optimal resting period will make the automation more effective.

Keywords: Rest intervals, muscle biceps brachii, robot rehabilitation, muscle fatigue.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 455
298 Fighter Aircraft Selection Using Fuzzy Preference Optimization Programming (POP)

Authors: C. Ardil

Abstract:

The Turkish Air Force needs to acquire a sixth- generation fighter aircraft in order to maintain its air superiority and dominance against its rivals under the risks posed by global geopolitical opportunities and threats. Accordingly, five evaluation criteria were determined to evaluate the sixth-generation fighter aircraft alternatives and to select the best one. Systematically, a new fuzzy preference optimization programming (POP) method is proposed to select the best sixth generation fighter aircraft in an uncertain environment. The POP technique considers both quantitative and qualitative evaluation criteria. To demonstrate the applicability and effectiveness of the proposed approach, it is applied to a multiple criteria decision-making problem to evaluate and select sixth-generation fighter aircraft. The results of the fuzzy POP method are compared with the results of the fuzzy TOPSIS approach to validate it. According to the comparative analysis, fuzzy POP and fuzzy TOPSIS methods get the same results. This demonstrates the applicability of the fuzzy POP technique to address the sixth-generation fighter selection problem.

Keywords: Fighter aircraft selection, sixth-generation fighter aircraft, fuzzy decision process, multiple criteria decision making, preference optimization programming, POP, TOPSIS, Kizilelma, MIUS, fuzzy set theory

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 447
297 The Profitability Management Mechanism of Leather Industry-Based on the Activity-Based Benefit Approach

Authors: Mei-Fang Wu, Shu-Li Wang, Tsung-Yueh Lu, Feng-Tsung Cheng

Abstract:

Strengthening core competitiveness is the main goal of enterprises in a fierce competitive environment. Accurate cost information is a great help for managers in dealing with operation strategies. This paper establishes a profitability management mechanism that applies the Activity-Based Benefit approach (ABBA) to solve the profitability for each customer from the market. ABBA provides financial and non-financial information for the operation, but also indicates what resources have expired in the operational process. The customer profit management model shows the level of profitability of each customer for the company. The empirical data were gathered from a case company operating in the leather industry in Taiwan. The research findings indicate that 30% of customers create little profit for the company as a result of asking for over 5% of sales discounts. Those customers ask for sales discount because of color differences of leather products. This paper provides a customer’s profitability evaluation mechanism to help enterprises to greatly improve operating effectiveness and promote operational activity efficiency and overall operation profitability.

Keywords: Activity-based benefit approach, customer profit analysis, leather industry, profitability management mechanism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 955
296 Adaptive Fuzzy Control of Stewart Platform under Actuator Saturation

Authors: Dongsu Wu, Hongbin Gu, Peng Li

Abstract:

A novel adaptive fuzzy trajectory tracking algorithm of Stewart platform based motion platform is proposed to compensate path deviation and degradation of controller-s performance due to actuator torque limit. The algorithm can be divided into two parts: the real-time trajectory shaping part and the joint space adaptive fuzzy controller part. For a reference trajectory in task space whenever any of the actuators is saturated, the desired acceleration of the reference trajectory is modified on-line by using dynamic model of motion platform. Meanwhile an additional action with respect to the difference between the nominal and modified trajectories is utilized in the non-saturated region of actuators to reduce the path error. Using modified trajectory as input, the joint space controller incorporates compute torque controller, leg velocity observer and fuzzy disturbance observer with saturation compensation. It can ensure stability and tracking performance of controller in present of external disturbance and position only measurement. Simulation results verify the effectiveness of proposed control scheme.

