Search results for: Financing and Genetic Algorithms.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2066

Search results for: Financing and Genetic Algorithms.

926 Cluster Based Ant Colony Routing Algorithm for Mobile Ad-Hoc Networks

Authors: Alaa E. Abdallah, Bajes Y. Alskarnah

Abstract:

Ant colony based routing algorithms are known to grantee the packet delivery, but they suffer from the huge overhead of control messages which are needed to discover the route. In this paper we utilize the network nodes positions to group the nodes in connected clusters. We use clusters-heads only on forwarding the route discovery control messages. Our simulations proved that the new algorithm has decreased the overhead dramatically without affecting the delivery rate.

Keywords: Ant colony-based routing, position-based routing, MANET.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1563
925 Application of Thermoplastic Microbioreactor to the Single Cell Study of Budding Yeast to Decipher the Effect of 5-Hydroxymethylfurfural on Growth

Authors: Elif Gencturk, Ekin Yurdakul, Ahmet Y. Celik, Senol Mutlu, Kutlu O. Ulgen

Abstract:

Yeast cells are generally used as a model system of eukaryotes due to their complex genetic structure, rapid growth ability in optimum conditions, easy replication and well-defined genetic system properties. Thus, yeast cells increased the knowledge of the principal pathways in humans. During fermentation, carbohydrates (hexoses and pentoses) degrade into some toxic by-products such as 5-hydroxymethylfurfural (5-HMF or HMF) and furfural. HMF influences the ethanol yield, and ethanol productivity; it interferes with microbial growth and is considered as a potent inhibitor of bioethanol production. In this study, yeast single cell behavior under HMF application was monitored by using a continuous flow single phase microfluidic platform. Microfluidic device in operation is fabricated by hot embossing and thermo-compression techniques from cyclo-olefin polymer (COP). COP is biocompatible, transparent and rigid material and it is suitable for observing fluorescence of cells considering its low auto-fluorescence characteristic. The response of yeast cells was recorded through Red Fluorescent Protein (RFP) tagged Nop56 gene product, which is an essential evolutionary-conserved nucleolar protein, and also a member of the box C/D snoRNP complexes. With the application of HMF, yeast cell proliferation continued but HMF slowed down the cell growth, and after HMF treatment the cell proliferation stopped. By the addition of fresh nutrient medium, the yeast cells recovered after 6 hours of HMF exposure. Thus, HMF application suppresses normal functioning of cell cycle but it does not cause cells to die. The monitoring of Nop56 expression phases of the individual cells shed light on the protein and ribosome synthesis cycles along with their link to growth. Further computational study revealed that the mechanisms underlying the inhibitory or inductive effects of HMF on growth are enriched in functional categories of protein degradation, protein processing, DNA repair and multidrug resistance. The present microfluidic device can successfully be used for studying the effects of inhibitory agents on growth by single cell tracking, thus capturing cell to cell variations. By metabolic engineering techniques, engineered strains can be developed, and the metabolic network of the microorganism can thus be manipulated such that chemical overproduction of target metabolite is achieved along with the maximum growth/biomass yield.  

Keywords: COP, HMF, ribosome biogenesis, thermoplastic microbioreactor, yeast.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 677
924 On a Conjecture Regarding the Adam Optimizer

Authors: Mohamed Akrout, Douglas Tweed

Abstract:

The great success of deep learning relies on efficient optimizers, which are the algorithms that decide how to adjust network weights and biases based on gradient information. One of the most effective and widely used optimizers in recent years has been the method of adaptive moments, or Adam, but the mathematical reasons behind its effectiveness are still unclear. Attempts to analyse its behaviour have remained incomplete, in part because they hinge on a conjecture which has never been proven, regarding ratios of powers of the first and second moments of the gradient. Here we show that this conjecture is in fact false, but that a modified version of it is true, and can take its place in analyses of Adam.

Keywords: Adam optimizer, Bock’s conjecture, stochastic optimization, average regret.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 374
923 An Energy Efficient Algorithm for Distributed Mutual Exclusion in Mobile Ad-hoc Networks

Authors: Sayani Sil, Sukanta Das

Abstract:

This paper reports a distributed mutual exclusion algorithm for mobile Ad-hoc networks. The network is clustered hierarchically. The proposed algorithm considers the clustered network as a logical tree and develops a token passing scheme to get the mutual exclusion. The performance analysis and simulation results show that its message requirement is optimal, and thus the algorithm is energy efficient.

