Search results for: Mode choice models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3708

Search results for: Mode choice models

2568 Forecasting Stock Indexes Using Bayesian Additive Regression Tree

Authors: Darren Zou

Abstract:

Forecasting the stock market is a very challenging task. Various economic indicators such as GDP, exchange rates, interest rates, and unemployment have a substantial impact on the stock market. Time series models are the traditional methods used to predict stock market changes. In this paper, a machine learning method, Bayesian Additive Regression Tree (BART) is used in predicting stock market indexes based on multiple economic indicators. BART can be used to model heterogeneous treatment effects, and thereby works well when models are misspecified. It also has the capability to handle non-linear main effects and multi-way interactions without much input from financial analysts. In this research, BART is proposed to provide a reliable prediction on day-to-day stock market activities. By comparing the analysis results from BART and with time series method, BART can perform well and has better prediction capability than the traditional methods.

Keywords: Bayesian, Forecast, Stock, BART.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 733
2567 An Analytical Electron Mobility Model based on Particle Swarm Computation for Siliconbased Devices

Authors: F. Djeffal, N. Lakhdar, T. Bendib

Abstract:

The study of the transport coefficients in electronic devices is currently carried out by analytical and empirical models. This study requires several simplifying assumptions, generally necessary to lead to analytical expressions in order to study the different characteristics of the electronic silicon-based devices. Further progress in the development, design and optimization of Silicon-based devices necessarily requires new theory and modeling tools. In our study, we use the PSO (Particle Swarm Optimization) technique as a computational tool to develop analytical approaches in order to study the transport phenomenon of the electron in crystalline silicon as function of temperature and doping concentration. Good agreement between our results and measured data has been found. The optimized analytical models can also be incorporated into the circuits simulators to study Si-based devices without impact on the computational time and data storage.

Keywords: Particle Swarm, electron mobility, Si-based devices, Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1537
2566 Multidimensional Sports Spectators Segmentation and Social Media Marketing

Authors: B. Schmid, C. Kexel, E. Djafarova

Abstract:

Understanding consumers is elementary for practitioners in marketing. Consumers of sports events, the sports spectators, are a particularly complex consumer crowd. In order to identify and define their profiles different segmentation approaches can be found in literature, one of them being multidimensional segmentation. Multidimensional segmentation models correspond to the broad range of attitudes, behaviours, motivations and beliefs of sports spectators, other than earlier models. Moreover, in sports there are some well-researched disciplines (e.g. football or North American sports) where consumer profiles and marketing strategies are elaborate and others where no research at all can be found. For example, there is almost no research on athletics spectators. This paper explores the current state of research on sports spectators segmentation. An in-depth literature review provides the framework for a spectators segmentation in athletics. On this basis, additional potential consumer groups and implications for social media marketing will be explored. The findings are the basis for further research.

Keywords: Multidimensional segmentation, social media, sports marketing, sports spectators segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2612
2565 An Interactive Web-based Simulation Tool for Surgical Thread

Authors: A. Ruimi, S. Goyal, B. M. Nour

Abstract:

Interactive web-based computer simulations are needed by the medical community to replicate the experience of surgical procedures as closely and realistically as possible without the need to practice on corpses, animals and/or plastic models. In this paper, we offer a review on current state of the research on simulations of surgical threads, identify future needs and present our proposed plans to meet them. Our goal is to create a physics-based simulator, which will predict the behavior of surgical thread when subjected to conditions commonly encountered during surgery. To that end, we will i) develop three dimensional finite element models based on the Cosserat theory of elasticity ii) test and feedback results with the medical community and iii) develop a web-based user interface to run/command our simulator and visualize the results. The impacts of our research are that i) it will contribute to the development of a new generation of training for medical school students and ii) the simulator will be useful to expert surgeons in developing new, better and less risky procedures.

