Search results for: maintenance strategy selection multiple criteria decision-making analysis
10623 Higher-Dimensional Quantum Cryptography
Authors: Bradley Christensen, Kevin T. McCusker, Daniel J. Gauthier, Daniel Kumor, Venkat Chandar, P. G. Kwiat
Abstract:
We report on a high-speed quantum cryptography system that utilizes simultaneous entanglement in polarization and in “time-bins". With multiple degrees of freedom contributing to the secret key, we can achieve over ten bits of random entropy per detected coincidence. In addition, we collect from multiple spots o the downconversion cone to further amplify the data rate, allowing usto achieve over 10 Mbits of secure key per second.Keywords: Downconversion, Hyper-entanglement, Quantum Cryptography
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 169310622 An Agent-Based Approach to Vehicle Routing Problem
Authors: Dariusz Barbucha, Piotr Jedrzejowicz
Abstract:
The paper proposes and validates a new method of solving instances of the vehicle routing problem (VRP). The approach is based on a multiple agent system paradigm. The paper contains the VRP formulation, an overview of the multiple agent environment used and a description of the proposed implementation. The approach is validated experimentally. The experiment plan and the discussion of experiment results follow.
Keywords: multi-agent systems, population-based methods, vehiclerouting problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 224510621 Comparative Studies of Support Vector Regression between Reproducing Kernel and Gaussian Kernel
Authors: Wei Zhang, Su-Yan Tang, Yi-Fan Zhu, Wei-Ping Wang
Abstract:
Support vector regression (SVR) has been regarded as a state-of-the-art method for approximation and regression. The importance of kernel function, which is so-called admissible support vector kernel (SV kernel) in SVR, has motivated many studies on its composition. The Gaussian kernel (RBF) is regarded as a “best" choice of SV kernel used by non-expert in SVR, whereas there is no evidence, except for its superior performance on some practical applications, to prove the statement. Its well-known that reproducing kernel (R.K) is also a SV kernel which possesses many important properties, e.g. positive definiteness, reproducing property and composing complex R.K by simpler ones. However, there are a limited number of R.Ks with explicit forms and consequently few quantitative comparison studies in practice. In this paper, two R.Ks, i.e. SV kernels, composed by the sum and product of a translation invariant kernel in a Sobolev space are proposed. An exploratory study on the performance of SVR based general R.K is presented through a systematic comparison to that of RBF using multiple criteria and synthetic problems. The results show that the R.K is an equivalent or even better SV kernel than RBF for the problems with more input variables (more than 5, especially more than 10) and higher nonlinearity.Keywords: admissible support vector kernel, reproducing kernel, reproducing kernel Hilbert space, support vector regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 159510620 Towards End-To-End Disease Prediction from Raw Metagenomic Data
Authors: Maxence Queyrel, Edi Prifti, Alexandre Templier, Jean-Daniel Zucker
Abstract:
Analysis of the human microbiome using metagenomic sequencing data has demonstrated high ability in discriminating various human diseases. Raw metagenomic sequencing data require multiple complex and computationally heavy bioinformatics steps prior to data analysis. Such data contain millions of short sequences read from the fragmented DNA sequences and stored as fastq files. Conventional processing pipelines consist in multiple steps including quality control, filtering, alignment of sequences against genomic catalogs (genes, species, taxonomic levels, functional pathways, etc.). These pipelines are complex to use, time consuming and rely on a large number of parameters that often provide variability and impact the estimation of the microbiome elements. Training Deep Neural Networks directly from raw sequencing data is a promising approach to bypass some of the challenges associated with mainstream bioinformatics pipelines. Most of these methods use the concept of word and sentence embeddings that create a meaningful and numerical representation of DNA sequences, while extracting features and reducing the dimensionality of the data. In this paper we present an end-to-end approach that classifies patients into disease groups directly from raw metagenomic reads: metagenome2vec. This approach is composed of four steps (i) generating a vocabulary of k-mers and learning their numerical embeddings; (ii) learning DNA sequence (read) embeddings; (iii) identifying the genome from which the sequence is most likely to come and (iv) training a multiple instance learning classifier which predicts the phenotype based on the vector representation of the raw data. An attention mechanism is applied in the network so that the model can be interpreted, assigning a weight to the influence of the prediction for each genome. Using two public real-life data-sets as well a simulated one, we demonstrated that this original approach reaches high performance, comparable with the state-of-the-art methods applied directly on processed data though mainstream bioinformatics workflows. These results are encouraging for this proof of concept work. We believe that with further dedication, the DNN models have the potential to surpass mainstream bioinformatics workflows in disease classification tasks.Keywords: Metagenomics, phenotype prediction, deep learning, embeddings, multiple instance learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 91010619 End To End Process to Automate Batch Application
Authors: Nagmani Lnu
Abstract:
Often, quality engineering refers to testing the applications that either have a User Interface (UI) or an Application Programming Interface (API). We often find mature test practices, standards, and automation regarding UI or API testing. However, another kind is present in almost all types of industries that deal with data in bulk and often get handled through something called a batch application. This is primarily an offline application companies develop to process large data sets that often deal with multiple business rules. The challenge gets more prominent when we try to automate batch testing. This paper describes the approaches taken to test a batch application from a financial industry to test the payment settlement process (a critical use case in all kinds of FinTech companies), resulting in 100% test automation in test creation and test execution. One can follow this approach for any other batch use cases to achieve a higher efficiency in their testing process.