Keywords: Critical section, Distributed mutual exclusion, MobileAd-hoc network, Token-based algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1750
922 Wireless Sensor Networks:A Survey on Ultra-Low Power-Aware Design

Authors: Itziar Marín, Eduardo Arceredillo, Aitzol Zuloaga, Jagoba Arias

Abstract:

Distributed wireless sensor network consist on several scattered nodes in a knowledge area. Those sensors have as its only power supplies a pair of batteries that must let them live up to five years without substitution. That-s why it is necessary to develop some power aware algorithms that could save battery lifetime as much as possible. In this is document, a review of power aware design for sensor nodes is presented. As example of implementations, some resources and task management, communication, topology control and routing protocols are named.

Keywords: Low Power Design, Power Awareness, RemoteSensing, Wireless Sensor Networks (WSN).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2183
921 Fast 2.5D Model Reconstruction of Assembled Parts with High Occlusion for Completeness Inspection

Authors: Matteo Munaro, Stefano Michieletto, Edmond So, Daniele Alberton, Emanuele Menegatti

Abstract:

In this work a dual laser triangulation system is presented for fast building of 2.5D textured models of objects within a production line. This scanner is designed to produce data suitable for 3D completeness inspection algorithms. For this purpose two laser projectors have been used in order to considerably reduce the problem of occlusions in the camera movement direction. Results of reconstruction of electronic boards are presented, together with a comparison with a commercial system.

Keywords: 3D quality inspection, 2.5D reconstruction, laser triangulation, occlusions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1510
920 Face Recognition: A Literature Review

Authors: A. S. Tolba, A.H. El-Baz, A.A. El-Harby

Abstract:

The task of face recognition has been actively researched in recent years. This paper provides an up-to-date review of major human face recognition research. We first present an overview of face recognition and its applications. Then, a literature review of the most recent face recognition techniques is presented. Description and limitations of face databases which are used to test the performance of these face recognition algorithms are given. A brief summary of the face recognition vendor test (FRVT) 2002, a large scale evaluation of automatic face recognition technology, and its conclusions are also given. Finally, we give a summary of the research results.

Keywords: Combined classifiers, face recognition, graph matching, neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7721
919 Combining Bagging and Boosting

Authors: S. B. Kotsiantis, P. E. Pintelas

Abstract:

Bagging and boosting are among the most popular resampling ensemble methods that generate and combine a diversity of classifiers using the same learning algorithm for the base-classifiers. Boosting algorithms are considered stronger than bagging on noisefree data. However, there are strong empirical indications that bagging is much more robust than boosting in noisy settings. For this reason, in this work we built an ensemble using a voting methodology of bagging and boosting ensembles with 10 subclassifiers in each one. We performed a comparison with simple bagging and boosting ensembles with 25 sub-classifiers, as well as other well known combining methods, on standard benchmark datasets and the proposed technique was the most accurate.

Keywords: data mining, machine learning, pattern recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2561
918 Multi-Label Hierarchical Classification for Protein Function Prediction

Authors: Helyane B. Borges, Julio Cesar Nievola

Abstract:

Hierarchical classification is a problem with applications in many areas as protein function prediction where the dates are hierarchically structured. Therefore, it is necessary the development of algorithms able to induce hierarchical classification models. This paper presents experimenters using the algorithm for hierarchical classification called Multi-label Hierarchical Classification using a Competitive Neural Network (MHC-CNN). It was tested in ten datasets the Gene Ontology (GO) Cellular Component Domain. The results are compared with the Clus-HMC and Clus-HSC using the hF-Measure.

Keywords: Hierarchical Classification, Competitive Neural Network, Global Classifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2379
917 Identification of MIMO Systems Using Neuro-Fuzzy Models with a Shuffled Frog Leaping Algorithm

Authors: Sana Bouzaida, Anis Sakly, Faouzi M'Sahli

Abstract:

In this paper, a TSK-type Neuro-fuzzy Inference System that combines the features of fuzzy sets and neural networks has been applied for the identification of MIMO systems. The procedure of adapting parameters in TSK model employs a Shuffled Frog Leaping Algorithm (SFLA) which is inspired from the memetic evolution of a group of frogs when seeking for food. To demonstrate the accuracy and effectiveness of the proposed controller, two nonlinear systems have been considered as the MIMO plant, and results have been compared with other learning methods based on Particle Swarm Optimization algorithm (PSO) and Genetic Algorithm (GA).