Keywords: Cosserat rod-theory, FEM simulations, Modeling, Surgical thread.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1653
2564 Comparison of Neural Network and Logistic Regression Methods to Predict Xerostomia after Radiotherapy

Authors: Hui-Min Ting, Tsair-Fwu Lee, Ming-Yuan Cho, Pei-Ju Chao, Chun-Ming Chang, Long-Chang Chen, Fu-Min Fang

Abstract:

To evaluate the ability to predict xerostomia after radiotherapy, we constructed and compared neural network and logistic regression models. In this study, 61 patients who completed a questionnaire about their quality of life (QoL) before and after a full course of radiation therapy were included. Based on this questionnaire, some statistical data about the condition of the patients’ salivary glands were obtained, and these subjects were included as the inputs of the neural network and logistic regression models in order to predict the probability of xerostomia. Seven variables were then selected from the statistical data according to Cramer’s V and point-biserial correlation values and were trained by each model to obtain the respective outputs which were 0.88 and 0.89 for AUC, 9.20 and 7.65 for SSE, and 13.7% and 19.0% for MAPE, respectively. These parameters demonstrate that both neural network and logistic regression methods are effective for predicting conditions of parotid glands.

Keywords: NPC, ANN, logistic regression, xerostomia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1635
2563 Spatial Econometric Approaches for Count Data: An Overview and New Directions

Authors: Paula Simões, Isabel Natário

Abstract:

This paper reviews a number of theoretical aspects for implementing an explicit spatial perspective in econometrics for modelling non-continuous data, in general, and count data, in particular. It provides an overview of the several spatial econometric approaches that are available to model data that are collected with reference to location in space, from the classical spatial econometrics approaches to the recent developments on spatial econometrics to model count data, in a Bayesian hierarchical setting. Considerable attention is paid to the inferential framework, necessary for structural consistent spatial econometric count models, incorporating spatial lag autocorrelation, to the corresponding estimation and testing procedures for different assumptions, to the constrains and implications embedded in the various specifications in the literature. This review combines insights from the classical spatial econometrics literature as well as from hierarchical modeling and analysis of spatial data, in order to look for new possible directions on the processing of count data, in a spatial hierarchical Bayesian econometric context.

Keywords: Spatial data analysis, spatial econometrics, Bayesian hierarchical models, count data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2703
2562 The Use of Thermal Infrared Wavelengths to Determine the Volcanic Soils

Authors: Levent Basayigit, Mert Dedeoglu, Fadime Ozogul

Abstract:

In this study, an application was carried out to determine the Volcanic Soils by using remote sensing.  The study area was located on the Golcuk formation in Isparta-Turkey. The thermal bands of Landsat 7 image were used for processing. The implementation of the climate model that was based on the water index was used in ERDAS Imagine software together with pixel based image classification. Soil Moisture Index (SMI) was modeled by using the surface temperature (Ts) which was obtained from thermal bands and vegetation index (NDVI) derived from Landsat 7. Surface moisture values were grouped and classified by using scoring system. Thematic layers were compared together with the field studies. Consequently, different moisture levels for volcanic soils were indicator for determination and separation. Those thermal wavelengths are preferable bands for separation of volcanic soils using moisture and temperature models.

Keywords: Landsat 7, soil moisture index, temperature models, volcanic soils.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1105
2561 Adsorption of Cadmium onto Activated and Non-Activated Date Pits

Authors: Munther I. Kandah, Fahmi A. Abu Al-Rub, Lucy Bawarish, Mira Bawarish, Hiba Al-Tamimi, Reem Khalil, Raja'a Sa, ada

Abstract:

In this project cadmium ions were adsorbed from aqueous solutions onto either date pits; a cheap agricultural and nontoxic material, or chemically activated carbon prepared from date pits using phosphoric acid. A series of experiments were conducted in a batch adsorption technique to assess the feasibility of using the prepared adsorbents. The effects of the process variables such as initial cadmium ions concentration, contact time, solution pH and adsorbent dose on the adsorption capacity of both adsorbents were studied. The experimental data were tested using different isotherm models such as Langmuir, Freundlich, Tempkin and Dubinin- Radushkevich. The results showed that although the equilibrium data could be described by all models used, Langmuir model gave slightly better results when using activated carbon while Freundlich model, gave better results with date pits.