Keywords: Actuator saturation, adaptive fuzzy control, Stewartplatform, trajectory shaping, flight simulator

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2032
295 A New Classification of Risk-Reduction Options to Improve the Risk-Reduction Readiness of the Railway Industry

Authors: Eberechi Weli, Michael Todinov

Abstract:

The gap between the selection of risk-reduction options in the railway industry and the task of their effective implementation results in compromised safety and substantial losses. An effective risk management must necessarily integrate the evaluation phases with the implementation phase. This paper proposes an essential categorisation of risk reduction measures that best addresses a standard railway industry portfolio. By categorising the risk reduction options into design, operational, procedural and technical options, it is guaranteed that the efforts of the implementation facilitators (people, processes and supporting systems) are systematically harmonised. The classification is based on an integration of fundamental principles of risk reduction in the railway industry with the systems engineering approach.

This paper argues that the use of a similar classification approach is an attribute of organisations possessing a superior level of risk-reduction readiness. The integration of the proposed rational classification structure provides a solid ground for effective risk reduction.

Keywords: Cost effectiveness, organisational readiness, risk reduction, railway, system engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1802
294 Design and Characteristics of New Test Facility for Flat Plate Boundary Layer Research

Authors: N. Patten, T. M. Young, P. Griffin

Abstract:

Preliminary results for a new flat plate test facility are presented here in the form of Computational Fluid Dynamics (CFD), flow visualisation, pressure measurements and thermal anemometry. The results from the CFD and flow visualisation show the effectiveness of the plate design, with the trailing edge flap anchoring the stagnation point on the working surface and reducing the extent of the leading edge separation. The flow visualization technique demonstrates the two-dimensionality of the flow in the location where the thermal anemometry measurements are obtained. Measurements of the boundary layer mean velocity profiles compare favourably with the Blasius solution, thereby allowing for comparison of future measurements with the wealth of data available on zero pressure gradient Blasius flows. Results for the skin friction, boundary layer thickness, frictional velocity and wall shear stress are shown to agree well with the Blasius theory, with a maximum experimental deviation from theory of 5%. Two turbulence generating grids have been designed and characterized and it is shown that the turbulence decay downstream of both grids agrees with established correlations. It is also demonstrated that there is little dependence of turbulence on the freestream velocity.

Keywords: CFD, Flow Visualisation, Thermal Anemometry, Turbulence Grids.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1773
293 Online Battery Equivalent Circuit Model Estimation on Continuous-Time Domain Using Linear Integral Filter Method

Authors: Cheng Zhang, James Marco, Walid Allafi, Truong Q. Dinh, W. D. Widanage

Abstract:

Equivalent circuit models (ECMs) are widely used in battery management systems in electric vehicles and other battery energy storage systems. The battery dynamics and the model parameters vary under different working conditions, such as different temperature and state of charge (SOC) levels, and therefore online parameter identification can improve the modelling accuracy. This paper presents a way of online ECM parameter identification using a continuous time (CT) estimation method. The CT estimation method has several advantages over discrete time (DT) estimation methods for ECM parameter identification due to the widely separated battery dynamic modes and fast sampling. The presented method can be used for online SOC estimation. Test data are collected using a lithium ion cell, and the experimental results show that the presented CT method achieves better modelling accuracy compared with the conventional DT recursive least square method. The effectiveness of the presented method for online SOC estimation is also verified on test data.

Keywords: Equivalent circuit model, continuous time domain estimation, linear integral filter method, parameter and SOC estimation, recursive least square.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1344
292 Optimal Controllers with Actuator Saturation for Nonlinear Structures

Authors: M. Mohebbi, K. Shakeri

Abstract:

Since the actuator capacity is limited, in the real application of active control systems under sever earthquakes it is conceivable that the actuators saturate, hence the actuator saturation should be considered as a constraint in design of optimal controllers. In this paper optimal design of active controllers for nonlinear structures by considering actuator saturation, has been studied. The proposed method for designing optimal controllers is based on defining an optimization problem which the objective has been to minimize the maximum displacement of structure when a limited capacity for actuator has been used. To this end a single degree of freedom (SDF) structure with a bilinear hysteretic behavior has been simulated under a white noise ground acceleration of different amplitudes. Active tendon control mechanism, comprised of prestressed tendons and an actuator, and extended nonlinear Newmark method based instantaneous optimal control algorithm have been used. To achieve the best results, the weights corresponding to displacement, velocity, acceleration and control force in the performance index have been optimized by the Distributed Genetic Algorithm (DGA). Results show the effectiveness of the proposed method in considering actuator saturation. Also based on the numerical simulations it can be concluded that the actuator capacity and the average value of required control force are two important factors in designing nonlinear controllers which consider the actuator saturation.