Keywords: Identification, Shuffled frog Leaping Algorithm (SFLA), TSK-type neuro-fuzzy model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1772
916 Evaluation of Algorithms for Sequential Decision in Biosonar Target Classification

Authors: Turgay Temel, John Hallam

Abstract:

A sequential decision problem, based on the task ofidentifying the species of trees given acoustic echo data collectedfrom them, is considered with well-known stochastic classifiers,including single and mixture Gaussian models. Echoes are processedwith a preprocessing stage based on a model of mammalian cochlearfiltering, using a new discrete low-pass filter characteristic. Stoppingtime performance of the sequential decision process is evaluated andcompared. It is observed that the new low pass filter processingresults in faster sequential decisions.

Keywords: Classification, neuro-spike coding, parametricmodel, Gaussian mixture with EM algorithm, sequential decision.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1546
915 Using of Latin Router for Routing Wavelength with Configuration Algorithm

Authors: A. Habiboghli, R. Mostafaei, M. R.Meybodi

Abstract:

Optical network uses a tool for routing which is called Latin router. These routers use particular algorithms for routing. In this paper, we present algorithm for configuration of optical network that is optimized regarding previous algorithm. We show that by decreasing the number of hops for source-destination in lightpath number of satisfied request is less. Also we had shown that more than single-hop lightpath relating single-hop lightpath is better.

Keywords: Latin Router, Constraint Satisfied, Wavelength, Optical Network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1473
914 Learning Classifier Systems Approach for Automated Discovery of Censored Production Rules

Authors: Suraiya Jabin, Kamal K. Bharadwaj

Abstract:

In the recent past Learning Classifier Systems have been successfully used for data mining. Learning Classifier System (LCS) is basically a machine learning technique which combines evolutionary computing, reinforcement learning, supervised or unsupervised learning and heuristics to produce adaptive systems. A LCS learns by interacting with an environment from which it receives feedback in the form of numerical reward. Learning is achieved by trying to maximize the amount of reward received. All LCSs models more or less, comprise four main components; a finite population of condition–action rules, called classifiers; the performance component, which governs the interaction with the environment; the credit assignment component, which distributes the reward received from the environment to the classifiers accountable for the rewards obtained; the discovery component, which is responsible for discovering better rules and improving existing ones through a genetic algorithm. The concatenate of the production rules in the LCS form the genotype, and therefore the GA should operate on a population of classifier systems. This approach is known as the 'Pittsburgh' Classifier Systems. Other LCS that perform their GA at the rule level within a population are known as 'Mitchigan' Classifier Systems. The most predominant representation of the discovered knowledge is the standard production rules (PRs) in the form of IF P THEN D. The PRs, however, are unable to handle exceptions and do not exhibit variable precision. The Censored Production Rules (CPRs), an extension of PRs, were proposed by Michalski and Winston that exhibit variable precision and supports an efficient mechanism for handling exceptions. A CPR is an augmented production rule of the form: IF P THEN D UNLESS C, where Censor C is an exception to the rule. Such rules are employed in situations, in which conditional statement IF P THEN D holds frequently and the assertion C holds rarely. By using a rule of this type we are free to ignore the exception conditions, when the resources needed to establish its presence are tight or there is simply no information available as to whether it holds or not. Thus, the IF P THEN D part of CPR expresses important information, while the UNLESS C part acts only as a switch and changes the polarity of D to ~D. In this paper Pittsburgh style LCSs approach is used for automated discovery of CPRs. An appropriate encoding scheme is suggested to represent a chromosome consisting of fixed size set of CPRs. Suitable genetic operators are designed for the set of CPRs and individual CPRs and also appropriate fitness function is proposed that incorporates basic constraints on CPR. Experimental results are presented to demonstrate the performance of the proposed learning classifier system.