Keywords: Adsorption, Cadmium, Chemical Activation, DatePits.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1811
2560 Investigation of Some Flotation Parameters and the Role of Dispersants in the Flotation of Chalcopyrite

Authors: H. A. Taner, V. Önen

Abstract:

A suitable choice of flotation parameters and reagents have a strong effect on the effectiveness of flotation process. The objective of this paper is to give an overview of the flotation of chalcopyrite with the different conditions and dispersants. Flotation parameters such as grinding time, pH, type, and dosage of dispersant were investigated. In order to understand the interaction of some dispersants, sodium silicate, sodium hexametaphosphate and sodium polyphosphate were used. The optimum results were obtained at a pH of 11.5 and a grinding time of 10 minutes. A copper concentrate was produced assaying 29.85% CuFeS2 and 65.97% flotation recovery under optimum rougher flotation conditions with sodium silicate.

Keywords: Chalcopyrite, dispersant, flotation, copper.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 753
2559 Adaptation Measures for Sustainable Development of the Agricultural Potential of the Flood-Risk Zones of Ghareb Lowland, Morocco

Authors: R. Bourziza, W. El Khoumsi, I. Mghabbar, I. Rahou

Abstract:

The flood-risk zones called Merjas are lowlands that are flooded during the rainy season. Indeed, these depressed areas were reclaimed to dry them out in order to exploit their agricultural potential. Thus, farmers were able to start exploiting these drained lands. As the development of modern agriculture in Morocco progressed, farmers began to practice irrigated agriculture. In a context of vulnerability to floods and the need for optimal exploitation of the agricultural potential of the flood-risk zones, the question of how farmers are adapting to this context and the degree of exploitation of this potential arises. It is in these circumstances that this work was initiated, aiming at the characterization of irrigation practices in the flood-risk zones of the Ghareb lowland (Morocco). This characterization is based on two main axes: the characterization of irrigation techniques used, as well as the management of irrigation in these areas. In order to achieve our objective, two complementary approaches have been adopted; the first one is based on interviews with administrative agents and on farmer surveys, and the second one is based on field measurements of a few parameters, such as flow rate, pressure, uniformity coefficient of drippers and salinity. The results of this work led to conclude that the choice of the practiced crop (crop resistant to excess water in winter and vegetable crops during other seasons) and the availability and nature of water resources are the main criteria that determine the choice of the irrigation system. Even if irrigation management is imprecise, farmers are able to achieve agricultural yields that are comparable to those recorded in the entire irrigated perimeter. However, agricultural yields in these areas are still threatened by climate change, since these areas play the role of water retaining basins during floods by protecting the downstream areas, which can also damage the crops there instilled during the autumn. This work has also noted that the predominance of private pumping in flood-risk zones in the coastal zone creates a risk of marine intrusion, which risks endangering the groundwater table. Thus, this work enabled us to understand the functioning and the adaptation measures of these vulnerable zones for the sustainability of the Merjas and a better valorization of these marginalized lowlands.

Keywords: Flood-risk zones, irrigation practices, climate change, adaptation measures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 432
2558 Measuring E-Learning Effectiveness Using a Three-Way Comparison

Authors: Matthew Montebello

Abstract:

The way e-learning effectiveness has been notoriously measured within an academic setting is by comparing the e-learning medium to the traditional face-to-face teaching methodology. In this paper, a simple yet innovative comparison methodology is introduced, whereby the effectiveness of next generation e-learning systems are assessed in contrast not only to the face-to-face mode, but also to the classical e-learning modality. Ethical and logistical issues are also discussed, as this three-way approach to compare teaching methodologies was applied and documented in a real empirical study within a higher education institution.