Keywords: Batch testing, batch test automation, batch test strategy, payments testing, payments settlement testing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6510618 A Novel Method for the Characterization of Synchronization and Coupling in Multichannel EEG and ECoG
Authors: Manfred Hartmann, Andreas Graef, Hannes Perko, Christoph Baumgartner, Tilmann Kluge
Abstract:
In this paper we introduce a novel method for the characterization of synchronziation and coupling effects in multivariate time series that can be used for the analysis of EEG or ECoG signals recorded during epileptic seizures. The method allows to visualize the spatio-temporal evolution of synchronization and coupling effects that are characteristic for epileptic seizures. Similar to other methods proposed for this purpose our method is based on a regression analysis. However, a more general definition of the regression together with an effective channel selection procedure allows to use the method even for time series that are highly correlated, which is commonly the case in EEG/ECoG recordings with large numbers of electrodes. The method was experimentally tested on ECoG recordings of epileptic seizures from patients with temporal lobe epilepsies. A comparision with the results from a independent visual inspection by clinical experts showed an excellent agreement with the patterns obtained with the proposed method.Keywords: EEG, epilepsy, regression analysis, seizurepropagation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 143210617 Coupling Concept of two Parallel Research Codes for Two and Three Dimensional Fluid Structure Interaction Analysis
Authors: Luciano Garelli, Marco Schauer, Jorge D’Elia, Mario A. Storti, Sabine C. Langer
Abstract:
This paper discuss a coupling strategy of two different software packages to provide fluid structure interaction (FSI) analysis. The basic idea is to combine the advantages of the two codes to create a powerful FSI solver for two and three dimensional analysis. The fluid part is computed by a program called PETSc-FEM a software developed at Centro de Investigaci´on de M´etodos Computacionales –CIMEC. The structural part of the coupled process is computed by the research code elementary Parallel Solver – (ELPASO) of the Technische Universit¨at Braunschweig, Institut f¨ur Konstruktionstechnik (IK).
Keywords: Computational Fluid Dynamics (CFD), Fluid Structure Interaction (FSI), Finite Element Method (FEM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 194310616 Analyzing of Public Transport Trip Generation in Developing Countries; A Case Study in Yogyakarta, Indonesia
Authors: S. Priyanto, E.P Friandi
Abstract:
Yogyakarta, as the capital city of Yogyakarta Province, has important roles in various sectors that require good provision of public transportation system. Ideally, a good transportation system should be able to accommodate the amount of travel demand. This research attempts to develop a trip generation model to predict the number of public transport passenger in Yogyakarta city. The model is built by using multiple linear regression analysis, which establishes relationship between trip number and socioeconomic attributes. The data consist of primary and secondary data. Primary data was collected by conducting household surveys which randomly selected. The resulted model is further applied to evaluate the existing TransJogja, a new Bus Rapid Transit system serves Yogyakarta and surrounding cities, shelters.