Keywords: Censored Production Rule, Data Mining, GeneticAlgorithm, Learning Classifier System, Machine Learning, PittsburgApproach, , Reinforcement learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1528
913 Heritability Estimates of Lactation Traits in Maltese Goat

Authors: R. Pesce Delfino, M. Selvaggi, G. V. Celano, C. Dario

Abstract:

Data on 657 lactation from 163 Maltese goat, collected over a 5-year period were analyzed by a mixed model to estimate the variance components for heritability. The considered lactation traits were: milk yield (MY) and lactation length (LL). Year, parity and type of birth (single or twin) were significant sources of variation for lactation length; on the other hand milk yield was significantly influenced only by the year. The average MY was 352.34 kg and the average LL was 230 days. Estimates of heritability were 0.21 and 0.15 for MY and LL respectively. These values suggest there is low correlation between genotype and phenotype so it may be difficult to evaluate animals directly on phenotype. So, the genetic improvement of this breed may be quite slow without the support of progeny test aimed to select Maltese breeders.

Keywords: Heritability estimate, lactation traits, Maltese goat

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2231
912 Practical Issues for Real-Time Video Tracking

Authors: Vitaliy Tayanov

Abstract:

In this paper we present the algorithm which allows us to have an object tracking close to real time in Full HD videos. The frame rate (FR) of a video stream is considered to be between 5 and 30 frames per second. The real time track building will be achieved if the algorithm can follow 5 or more frames per second. The principle idea is to use fast algorithms when doing preprocessing to obtain the key points and track them after. The procedure of matching points during assignment is hardly dependent on the number of points. Because of this we have to limit pointed number of points using the most informative of them.

Keywords: video tracking, real-time, Hungarian algorithm, Full HD video.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1536
911 Assembly Process Algorithms of Flexible Cell

Authors: M. Kusá, M. Matúšová, A. Javorová, K. Velí

Abstract:

This paper deals about four items assembly process of linear drive. This assembly will be realized in flexible assembly cell on Institute of Manufacturing Systems and Applied Mechanics. There is defined manufacturing cell, individual actuators created our flexible cell. Next chapter is about control type, detailed describe a sequence control type, which will be used in mentioned flexible assembly cell. All cell control is divided in individual steps instructions. There instructions illustrate table number III.

Keywords: assembly, flexible cell, sequence control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1308
910 An Evaluation of Algorithms for Single-Echo Biosonar Target Classification

Authors: Turgay Temel, John Hallam

Abstract:

A recent neurospiking coding scheme for feature extraction from biosonar echoes of various plants is examined with avariety of stochastic classifiers. Feature vectors derived are employedin well-known stochastic classifiers, including nearest-neighborhood,single Gaussian and a Gaussian mixture with EM optimization.Classifiers' performances are evaluated by using cross-validation and bootstrapping techniques. It is shown that the various classifers perform equivalently and that the modified preprocessing configuration yields considerably improved results.

Keywords: Classification, neuro-spike coding, non-parametricmodel, parametric model, Gaussian mixture, EM algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1668
909 Fast Depth Estimation with Filters

Authors: Yiming Nie, Tao Wu, Xiangjing An, Hangen He

Abstract:

Fast depth estimation from binocular vision is often desired for autonomous vehicles, but, most algorithms could not easily be put into practice because of the much time cost. We present an image-processing technique that can fast estimate depth image from binocular vision images. By finding out the lines which present the best matched area in the disparity space image, the depth can be estimated. When detecting these lines, an edge-emphasizing filter is used. The final depth estimation will be presented after the smooth filter. Our method is a compromise between local methods and global optimization.

Keywords: Depth estimation, image filters, stereo match.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1249
908 Particle Swarm Optimization with Interval-valued Genotypes and Its Application to Neuroevolution

Authors: Hidehiko Okada

Abstract:

The author proposes an extension of particle swarm optimization (PSO) for solving interval-valued optimization problems and applies the extended PSO to evolutionary training of neural networks (NNs) with interval weights. In the proposed PSO, values in the genotypes are not real numbers but intervals. Experimental results show that interval-valued NNs trained by the proposed method could well approximate hidden target functions despite the fact that no training data was explicitly provided.

Keywords: Evolutionary algorithms, swarm intelligence, particle swarm optimization, neural network, interval arithmetic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1965
907 Analysis of Public-Key Cryptography for Wireless Sensor Networks Security

Authors: F. Amin, A. H. Jahangir, H. Rasifard

Abstract:

With the widespread growth of applications of Wireless Sensor Networks (WSNs), the need for reliable security mechanisms these networks has increased manifold. Many security solutions have been proposed in the domain of WSN so far. These solutions are usually based on well-known cryptographic algorithms. In this paper, we have made an effort to survey well known security issues in WSNs and study the behavior of WSN nodes that perform public key cryptographic operations. We evaluate time and power consumption of public key cryptography algorithm for signature and key management by simulation.