Keywords: Active control, Actuator Saturation, Distributedgeneticalgorithms, Nonlinear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1603
291 Development of a Small-Group Teaching Method for Enhancing the Learning of Basic Acupuncture Manipulation Optimized with the Theory of Motor Learning

Authors: Wen-Chao Tang, Tang-Yi Liu, Ming Gao, Gang Xu, Hua-Yuan Yang

Abstract:

This study developed a method for teaching acupuncture manipulation in small groups optimized with the theory of motor learning. Sixty acupuncture students and their teacher participated in our research. Motion videos were recorded of their manipulations using the lifting-thrusting method. These videos were analyzed using Simi Motion software to acquire the movement parameters of the thumb tip. The parameter velocity curves along Y axis was used to generate small teaching groups clustered by a self-organized map (SOM) and K-means. Ten groups were generated. All the targeted instruction based on the comparative results groups as well as the videos of teacher and student was provided to the members of each group respectively. According to the theory and research of motor learning, the factors or technologies such as video instruction, observational learning, external focus and summary feedback were integrated into this teaching method. Such efforts were desired to improve and enhance the effectiveness of current acupuncture teaching methods in limited classroom teaching time and extracurricular training.

Keywords: Acupuncture, group teaching, video instruction, observational learning, external focus, summary feedback.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 594
290 Assessing Local Knowledge Dynamics: Regional Knowledge Economy Indicators

Authors: Francesca Affortunato, Edgardo Bucciarelli, Mariateresa Ciommi, Gianfranco Giulioni

Abstract:

The paper represents a reflection on how to select proper indicators to assess the progress of regional contexts towards a knowledge-based society. Taking the first research methodologies elaborated at an international level (World Bank, OECD, etc.) as a reference point, this work intends to identify a set of indicators of the knowledge economy suitable to adequately understand in which manner and to which extent the territorial development dynamics are correlated with the knowledge-base of the considered local society. After a critical survey of the variables utilized within other approaches adopted by international or national organizations, this paper seeks to elaborate a framework of variables, named Regional Knowledge Economy Indicators (ReKEI), necessary to describe the knowledge-based relations of subnational socio-economic contexts. The realization of this framework has a double purpose: an analytical one consisting in highlighting the regional differences in the governance of knowledge based processes, and an operative one consisting in providing some reference parameters for contributing to increasing the effectiveness of those economic policies aiming at enlarging the knowledge bases of local societies.

Keywords: Knowledge economy, knowledge society, information society, regional innovation system, territorial competitiveness, local development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1738
289 Vague Multiple Criteria Decision Making Analysis Method for Fighter Aircraft Selection

Authors: C. Ardil

Abstract:

Fighter aircraft selection is one of the most critical strategies for defense multiple criteria decision-making analysis to increase the decisive power of air defense and its superior power in the defense strategy. Vague set theory is an adequate approach for modeling vagueness, uncertainty, and imprecision in decision-making problems. This study integrates vague set theory and the technique for order of preference by similarity to ideal solution (TOPSIS) to support fighter aircraft selection. The proposed method is applied in the selection of fighter aircraft for the Air Force. In the proposed approach, the ratings of alternatives and the importance weights of criteria for fighter aircraft selection are represented by the vague set theory. Finally, an illustrative example for fighter aircraft selection is given to demonstrate the applicability and effectiveness of the proposed approach. The fighter aircraft candidates were selected under six criteria including costability, payloadability, maneuverability, speedability, stealthility, and survivability. Analysis results show that the best fighter aircraft is selected with the highest closeness coefficient value. The proposed method can also be applied to solve other multiple criteria decision analysis problems. 