Keywords: Multiple linear regression, shelter evaluation, travel demand, trip generation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 220110615 Dam Operation Management Criteria during Floods: Case Study of Dez Dam in Southwest Iran
Authors: Ali Heidari
Abstract:
This paper presents the principles for improving flood mitigation operation in multipurpose dams and maximizing reservoir performance during flood occurrence with a focus on the real-time operation of gated spillways. The criteria of operation include the safety of dams during flood management, minimizing the downstream flood risk by decreasing the flood hazard and fulfilling water supply and other purposes of the dam operation in mid and long terms horizons. The parameters deemed to be important include flood inflow, outlet capacity restrictions, downstream flood inundation damages, economic revenue of dam operation, and environmental and sedimentation restrictions. A simulation model was used to determine the real-time release of the Dez Dam located in the Dez Rivers in southwest Iran, considering the gate regulation curves for the gated spillway. The results of the simulation model show that there is a possibility to improve the current procedures used in the real-time operation of the dams, particularly using gate regulation curves and early flood forecasting system results. The Dez Dam operation data show that in one of the best flood control records, 17% of the total active volume and flood control pool of the reservoir have not been used in decreasing the downstream flood hazard despite the availability of a flood forecasting system.
Keywords: Dam operation, flood control criteria, Dez Dam, Iran.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38610614 Power Efficient OFDM Signals with Reduced Symbol's Aperiodic Autocorrelation
Authors: Ibrahim M. Hussain
Abstract:
Three new algorithms based on minimization of autocorrelation of transmitted symbols and the SLM approach which are computationally less demanding have been proposed. In the first algorithm, autocorrelation of complex data sequence is minimized to a value of 1 that results in reduction of PAPR. Second algorithm generates multiple random sequences from the sequence generated in the first algorithm with same value of autocorrelation i.e. 1. Out of these, the sequence with minimum PAPR is transmitted. Third algorithm is an extension of the second algorithm and requires minimum side information to be transmitted. Multiple sequences are generated by modifying a fixed number of complex numbers in an OFDM data sequence using only one factor. The multiple sequences represent the same data sequence and the one giving minimum PAPR is transmitted. Simulation results for a 256 subcarrier OFDM system show that significant reduction in PAPR is achieved using the proposed algorithms.
Keywords: Aperiodic autocorrelation, OFDM, PAPR, SLM, wireless communication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 172210613 Image Thresholding for Weld Defect Extraction in Industrial Radiographic Testing
Authors: Nafaâ Nacereddine, Latifa Hamami, Djemel Ziou
Abstract:
In non destructive testing by radiography, a perfect knowledge of the weld defect shape is an essential step to appreciate the quality of the weld and make decision on its acceptability or rejection. Because of the complex nature of the considered images, and in order that the detected defect region represents the most accurately possible the real defect, the choice of thresholding methods must be done judiciously. In this paper, performance criteria are used to conduct a comparative study of thresholding methods based on gray level histogram, 2-D histogram and locally adaptive approach for weld defect extraction in radiographic images.
Keywords: 1D and 2D histogram, locally adaptive approach, performance criteria, radiographic image, thresholding, weld defect.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 234210612 Effective Work Roll Cooling toward Stand Reduction in Hot Strip Process
Authors: Temsiri Sapsaman, Anocha Bhocarattanahkul
Abstract:
The maintenance of work rolls in hot strip processing has been lengthy and difficult tasks for hot strip manufacturer because heavy work rolls have to be taken out of the production line, which could take hours. One way to increase the time between maintenance is to improve the effectiveness of the work roll cooling system such that the wear and tear more slowly occurs, while the operation cost is kept low. Therefore, this study aims to improve the work roll cooling system by providing the manufacturer the relationship between the work-roll temperature reduced by cooling and the water flow that can help manufacturer determining the more effective water flow of the cooling system. The relationship is found using simulation with a systematic process adjustment so that the satisfying quality of product is achieved. Results suggest that the manufacturer could reduce the water flow by 9% with roughly the same performance. With the same process adjustment, the feasibility of finishing-mill-stand reduction is also investigated. Results suggest its possibility.Keywords: Work-roll cooling system, hot strip process adjustment, feasibility study.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 195510611 Content-Based Image Retrieval Using HSV Color Space Features
Authors: Hamed Qazanfari, Hamid Hassanpour, Kazem Qazanfari
Abstract:
In this paper, a method is provided for content-based image retrieval. Content-based image retrieval system searches query an image based on its visual content in an image database to retrieve similar images. In this paper, with the aim of simulating the human visual system sensitivity to image's edges and color features, the concept of color difference histogram (CDH) is used. CDH includes the perceptually color difference between two neighboring pixels with regard to colors and edge orientations. Since the HSV color space is close to the human visual system, the CDH is calculated in this color space. In addition, to improve the color features, the color histogram in HSV color space is also used as a feature. Among the extracted features, efficient features are selected using entropy and correlation criteria. The final features extract the content of images most efficiently. The proposed method has been evaluated on three standard databases Corel 5k, Corel 10k and UKBench. Experimental results show that the accuracy of the proposed image retrieval method is significantly improved compared to the recently developed methods.