Keywords: E-learning effectiveness, higher education, teaching modality comparison.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1393
2557 A Context-Aware Supplier Selection Model

Authors: Mohammadreza Razzazi, Maryam Bayat

Abstract:

Selection of the best possible set of suppliers has a significant impact on the overall profitability and success of any business. For this reason, it is usually necessary to optimize all business processes and to make use of cost-effective alternatives for additional savings. This paper proposes a new efficient context-aware supplier selection model that takes into account possible changes of the environment while significantly reducing selection costs. The proposed model is based on data clustering techniques while inspiring certain principles of online algorithms for an optimally selection of suppliers. Unlike common selection models which re-run the selection algorithm from the scratch-line for any decision-making sub-period on the whole environment, our model considers the changes only and superimposes it to the previously defined best set of suppliers to obtain a new best set of suppliers. Therefore, any recomputation of unchanged elements of the environment is avoided and selection costs are consequently reduced significantly. A numerical evaluation confirms applicability of this model and proves that it is a more optimal solution compared with common static selection models in this field.

Keywords: Supplier Selection, Context-Awareness, OnlineAlgorithms, Data Clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1817
2556 Singularity Loci of Actuation Schemes for 3RRR Planar Parallel Manipulator

Authors: S. Ramana Babu, V. Ramachandra Raju, K. Ramji

Abstract:

This paper presents the effect of actuation schemes on the performance of parallel manipulators and also how the singularity loci have been changed in the reachable workspace of the manipulator with the choice of actuation scheme to drive the manipulator. The performance of the eight possible actuation schemes of 3RRR planar parallel manipulator is compared with each other. The optimal design problem is formulated to find the manipulator geometry that maximizes the singularity free conditioned workspace for all the eight actuation cases, the optimization problem is solved by using genetic algorithms.

Keywords: Actuation schemes, GCI, genetic algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1623
2555 A Framework for Product Development Process including HW and SW Components

Authors: Namchul Do, Gyeongseok Chae

Abstract:

This paper proposes a framework for product development including hardware and software components. It provides separation of hardware dependent software, modifications of current product development process, and integration of software modules with existing product configuration models and assembly product structures. In order to decide the dependent software, the framework considers product configuration modules and engineering changes of associated software and hardware components. In order to support efficient integration of the two different hardware and software development, a modified product development process is proposed. The process integrates the dependent software development into product development through the interchanges of specific product information. By using existing product data models in Product Data Management (PDM), the framework represents software as modules for product configurations and software parts for product structure. The framework is applied to development of a robot system in order to show its effectiveness.

Keywords: HW and SW Development Integration, ProductDevelopment with Software.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2600
2554 Stability of Electrical Drives Supplied by a Three Level Inverter

Authors: M. S. Kelaiaia, H. Labar, S. Kelaiaia, T. Mesbah

Abstract:

The development of the power electronics has allowed increasing the precision and reliability of the electrical devices, thanks to the adjustable inverters, as the Pulse Wide Modulation (PWM) applied to the three level inverters, which is the object of this study. The authors treat the relation between the law order adopted for a given system and the oscillations of the electrical and mechanical parameters of which the tolerance depends on the process with which they are integrated (paper factory, lifting of the heavy loads, etc.).Thus, the best choice of the regulation indexes allows us to achieve stability and safety training without investment (management of existing equipment). The optimal behavior of any electric device can be achieved by the minimization of the stored electrical and mechanical energy.