Keywords: fighter aircraft selection, vague set theory, fuzzy set theory, neutrosophic set theory, multiple criteria decision making analysis, MCDMA, TOPSIS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 541
288 Analysis of Vocal Fold Vibrations from High-Speed Digital Images Based On Dynamic Time Warping

Authors: A. I. A. Rahman, Sh-Hussain Salleh, K. Ahmad, K. Anuar

Abstract:

Analysis of vocal fold vibration is essential for understanding the mechanism of voice production and for improving clinical assessment of voice disorders. This paper presents a Dynamic Time Warping (DTW) based approach to analyze and objectively classify vocal fold vibration patterns. The proposed technique was designed and implemented on a Glottal Area Waveform (GAW) extracted from high-speed laryngeal images by delineating the glottal edges for each image frame. Feature extraction from the GAW was performed using Linear Predictive Coding (LPC). Several types of voice reference templates from simulations of clear, breathy, fry, pressed and hyperfunctional voice productions were used. The patterns of the reference templates were first verified using the analytical signal generated through Hilbert transformation of the GAW. Samples from normal speakers’ voice recordings were then used to evaluate and test the effectiveness of this approach. The classification of the voice patterns using the technique of LPC and DTW gave the accuracy of 81%.

Keywords: Dynamic Time Warping, Glottal Area Waveform, Linear Predictive Coding, High-Speed Laryngeal Images, Hilbert Transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2334
287 Application of GIS-Based Construction Engineering: An Electronic Document Management System

Authors: Mansour N. Jadid

Abstract:

This paper describes the implementation of a GIS to provide decision support for successfully monitoring the movements and storage of materials, hence ensuring that finished products travel from the point of origin to the destination construction site through the supply-chain management (SCM) system. This system ensures the efficient operation of suppliers, manufacturers, and distributors by determining the shortest path from the point of origin to the final destination to reduce construction costs, minimize time, and enhance productivity. These systems are essential to the construction industry because they reduce costs and save time, thereby improve productivity and effectiveness. This study describes a typical supply-chain model and a geographical information system (GIS)-based SCM that focuses on implementing an electronic document management system, which maps the application framework to integrate geodetic support with the supply-chain system. This process provides guidance for locating the nearest suppliers to fill the information needs of project members in different locations. Moreover, this study illustrates the use of a GIS-based SCM as a collaborative tool in innovative methods for implementing Web mapping services, as well as aspects of their integration by generating an interactive GIS for the construction industry platform.

Keywords: Construction, coordinate, engineering, GIS, management, map.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1450
286 Validation and Selection between Machine Learning Technique and Traditional Methods to Reduce Bullwhip Effects: a Data Mining Approach

Authors: Hamid R. S. Mojaveri, Seyed S. Mousavi, Mojtaba Heydar, Ahmad Aminian

Abstract:

The aim of this paper is to present a methodology in three steps to forecast supply chain demand. In first step, various data mining techniques are applied in order to prepare data for entering into forecasting models. In second step, the modeling step, an artificial neural network and support vector machine is presented after defining Mean Absolute Percentage Error index for measuring error. The structure of artificial neural network is selected based on previous researchers' results and in this article the accuracy of network is increased by using sensitivity analysis. The best forecast for classical forecasting methods (Moving Average, Exponential Smoothing, and Exponential Smoothing with Trend) is resulted based on prepared data and this forecast is compared with result of support vector machine and proposed artificial neural network. The results show that artificial neural network can forecast more precisely in comparison with other methods. Finally, forecasting methods' stability is analyzed by using raw data and even the effectiveness of clustering analysis is measured.