Keywords: Content-based image retrieval, color difference histogram, efficient features selection, entropy, correlation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 66010610 Optimization of Element Type for FE Model and Verification of Analyses with Physical Tests
Authors: M. Tufekci, C. Guven
Abstract:
In Automotive Industry, sliding door systems that are also used as body closures are safety members. Extreme product tests are realized to prevent failures in design process, but these tests realized experimentally result in high costs. Finite element analysis is an effective tool used for design process. These analyses are used before production of prototype for validation of design according to customer requirement. In result of this, substantial amount of time and cost is saved. Finite element model is created for geometries that are designed in 3D CAD programs. Different element types as bar, shell and solid, can be used for creating mesh model. Cheaper model can be created by selection of element type, but combination of element type that was used in model, number and geometry of element and degrees of freedom affects the analysis result. Sliding door system is a good example which used these methods for this study. Structural analysis was realized for sliding door mechanism by using FE models. As well, physical tests that have same boundary conditions with FE models were realized. Comparison study for these element types, were done regarding test and analyses results then optimum combination was achieved.Keywords: Finite Element Analysis, Sliding Door Mechanism, Element Type, Structural Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 196510609 Preventive Interventions for Central Venous Catheter Infections in Intensive Care Units: A Systematic Literature Review
Authors: Jakob Renko, Deja Praprotnik, Kristina Martinovič, Igor Karnjuš
Abstract:
Catheter-related bloodstream infections are a major burden for healthcare and patients. Although infections of this type cannot be completely avoided, they can be reduced by taking preventive measures. The aim of this study is to review and analyze the existing literature on preventive interventions to prevent central venous catheters (CVC) infections. A systematic literature review was carried out. The international databases CINAHL, Medline, PubMed, and Web of Science were searched using the search strategy: "catheter-related infections" AND "intensive care units" AND "prevention" AND "central venous catheter." Articles that met the inclusion and exclusion criteria were included in the study. The literature search flow is illustrated by the PRISMA diagram. The descriptive research method was used to analyze the data. Out of 554 search results, 22 surveys were included in the final analysis. We identified seven relevant preventive measures to prevent CVC infections: washing the whole body with chlorhexidine gluconate (CHG) solution, disinfecting the CVC entry site with CHG solution, use of CHG or silver dressings, alcohol protective caps, CVC care education, selecting appropriate catheter and multicomponent care bundles. Both single interventions and multicomponent care bundles have been shown to be currently effective measures to prevent CVC infections in adult patients in the ICU. None of the measures identified stood out in terms of their effectiveness. Prevention work to reduce CVC infections in the ICU is a complex process that requires the simultaneous consideration of several factors.