Keywords: Multi level inverter, PWM, Harmonics, oscillation, control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1372
2553 Application of Feed-Forward Neural Networks Autoregressive Models with Genetic Algorithm in Gross Domestic Product Prediction

Authors: E. Giovanis

Abstract:

In this paper we present a Feed-Foward Neural Networks Autoregressive (FFNN-AR) model with genetic algorithms training optimization in order to predict the gross domestic product growth of six countries. Specifically we propose a kind of weighted regression, which can be used for econometric purposes, where the initial inputs are multiplied by the neural networks final optimum weights from input-hidden layer of the training process. The forecasts are compared with those of the ordinary autoregressive model and we conclude that the proposed regression-s forecasting results outperform significant those of autoregressive model. Moreover this technique can be used in Autoregressive-Moving Average models, with and without exogenous inputs, as also the training process with genetics algorithms optimization can be replaced by the error back-propagation algorithm.

Keywords: Autoregressive model, Feed-Forward neuralnetworks, Genetic Algorithms, Gross Domestic Product

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1671
2552 Optimizing usage of ICTs and Outsourcing Strategic in Business Models and Customer Satisfaction

Authors: Saeed Rahmani Bagha, Mohammad Mirzahosseinian, Sonatkhatoon Kashanimotlagh

Abstract:

Nowadays, under developed countries for progress in science and technology and decreasing the technologic gap with developed countries, increasing the capacities and technology transfer from developed countries. To remain competitive, industry is continually searching for new methods to evolve their products. Business model is one of the latest buzzwords in the Internet and electronic business world. To be successful, organizations must look into the needs and wants of their customers. This research attempts to identify a specific feature of the company with a strong competitive advantage by analyzing the cause of Customer satisfaction. Due to the rapid development of knowledge and information technology, business environments have become much more complicated. Information technology can help a firm aiming to gain a competitive advantage. This study explores the role and effect of Information Communication Technology in Business Models and Customer satisfaction on firms and also relationships between ICTs and Outsourcing strategic.

Keywords: Information Communication Technology, Outsourcing, Customer Satisfaction, Business Plan

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1694
2551 A Family of Minimal Residual Based Algorithm for Adaptive Filtering

Authors: Noor Atinah Ahmad

Abstract:

The Minimal Residual (MR) is modified for adaptive filtering application. Three forms of MR based algorithm are presented: i) the low complexity SPCG, ii) MREDSI, and iii) MREDSII. The low complexity is a reduced complexity version of a previously proposed SPCG algorithm. Approximations introduced reduce the algorithm to an LMS type algorithm, but, maintain the superior convergence of the SPCG algorithm. Both MREDSI and MREDSII are MR based methods with Euclidean direction of search. The choice of Euclidean directions is shown via simulation to give better misadjustment compared to their gradient search counterparts.

Keywords: Adaptive filtering, Adaptive least square, Minimalresidual method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1441
2550 The Role of Strategic Flexibility for Achieving Sustainable Competition Advantage and Its Effect on Business Performance

Authors: K. Eryesil, O. Esmen, A. Beduk

Abstract:

In this study, it has been studied to determine the relationship between business performance and strategic flexibility, which is defined to be the strategic choice that provides the ability of rapidly responding the changes of the dynamic environment of the companies, for having competitive advantages. In this context a field study has been conducted over 56 companies, which are active in informatics and electronics sectors in TEKNOKENT. As a result of the study it has been determined that; strategic flexibility has an effect on business performance and there is a positive and statistically significant relationship between strategic flexibility and business performance.

Keywords: Sustainable Competition Advantage, Strategic Flexibility, Firm Performance, TEKNOKENT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2212
2549 An Empirical Model of Correlated Traffics in LTE-Advanced System through an Innovative Simulation Tool

Authors: Ghassan A. Abed, Mahamod Ismail, Samir I. Badrawi, Bayan M. Sabbar

Abstract:

Long Term Evolution Advanced (LTE-Advanced) LTE-Advanced is not new as a radio access technology, but it is an evolution of LTE to enhance the performance. This generation is the continuation of 3GPP-LTE (3GPP: 3rd Generation Partnership Project) and it is targeted for advanced development of the requirements of LTE in terms of throughput and coverage. The performance evaluation process of any network should be based on many models and simulations to investigate the network layers and functions and monitor the employment of the new technologies especially when this network includes large-bandwidth and low-latency links such as LTE and LTE-Advanced networks. Therefore, it’s necessary to enhance the proposed models of high-speed and high-congested link networks to make these links and traffics fulfill the needs of the huge data which transferred over the congested links. This article offered an innovative model of the most correlated links of LTE-Advanced system using the Network Simulator 2 (NS-2) with investigation of the link parameters.