Keywords: Artificial Neural Networks (ANN), bullwhip effect, demand forecasting, Support Vector Machine (SVM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2010
285 Channel Estimation for Orthogonal Frequency Division Multiplexing Systems over Doubly Selective Channels Based on the DCS-DCSOMP Algorithm

Authors: Linyu Wang, Furui Huo, Jianhong Xiang

Abstract:

The Doppler shift generated by high-speed movement and multipath effects in the channel are the main reasons for the generation of a time-frequency doubly-selective (DS) channel. There is severe inter-carrier interference (ICI) in the DS channel. Channel estimation for an orthogonal frequency division multiplexing (OFDM) system over a DS channel is very difficult. The simultaneous orthogonal matching pursuit (SOMP) algorithm under distributed compressive sensing theory (DCS-SOMP) has been used in channel estimation for OFDM systems over DS channels. However, the reconstruction accuracy of the DCS-SOMP algorithm is not high enough in the low Signal-to-Noise Ratio (SNR) stage. To solve this problem, in this paper, we propose an improved DCS-SOMP algorithm based on the inner product difference comparison operation (DCS-DCSOMP). The reconstruction accuracy is improved by increasing the number of candidate indexes and designing the comparison conditions of inner product difference. We combine the DCS-DCSOMP algorithm with the basis expansion model (BEM) to reduce the complexity of channel estimation. Simulation results show the effectiveness of the proposed algorithm and its advantages over other algorithms.

Keywords: OFDM, doubly selective, channel estimation, compressed sensing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 371
284 Optimal Location of Multi Type Facts Devices for Multiple Contingencies Using Particle Swarm Optimization

Authors: S. Sutha, N. Kamaraj

Abstract:

In deregulated operating regime power system security is an issue that needs due thoughtfulness from researchers in the horizon of unbundling of generation and transmission. Electric power systems are exposed to various contingencies. Network contingencies often contribute to overloading of branches, violation of voltages and also leading to problems of security/stability. To maintain the security of the systems, it is desirable to estimate the effect of contingencies and pertinent control measurement can be taken on to improve the system security. This paper presents the application of particle swarm optimization algorithm to find the optimal location of multi type FACTS devices in a power system in order to eliminate or alleviate the line over loads. The optimizations are performed on the parameters, namely the location of the devices, their types, their settings and installation cost of FACTS devices for single and multiple contingencies. TCSC, SVC and UPFC are considered and modeled for steady state analysis. The selection of UPFC and TCSC suitable location uses the criteria on the basis of improved system security. The effectiveness of the proposed method is tested for IEEE 6 bus and IEEE 30 bus test systems.

Keywords: Contingency Severity Index, Particle Swarm Optimization, Performance Index, Static Security Assessment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2766
283 Providing Emotional Support to Children under Long-Term Health Treatments

Authors: Ramón Cruzat, Sergio F. Ochoa, Ignacio Casas, Luis A. Guerrero, José Bravo

Abstract:

Patients under health treatments that involve long  stays at a hospital or health center (e.g. cancer, organ transplants and  severe burns), tend to get bored or depressed because of the lack of  social interaction with family and friends. Such a situation also  affects the evolution and effectiveness of their treatments. In many  cases, the solution to this problem involves extra challenges, since  many patients need to rest quietly (or remain in bed) to their being  contagious. Considering the weak health condition in which usually  are these kinds, keeping them motivated and quiet represents an  important challenge for nurses and caregivers. This article presents a  mobile ubiquitous game called MagicRace, which allows hospitalized  kinds to interact socially with one another without putting to risk  their sensitive health conditions. The game does not require a  communication infrastructure at the hospital, but instead, it uses a  mobile ad hoc network composed of the handheld devices used by  the kids to play. The usability and performance of this application  was tested in two different sessions. The preliminary results show  that users experienced positive feelings from this experience.

 

Keywords: Ubiquitous game, children's emotional support, social isolation, mobile collaborative interactions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1667
282 Influence of Microstructural Features on Wear Resistance of Biomedical Titanium Materials

Authors: Mohsin T. Mohammed, Zahid A. Khan, Arshad N. Siddiquee

Abstract:

The field of biomedical materials plays an imperative requisite and a critical role in manufacturing a variety of biological artificial replacements in a modern world. Recently, titanium (Ti) materials are being used as biomaterials because of their superior corrosion resistance and tremendous specific strength, free- allergic problems and the greatest biocompatibility compared to other competing biomaterials such as stainless steel, Co-Cr alloys, ceramics, polymers, and composite materials. However, regardless of these excellent performance properties, Implantable Ti materials have poor shear strength and wear resistance which limited their applications as biomaterials. Even though the wear properties of Ti alloys has revealed some improvements, the crucial effectiveness of biomedical Ti alloys as wear components requires a comprehensive deep understanding of the wear reasons, mechanisms, and techniques that can be used to improve wear behavior. This review examines current information on the effect of thermal and thermomechanical processing of implantable Ti materials on the long-term prosthetic requirement which related with wear behavior. This paper focuses mainly on the evolution, evaluation and development of effective microstructural features that can improve wear properties of bio grade Ti materials using thermal and thermomechanical treatments.

Keywords: Wear Resistance, Heat Treatment, Thermomechanical Processing, Biomedical Titanium Materials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3663
281 Power System with PSS and FACTS Controller: Modelling, Simulation and Simultaneous Tuning Employing Genetic Algorithm

Authors: Sidhartha Panda, Narayana Prasad Padhy

Abstract:

This paper presents a systematic procedure for modelling and simulation of a power system installed with a power system stabilizer (PSS) and a flexible ac transmission system (FACTS)-based controller. For the design purpose, the model of example power system which is a single-machine infinite-bus power system installed with the proposed controllers is developed in MATLAB/SIMULINK. In the developed model synchronous generator is represented by model 1.1. which includes both the generator main field winding and the damper winding in q-axis so as to evaluate the impact of PSS and FACTS-based controller on power system stability. The model can be can be used for teaching the power system stability phenomena, and also for research works especially to develop generator controllers using advanced technologies. Further, to avoid adverse interactions, PSS and FACTS-based controller are simultaneously designed employing genetic algorithm (GA). The non-linear simulation results are presented for the example power system under various disturbance conditions to validate the effectiveness of the proposed modelling and simultaneous design approach.

Keywords: Genetic algorithm, modelling and simulation, MATLAB/SIMULINK, power system stabilizer, thyristor controlledseries compensator, simultaneous design, power system stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3157
280 Lane Changing and Merging Maneuvers of Carlike Robots

Authors: Bibhya Sharma, Jito Vanualailai, Ravindra Rai

Abstract:

This research paper designs a unique motion planner of multiple platoons of nonholonomic car-like robots as a feasible solution to the lane changing/merging maneuvers. The decentralized planner with a leaderless approach and a path-guidance principle derived from the Lyapunov-based control scheme generates collision free avoidance and safe merging maneuvers from multiple lanes to a single lane by deploying a split/merge strategy. The fixed obstacles are the markings and boundaries of the road lanes, while the moving obstacles are the robots themselves. Real and virtual road lane markings and the boundaries of road lanes are incorporated into a workspace to achieve the desired formation and configuration of the robots. Convergence of the robots to goal configurations and the repulsion of the robots from specified obstacles are achieved by suitable attractive and repulsive potential field functions, respectively. The results can be viewed as a significant contribution to the avoidance algorithm of the intelligent vehicle systems (IVS). Computer simulations highlight the effectiveness of the split/merge strategy and the acceleration-based controllers.

Keywords: Lane merging, Lyapunov-based control scheme, path-guidance principle, split/merge strategy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1645
279 A Machine Learning Approach for Anomaly Detection in Environmental IoT-Driven Wastewater Purification Systems

Authors: Giovanni Cicceri, Roberta Maisano, Nathalie Morey, Salvatore Distefano

Abstract:

The main goal of this paper is to present a solution for a water purification system based on an Environmental Internet of Things (EIoT) platform to monitor and control water quality and machine learning (ML) models to support decision making and speed up the processes of purification of water. A real case study has been implemented by deploying an EIoT platform and a network of devices, called Gramb meters and belonging to the Gramb project, on wastewater purification systems located in Calabria, south of Italy. The data thus collected are used to control the wastewater quality, detect anomalies and predict the behaviour of the purification system. To this extent, three different statistical and machine learning models have been adopted and thus compared: Autoregressive Integrated Moving Average (ARIMA), Long Short Term Memory (LSTM) autoencoder, and Facebook Prophet (FP). The results demonstrated that the ML solution (LSTM) out-perform classical statistical approaches (ARIMA, FP), in terms of both accuracy, efficiency and effectiveness in monitoring and controlling the wastewater purification processes.