Keywords: Central venous access, critically ill patients, hospital-acquired complications, prevention.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26010608 A Comparison between Heuristic and Meta-Heuristic Methods for Solving the Multiple Traveling Salesman Problem
Authors: San Nah Sze, Wei King Tiong
Abstract:
The multiple traveling salesman problem (mTSP) can be used to model many practical problems. The mTSP is more complicated than the traveling salesman problem (TSP) because it requires determining which cities to assign to each salesman, as well as the optimal ordering of the cities within each salesman's tour. Previous studies proposed that Genetic Algorithm (GA), Integer Programming (IP) and several neural network (NN) approaches could be used to solve mTSP. This paper compared the results for mTSP, solved with Genetic Algorithm (GA) and Nearest Neighbor Algorithm (NNA). The number of cities is clustered into a few groups using k-means clustering technique. The number of groups depends on the number of salesman. Then, each group is solved with NNA and GA as an independent TSP. It is found that k-means clustering and NNA are superior to GA in terms of performance (evaluated by fitness function) and computing time.Keywords: Multiple Traveling Salesman Problem, GeneticAlgorithm, Nearest Neighbor Algorithm, k-Means Clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 323210607 A Model for the Characterization and Selection of Beeswaxes for use as base Substitute Tissue in Photon Teletherapy
Authors: R.M.V. Silva, D.N. Souza
Abstract:
This paper presents a model for the characterization and selection of beeswaxes for use as base substitute tissue for the manufacture of objects suitable for external radiotherapy using megavoltage photon beams. The model of characterization was divided into three distinct stages: 1) verification of aspects related to the origin of the beeswax, the bee species, the flora in the vicinity of the beehives and procedures to detect adulterations; 2) evaluation of physical and chemical properties; and 3) evaluation of beam attenuation capacity. The chemical composition of the beeswax evaluated in this study was similar to other simulators commonly used in radiotherapy. The behavior of the mass attenuation coefficient in the radiotherapy energy range was comparable to other simulators. The proposed model is efficient and enables convenient assessment of the use of any particular beeswax as a base substitute tissue for radiotherapy.Keywords: Beeswaxes, characterization, model, radiotherapy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 152410606 Mutation Rate for Evolvable Hardware
Authors: Emanuele Stomeo, Tatiana Kalganova, Cyrille Lambert
Abstract:
Evolvable hardware (EHW) refers to a selfreconfiguration hardware design, where the configuration is under the control of an evolutionary algorithm (EA). A lot of research has been done in this area several different EA have been introduced. Every time a specific EA is chosen for solving a particular problem, all its components, such as population size, initialization, selection mechanism, mutation rate, and genetic operators, should be selected in order to achieve the best results. In the last three decade a lot of research has been carried out in order to identify the best parameters for the EA-s components for different “test-problems". However different researchers propose different solutions. In this paper the behaviour of mutation rate on (1+λ) evolution strategy (ES) for designing logic circuits, which has not been done before, has been deeply analyzed. The mutation rate for an EHW system modifies values of the logic cell inputs, the cell type (for example from AND to NOR) and the circuit output. The behaviour of the mutation has been analyzed based on the number of generations, genotype redundancy and number of logic gates used for the evolved circuits. The experimental results found provide the behaviour of the mutation rate to be used during evolution for the design and optimization of logic circuits. The researches on the best mutation rate during the last 40 years are also summarized.Keywords: Evolvable hardware, mutation rate, evolutionarycomputation, design of logic circuit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 150110605 A Development of Online Lessons to Strengthen the Learning Process of Master's Degree Students Majoring in Curriculum and Instruction at Suan Sunandha Rajabhat University
Authors: Chaiwat Waree
Abstract:
The purposes of the research were to develop online lessons to strengthen the learning process of Master's degree students majoring in Curriculum and Instruction at Suan Sunandha Rajabhat University; to achieve the efficiency criteria of 80/80; and to study the satisfaction of students who use online lessons to strengthen the learning process of Master’s degree students majoring in Curriculum and Instruction at Suan Sunandha Rajabhat University. The sample consisted of 40 university students studying in semester 1, academic year 2012. The sample was determined by Purposive Sampling. Selected students were from the class which the researcher was the homeroom tutor. The tutor was responsible for the teaching of learning process. Tools used in the study were online lessons, 60-point performance test, and evaluation test of satisfaction of students on online lessons. Data analysis yielded the following results; 83.66/88.29 efficiency of online lessons measured against the criteria; the comparison of performance before and after taking online lessons using t-test yielded 29.67. The statistical significance was at 0.05; the average satisfaction level of forty students on online lessons was 4.46 with standard deviation of 0.68.