Keywords: 3GPP, LTE, LTE-Advanced, NS-2.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2426
2548 Metrology-Inspired Methods to Assess the Biases of Artificial Intelligence Systems

Authors: Belkacem Laimouche

Abstract:

With the field of Artificial Intelligence (AI) experiencing exponential growth, fueled by technological advancements that pave the way for increasingly innovative and promising applications, there is an escalating need to develop rigorous methods for assessing their performance in pursuit of transparency and equity. This article proposes a metrology-inspired statistical framework for evaluating bias and explainability in AI systems. Drawing from the principles of metrology, we propose a pioneering approach, using a concrete example, to evaluate the accuracy and precision of AI models, as well as to quantify the sources of measurement uncertainty that can lead to bias in their predictions. Furthermore, we explore a statistical approach for evaluating the explainability of AI systems based on their ability to provide interpretable and transparent explanations of their predictions.

Keywords: Artificial intelligence, metrology, measurement uncertainty, prediction error, bias, machine learning algorithms, probabilistic models, inter-laboratory comparison, data analysis, data reliability, bias impact assessment, bias measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 139
2547 Modeling Football Penalty Shootouts: How Improving Individual Performance Affects Team Performance and the Fairness of the ABAB Sequence

Authors: Pablo Enrique Sartor Del Giudice

Abstract:

Penalty shootouts often decide the outcome of important soccer matches. Although usually referred to as ”lotteries”, there is evidence that some national teams and clubs consistently perform better than others. The outcomes are therefore not explained just by mere luck, and therefore there are ways to improve the average performance of players, naturally at the expense of some sort of effort. In this article we study the payoff of player performance improvements in terms of the performance of the team as a whole. To do so we develop an analytical model with static individual performances, as well as Monte Carlo models that take into account the known influence of partial score and round number on individual performances. We find that within a range of usual values, the team performance improves above 70% faster than individual performances do. Using these models, we also estimate that the new ABBA penalty shootout ordering under test reduces almost all the known bias in favor of the first-shooting team under the current ABAB system.

Keywords: Football, penalty shootouts, Montecarlo simulation, ABBA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 854
2546 WEMax: Virtual Manned Assembly Line Generation

Authors: Won Kyung Ham, Kang Hoon Cho, Yongho Chung, Sang C. Park

Abstract:

Presented in this paper is a framework of a software ‘WEMax’. The WEMax is invented for analysis and simulation for manned assembly lines to sustain and improve performance of manufacturing systems. In a manufacturing system, performance, such as productivity, is a key of competitiveness for output products. However, the manned assembly lines are difficult to forecast performance, because human labors are not expectable factors by computer simulation models or mathematical models. Existing approaches to performance forecasting of the manned assembly lines are limited to matters of the human itself, such as ergonomic and workload design, and non-human-factor-relevant simulation. Consequently, an approach for the forecasting and improvement of manned assembly line performance is needed to research. As a solution of the current problem, this study proposes a framework that is for generation and simulation of virtual manned assembly lines, and the framework has been implemented as a software.