Keywords: EIoT, machine learning, anomaly detection, environment monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1027
278 Efficient Boosting-Based Active Learning for Specific Object Detection Problems

Authors: Thuy Thi Nguyen, Nguyen Dang Binh, Horst Bischof

Abstract:

In this work, we present a novel active learning approach for learning a visual object detection system. Our system is composed of an active learning mechanism as wrapper around a sub-algorithm which implement an online boosting-based learning object detector. In the core is a combination of a bootstrap procedure and a semi automatic learning process based on the online boosting procedure. The idea is to exploit the availability of classifier during learning to automatically label training samples and increasingly improves the classifier. This addresses the issue of reducing labeling effort meanwhile obtain better performance. In addition, we propose a verification process for further improvement of the classifier. The idea is to allow re-update on seen data during learning for stabilizing the detector. The main contribution of this empirical study is a demonstration that active learning based on an online boosting approach trained in this manner can achieve results comparable or even outperform a framework trained in conventional manner using much more labeling effort. Empirical experiments on challenging data set for specific object deteciton problems show the effectiveness of our approach.

Keywords: Computer vision, object detection, online boosting, active learning, labeling complexity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1784
277 Feasibility Studies through Quantitative Methods: The Revamping of a Tourist Railway Line in Italy

Authors: Armando Cartenì, Ilaria Henke

Abstract:

Recently, the Italian government has approved a new law for public contracts and has been laying the groundwork for restarting a planning phase. The government has adopted the indications given by the European Commission regarding the estimation of the external costs within the Cost-Benefit Analysis, and has been approved the ‘Guidelines for assessment of Investment Projects’. In compliance with the new Italian law, the aim of this research was to perform a feasibility study applying quantitative methods regarding the revamping of an Italian tourist railway line. A Cost-Benefit Analysis was performed starting from the quantification of the passengers’ demand potentially interested in using the revamped rail services. The benefits due to the external costs reduction were also estimated (quantified) in terms of variations (with respect to the not project scenario): climate change, air pollution, noises, congestion, and accidents. Estimations results have been proposed in terms of the Measure of Effectiveness underlying a positive Net Present Value equal to about 27 million of Euros, an Internal Rate of Return much greater the discount rate, a benefit/cost ratio equal to 2 and a PayBack Period of 15 years.

Keywords: Cost-benefit analysis, evaluation analysis, demand management, external cost, transport planning, quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 881
276 Migration of a Drop in Simple Shear Flow at Finite Reynolds Numbers: Size and Viscosity Ratio Effects

Authors: M. Bayareh, S. Mortazavi

Abstract:

The migration of a deformable drop in simple shear flow at finite Reynolds numbers is investigated numerically by solving the full Navier-Stokes equations using a finite difference/front tracking method. The objectives of this study are to examine the effectiveness of the present approach to predict the migration of a drop in a shear flow and to investigate the behavior of the drop migration with different drop sizes and non-unity viscosity ratios. It is shown that the drop deformation depends strongly on the capillary number, so that; the proper non-dimensional number for the interfacial tension is the capillary number. The rate of migration increased with increasing the drop radius. In other words, the required time for drop migration to the centreline decreases. As the viscosity ratio increases, the drop rotates more slowly and the lubrication force becomes stronger. The increased lubrication force makes it easier for the drop to migrate to the centre of the channel. The migration velocity of the drop vanishes as the drop reaches the centreline under viscosity ratio of one and non-unity viscosity ratios. To validate the present calculations, some typical results are compared with available experimental and theoretical data.

Keywords: drop migration, shear flow, front-tracking method, finite difference method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2018