Keywords: Online Lessons, Curriculum and Instruction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 143410604 Developing Islamic Module Project for Preschool Teachers Using Modified Delphi Technique
Authors: Mazeni Ismail, Nurul Aliah, Hasmadi Hassan
Abstract:
The purpose of this study is to gather the consensus of experts regarding the use of moral guidance amongst preschool teachers vis-a-vis the Islamic Project module (I-Project Module). This I-Project Module seeks to provide pertinent data on the assimilation of noble values in subject-matter teaching. To obtain consensus for the various components of the module, the Modified Delphi technique was used to develop the module. 12 subject experts from various educational fields of Islamic education, early childhood education, counselling and language fully participated in the development of this module. The Modified Delphi technique was administered in two mean cycles. The standard deviation value derived from questionnaires completed by the participating panel of experts provided the value of expert consensus reached. This was subsequently analyzed using SPSS version 22. Findings revealed that the panel of experts reached a discernible degree of agreement on five topics outlined in the module, viz; content (mean value 3.36), teaching strategy (mean value 3.28), programme duration (mean value 3.0), staff involved and attention-grabbing strategy of target group participating in the value program (mean value 3.5), and strategy to attract attention of target group to utilize i-project (mean value 3.0). With regard to the strategy to attract the attention of the target group, the experts proposed for creative activities to be added in order to enhance teachers’ creativity.
Keywords: Islamic project, modified Delphi technique, project approach, teacher moral guidance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 73610603 The Effect of Tool Path Strategy on Surface and Dimension in High Speed Milling
Authors: A. Razavykia, A. Esmaeilzadeh, S. Iranmanesh
Abstract:
Many orthopedic implants like proximal humerus cases require lower surface roughness and almost immediate/short lead time surgery. Thus, rapid response from the manufacturer is very crucial. Tool path strategy of milling process has a direct influence on the surface roughness and lead time of medical implant. High-speed milling as promised process would improve the machined surface quality, but conventional or super-abrasive grinding still required which imposes some drawbacks such as additional costs and time. Currently, many CAD/CAM software offers some different tool path strategies to milling free form surfaces. Nevertheless, the users must identify how to choose the strategies according to cutting tool geometry, geometry complexity, and their effects on the machined surface. This study investigates the effect of different tool path strategies for milling a proximal humerus head during finishing operation on stainless steel 316L. Experiments have been performed using MAHO MH700 S vertical milling machine and four machining strategies, namely, spiral outward, spiral inward, and radial as well as zig-zag. In all cases, the obtained surfaces were analyzed in terms of roughness and dimension accuracy compared with those obtained by simulation. The findings provide evidence that surface roughness, dimensional accuracy, and machining time have been affected by the considered tool path strategy.Keywords: CAD/CAM software, milling, orthopedic implants, tool path strategy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 99610602 The Design of Multiple Detection Parallel Combined Spread Spectrum Communication System
Authors: Lixin Tian, Wei Xue
Abstract:
Many jobs in society go underground, such as mine mining, tunnel construction and subways, which are vital to the development of society. Once accidents occur in these places, the interruption of traditional wired communication is not conducive to the development of rescue work. In order to realize the positioning, early warning and command functions of underground personnel and improve rescue efficiency, it is necessary to develop and design an emergency ground communication system. It is easy to be subjected to narrowband interference when performing conventional underground communication. Spreading communication can be used for this problem. However, general spread spectrum methods such as direct spread communication are inefficient, so it is proposed to use parallel combined spread spectrum (PCSS) communication to improve efficiency. The PCSS communication not only has the anti-interference ability and the good concealment of the traditional spread spectrum system, but also has a relatively high frequency band utilization rate and a strong information transmission capability. So, this technology has been widely used in practice. This paper presents a PCSS communication model-multiple detection parallel combined spread spectrum (MDPCSS) communication system. In this paper, the principle of MDPCSS communication system is described, that is, the sequence at the transmitting end is processed in blocks and cyclically shifted to facilitate multiple detection at the receiving end. The block diagrams of the transmitter and receiver of the MDPCSS communication system are introduced. At the same time, the calculation formula of the system bit error rate (BER) is introduced, and the simulation and analysis of the BER of the system are completed. By comparing with the common parallel PCSS communication, we can draw a conclusion that it is indeed possible to reduce the BER and improve the system performance. Furthermore, the influence of different pseudo-code lengths selected on the system BER is simulated and analyzed, and the conclusion is that the larger the pseudo-code length is, the smaller the system error rate is.