Keywords: Performance Forecasting, Simulation, Virtual Manned Assembly Line.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1897
2545 A Method to Improve Test Process in Federal Enterprise Architecture Framework Using ISTQB Framework

Authors: Hamideh Mahdavifar, Ramin Nassiri, Alireza Bagheri

Abstract:

Enterprise Architecture (EA) is a framework for description, coordination and alignment of all activities across the organization in order to achieve strategic goals using ICT enablers. A number of EA-compatible frameworks have been developed. We, in this paper, mainly focus on Federal Enterprise Architecture Framework (FEAF) since its reference models are plentiful. Among these models we are interested here in its business reference model (BRM). The test process is one important subject of an EA project which is to somewhat overlooked. This lack of attention may cause drawbacks or even failure of an enterprise architecture project. To address this issue we intend to use International Software Testing Qualification Board (ISTQB) framework and standard test suites to present a method to improve EA testing process. The main challenge is how to communicate between the concepts of EA and ISTQB. In this paper, we propose a method for integrating these concepts.

Keywords: Business Reference Model (BRM), Federal Enterprise Architecture (FEA), ISTQB, Test Techniques.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1965
2544 Incorporating Lexical-Semantic Knowledge into Convolutional Neural Network Framework for Pediatric Disease Diagnosis

Authors: Xiaocong Liu, Huazhen Wang, Ting He, Xiaozheng Li, Weihan Zhang, Jian Chen

Abstract:

The utilization of electronic medical record (EMR) data to establish the disease diagnosis model has become an important research content of biomedical informatics. Deep learning can automatically extract features from the massive data, which brings about breakthroughs in the study of EMR data. The challenge is that deep learning lacks semantic knowledge, which leads to impracticability in medical science. This research proposes a method of incorporating lexical-semantic knowledge from abundant entities into a convolutional neural network (CNN) framework for pediatric disease diagnosis. Firstly, medical terms are vectorized into Lexical Semantic Vectors (LSV), which are concatenated with the embedded word vectors of word2vec to enrich the feature representation. Secondly, the semantic distribution of medical terms serves as Semantic Decision Guide (SDG) for the optimization of deep learning models. The study evaluates the performance of LSV-SDG-CNN model on four kinds of Chinese EMR datasets. Additionally, CNN, LSV-CNN, and SDG-CNN are designed as baseline models for comparison. The experimental results show that LSV-SDG-CNN model outperforms baseline models on four kinds of Chinese EMR datasets. The best configuration of the model yielded an F1 score of 86.20%. The results clearly demonstrate that CNN has been effectively guided and optimized by lexical-semantic knowledge, and LSV-SDG-CNN model improves the disease classification accuracy with a clear margin.

Keywords: lexical semantics, feature representation, semantic decision, convolutional neural network, electronic medical record

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 593
2543 Piezoelectric Transducer Modeling: with System Identification (SI) Method

Authors: Nora Taghavi, Ali Sadr

Abstract:

System identification is the process of creating models of dynamic process from input- output signals. The aim of system identification can be identified as “ to find a model with adjustable parameters and then to adjust them so that the predicted output matches the measured output". This paper presents a method of modeling and simulating with system identification to achieve the maximum fitness for transformation function. First by using optimized KLM equivalent circuit for PVDF piezoelectric transducer and assuming different inputs including: sinuside, step and sum of sinusides, get the outputs, then by using system identification toolbox in MATLAB, we estimate the transformation function from inputs and outputs resulted in last program. Then compare the fitness of transformation function resulted from using ARX,OE(Output- Error) and BJ(Box-Jenkins) models in system identification toolbox and primary transformation function form KLM equivalent circuit.