Keywords: Cyclic shift, multiple detection, parallel combined spread spectrum, PN code.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 55210601 A Hybrid Radial-Based Neuro-GA Multiobjective Design of Laminated Composite Plates under Moisture and Thermal Actions
Authors: Mohammad Reza Ghasemi, Ali Ehsani
Abstract:
In this paper, the optimum weight and cost of a laminated composite plate is seeked, while it undergoes the heaviest load prior to a complete failure. Various failure criteria are defined for such structures in the literature. In this work, the Tsai-Hill theory is used as the failure criterion. The theory of analysis was based on the Classical Lamination Theory (CLT). A newly type of Genetic Algorithm (GA) as an optimization technique with a direct use of real variables was employed. Yet, since the optimization via GAs is a long process, and the major time is consumed through the analysis, Radial Basis Function Neural Networks (RBFNN) was employed in predicting the output from the analysis. Thus, the process of optimization will be carried out through a hybrid neuro-GA environment, and the procedure will be carried out until a predicted optimum solution is achieved.Keywords: Composite Laminates, GA, Multi-objectiveOptimization, Neural Networks, RBFNN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 146610600 A Geospatial Consumer Marketing Campaign Optimization Strategy: Case of Fuzzy Approach in Nigeria Mobile Market
Authors: Adeolu O. Dairo
Abstract:
Getting the consumer marketing strategy right is a crucial and complex task for firms with a large customer base such as mobile operators in a competitive mobile market. While empirical studies have made efforts to identify key constructs, no geospatial model has been developed to comprehensively assess the viability and interdependency of ground realities regarding the customer, competition, channel and the network quality of mobile operators. With this research, a geo-analytic framework is proposed for strategy formulation and allocation for mobile operators. Firstly, a fuzzy analytic network using a self-organizing feature map clustering technique based on inputs from managers and literature, which depicts the interrelationships amongst ground realities is developed. The model is tested with a mobile operator in the Nigeria mobile market. As a result, a customer-centric geospatial and visualization solution is developed. This provides a consolidated and integrated insight that serves as a transparent, logical and practical guide for strategic, tactical and operational decision making.
Keywords: Geospatial, geo-analytics, self-organizing map, customer-centric.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 81310599 The Analysis of TRACE/FRAPTRAN in the Fuel Rods of Maanshan PWR for LBLOCA
Authors: J. R. Wang, W.Y. Li, H.T. Lin, J.H. Yang, C. Shih, S.W. Chen
Abstract:
Fuel rod analysis program transient (FRAPTRAN) code was used to study the fuel rod performance during a postulated large break loss of coolant accident (LBLOCA) in Maanshan nuclear power plant (NPP). Previous transient results from thermal hydraulic code, TRACE, with the same LBLOCA scenario, were used as input boundary conditions for FRAPTRAN. The simulation results showed that the peak cladding temperatures and the fuel centerline temperatures were all below the 10CFR50.46 LOCA criteria. In addition, the maximum hoop stress was 18 MPa and the oxide thickness was 0.003mm for the present simulation cases, which are all within the safety operation ranges. The present study confirms that this analysis method, the FRAPTRAN code combined with TRACE, is an appropriate approach to predict the fuel integrity under LBLOCA with operational ECCS.
Keywords: —FRAPTRAN, TRACE, LOCA, PWR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 267910598 User Intention Generation with Large Language Models Using Chain-of-Thought Prompting
Authors: Gangmin Li, Fan Yang
Abstract:
Personalized recommendation is crucial for any recommendation system. One of the techniques for personalized recommendation is to identify the intention. Traditional user intention identification uses the user’s selection when facing multiple items. This modeling relies primarily on historical behavior data resulting in challenges such as the cold start, unintended choice, and failure to capture intention when items are new. Motivated by recent advancements in Large Language Models (LLMs) like ChatGPT, we present an approach for user intention identification by embracing LLMs with Chain-of-Thought (CoT) prompting. We use the initial user profile as input to LLMs and design a collection of prompts to align the LLM's response through various recommendation tasks encompassing rating prediction, search and browse history, user clarification, etc. Our tests on real-world datasets demonstrate the improvements in recommendation by explicit user intention identification and, with that intention, merged into a user model.
Keywords: Personalized recommendation, generative user modeling, user intention identification, large language models, chain-of-thought prompting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8710597 Online Partial Discharge Source Localization and Characterization Using Non-Conventional Method
Authors: Ammar Anwar Khan, Nissar R. Wani, Nazar Malik, Abdulrehman Al-Arainy, and Saad Alghuwainem
Abstract:
Power cables are vulnerable to failure due to aging or defects that occur with the passage of time under continuous operation and loading stresses. PD detection and characterization provide information on the location, nature, form and extent of the degradation. As a result, PD monitoring has become an important part of condition based maintenance (CBM) program among power utilities. Online partial discharge (PD) localization of defect sources in power cable system is possible using the time of flight method. The information regarding the time difference between the main and reflected pulses and cable length can help in locating the partial discharge source along the cable length. However, if the length of the cable is not known and the defect source is located at the extreme ends of the cable or in the middle of the cable, then double ended measurement is required to indicate the location of PD source. Use of multiple sensors can also help in discriminating the cable PD or local/ external PD. This paper presents the experience and results from online partial discharge measurements conducted in the laboratory and the challenges in partial discharge source localization.Keywords: Power cables, partial discharge localization, HFCT, condition based monitoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 282610596 PSO-based Possibilistic Portfolio Model with Transaction Costs
Authors: Wei Chen, Cui-you Yao, Yue Qiu
Abstract:
This paper deals with a portfolio selection problem based on the possibility theory under the assumption that the returns of assets are LR-type fuzzy numbers. A possibilistic portfolio model with transaction costs is proposed, in which the possibilistic mean value of the return is termed measure of investment return, and the possibilistic variance of the return is termed measure of investment risk. Due to considering transaction costs, the existing traditional optimization algorithms usually fail to find the optimal solution efficiently and heuristic algorithms can be the best method. Therefore, a particle swarm optimization is designed to solve the corresponding optimization problem. At last, a numerical example is given to illustrate our proposed effective means and approaches.Keywords: Possibility theory, portfolio selection, transaction costs, particle swarm optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 153410595 Developing Road Performance Measurement System with Evaluation Instrument
Authors: Kati Kõrbe Kaare, Kristjan Kuhi, Ott Koppel
Abstract:
Transportation authorities need to provide the services and facilities that are critical to every country-s well-being and development. Management of the road network is becoming increasingly challenging as demands increase and resources are limited. Public sector institutions are integrating performance information into budgeting, managing and reporting via implementing performance measurement systems. In the face of growing challenges, performance measurement of road networks is attracting growing interest in many countries. The large scale of public investments makes the maintenance and development of road networks an area where such systems are an important assessment tool. Transportation agencies have been using performance measurement and modeling as part of pavement and bridge management systems. Recently the focus has been on extending the process to applications in road construction and maintenance systems, operations and safety programs, and administrative structures and procedures. To eliminate failure and dysfunctional consequences the importance of obtaining objective data and implementing evaluation instrument where necessary is presented in this paperKeywords: Key performance indicators, performance measurement system, evaluation, system architecture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 201110594 Breast Cancer Survivability Prediction via Classifier Ensemble
Authors: Mohamed Al-Badrashiny, Abdelghani Bellaachia
Abstract:
This paper presents a classifier ensemble approach for predicting the survivability of the breast cancer patients using the latest database version of the Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute. The system consists of two main components; features selection and classifier ensemble components. The features selection component divides the features in SEER database into four groups. After that it tries to find the most important features among the four groups that maximizes the weighted average F-score of a certain classification algorithm. The ensemble component uses three different classifiers, each of which models different set of features from SEER through the features selection module. On top of them, another classifier is used to give the final decision based on the output decisions and confidence scores from each of the underlying classifiers. Different classification algorithms have been examined; the best setup found is by using the decision tree, Bayesian network, and Na¨ıve Bayes algorithms for the underlying classifiers and Na¨ıve Bayes for the classifier ensemble step. The system outperforms all published systems to date when evaluated against the exact same data of SEER (period of 1973-2002). It gives 87.39% weighted average F-score compared to 85.82% and 81.34% of the other published systems. By increasing the data size to cover the whole database (period of 1973-2014), the overall weighted average F-score jumps to 92.4% on the held out unseen test set.Keywords: Classifier ensemble, breast cancer survivability, data mining, SEER.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1671