Keywords: PVDF modeling, ARX, BJ(Box-Jenkins), OE(Output-Error), System Identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2742
2542 Cirrhosis Mortality Prediction as Classification Using Frequent Subgraph Mining

Authors: Abdolghani Ebrahimi, Diego Klabjan, Chenxi Ge, Daniela Ladner, Parker Stride

Abstract:

In this work, we use machine learning and data analysis techniques to predict the one-year mortality of cirrhotic patients. Data from 2,322 patients with liver cirrhosis are collected at a single medical center. Different machine learning models are applied to predict one-year mortality. A comprehensive feature space including demographic information, comorbidity, clinical procedure and laboratory tests is being analyzed. A temporal pattern mining technic called Frequent Subgraph Mining (FSM) is being used. Model for End-stage liver disease (MELD) prediction of mortality is used as a comparator. All of our models statistically significantly outperform the MELD-score model and show an average 10% improvement of the area under the curve (AUC). The FSM technic itself does not improve the model significantly, but FSM, together with a machine learning technique called an ensemble, further improves the model performance. With the abundance of data available in healthcare through electronic health records (EHR), existing predictive models can be refined to identify and treat patients at risk for higher mortality. However, due to the sparsity of the temporal information needed by FSM, the FSM model does not yield significant improvements. Our work applies modern machine learning algorithms and data analysis methods on predicting one-year mortality of cirrhotic patients and builds a model that predicts one-year mortality significantly more accurate than the MELD score. We have also tested the potential of FSM and provided a new perspective of the importance of clinical features.

Keywords: machine learning, liver cirrhosis, subgraph mining, supervised learning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 446
2541 Design and Study of a DC/DC Converter for High Power, 14.4 V and 300 A for Automotive Applications

Authors: Julio Cesar Lopes de Oliveira, Carlos Henrique Gonc¸alves Treviso

Abstract:

The shortage of the automotive market in relation to options for sources of high power car audio systems, led to development of this work. Thus, we developed a source with stabilized voltage with 4320 W effective power. Designed to the voltage of 14.4 V and a choice of two currents: 30 A load option in battery banks and 300 A at full load. This source can also be considered as a source of general use dedicated commercial with a simple control circuit in analog form based on discrete components. The assembly of power circuit uses a methodology for higher power than the initially stipulated.

Keywords: DC-DC power converters, converters, power convertion, pulse width modulation converters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2906
2540 Assessment of the Influence of External Earth Terrain at Construction of the Physicmathematical Models or Finding the Dynamics of Pollutants' Distribution in Urban Atmosphere

Authors: Stanislav Aryeh V. Fradkin, Sharif E.Guseynov

Abstract:

There is a complex situation on the transport environment in the cities of the world. For the analysis and prevention of environmental problems an accurate calculation hazardous substances concentrations at each point of the investigated area is required. In the turbulent atmosphere of the city the wellknown methods of mathematical statistics for these tasks cannot be applied with a satisfactory level of accuracy. Therefore, to solve this class of problems apparatus of mathematical physics is more appropriate. In such models, because of the difficulty as a rule the influence of uneven land surface on streams of air masses in the turbulent atmosphere of the city are not taken into account. In this paper the influence of the surface roughness, which can be quite large, is mathematically shown. The analysis of this problem under certain conditions identified the possibility of areas appearing in the atmosphere with pressure tending to infinity, i.e. so-called "wall effect".

Keywords: Air pollution, concentration of harmful substances, physical-mathematical model, urban area.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1342
2539 Annotations of Gene Pathways Images in Biomedical Publications Using Siamese Network

Authors: Micheal Olaolu Arowolo, Muhammad Azam, Fei He, Mihail Popescu, Dong Xu

Abstract:

As the quantity of biological articles rises, so does the number of biological route figures. Each route figure shows gene names and relationships. Manually annotating pathway diagrams is time-consuming. Advanced image understanding models could speed up curation, but they must be more precise. There is rich information in biological pathway figures. The first step to performing image understanding of these figures is to recognize gene names automatically. Classical optical character recognition methods have been employed for gene name recognition, but they are not optimized for literature mining data. This study devised a method to recognize an image bounding box of gene name as a photo using deep Siamese neural network models to outperform the existing methods using ResNet, DenseNet and Inception architectures, the results obtained about 84% accuracy.

Keywords: Biological pathway, gene identification, object detection, Siamese network, ResNet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 246