Keywords: Wireless Sensor Networks, Security, Public Key Cryptography, Key Management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3688
906 The Influence of Preprocessing Parameters on Text Categorization

Authors: Jan Pomikalek, Radim Rehurek

Abstract:

Text categorization (the assignment of texts in natural language into predefined categories) is an important and extensively studied problem in Machine Learning. Currently, popular techniques developed to deal with this task include many preprocessing and learning algorithms, many of which in turn require tuning nontrivial internal parameters. Although partial studies are available, many authors fail to report values of the parameters they use in their experiments, or reasons why these values were used instead of others. The goal of this work then is to create a more thorough comparison of preprocessing parameters and their mutual influence, and report interesting observations and results.

Keywords: Text categorization, machine learning, electronic documents, classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1572
905 Distribution Feeder Reconfiguration Considering Distributed Generators

Authors: R. Khorshidi , T. Niknam, M. Nayeripour

Abstract:

Recently, distributed generation technologies have received much attention for the potential energy savings and reliability assurances that might be achieved as a result of their widespread adoption. Fueling the attention have been the possibilities of international agreements to reduce greenhouse gas emissions, electricity sector restructuring, high power reliability requirements for certain activities, and concern about easing transmission and distribution capacity bottlenecks and congestion. So it is necessary that impact of these kinds of generators on distribution feeder reconfiguration would be investigated. This paper presents an approach for distribution reconfiguration considering Distributed Generators (DGs). The objective function is summation of electrical power losses A Tabu search optimization is used to solve the optimal operation problem. The approach is tested on a real distribution feeder.

Keywords: Distributed Generator, Daily Optimal Operation, Genetic Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1711
904 On Maneuvering Target Tracking with Online Observed Colored Glint Noise Parameter Estimation

Authors: M. A. Masnadi-Shirazi, S. A. Banani

Abstract:

In this paper a comprehensive algorithm is presented to alleviate the undesired simultaneous effects of target maneuvering, observed glint noise distribution, and colored noise spectrum using online colored glint noise parameter estimation. The simulation results illustrate a significant reduction in the root mean square error (RMSE) produced by the proposed algorithm compared to the algorithms that do not compensate all the above effects simultaneously.

Keywords: Glint noise, IMM, Kalman Filter, Kinematics, Target Tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1640
903 Key Exchange Protocol over Insecure Channel

Authors: Alaa Fahmy

Abstract:

Key management represents a major and the most sensitive part of cryptographic systems. It includes key generation, key distribution, key storage, and key deletion. It is also considered the hardest part of cryptography. Designing secure cryptographic algorithms is hard, and keeping the keys secret is much harder. Cryptanalysts usually attack both symmetric and public key cryptosystems through their key management. We introduce a protocol to exchange cipher keys over insecure communication channel. This protocol is based on public key cryptosystem, especially elliptic curve cryptosystem. Meanwhile, it tests the cipher keys and selects only the good keys and rejects the weak one.

Keywords: Key management and key distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1487
902 Simulation Tools for Fixed Point DSP Algorithms and Architectures

Authors: K. B. Cullen, G. C. M. Silvestre, N. J. Hurley

Abstract:

This paper presents software tools that convert the C/Cµ floating point source code for a DSP algorithm into a fixedpoint simulation model that can be used to evaluate the numericalperformance of the algorithm on several different fixed pointplatforms including microprocessors, DSPs and FPGAs. The tools use a novel system for maintaining binary point informationso that the conversion from floating point to fixed point isautomated and the resulting fixed point algorithm achieves maximum possible precision. A configurable architecture is used during the simulation phase so that the algorithm can produce a bit-exact output for several different target devices.

Keywords: DSP devices, DSP algorithm, simulation model, software

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2550
901 Optimal Type and Installation Time of Wind Farm in a Power System, Considering Service Providers

Authors: M. H. Abedi, A. Jalilvand

Abstract:

The economic development benefits of wind energy may be the most tangible basis for the local and state officials’ interests. In addition to the direct salaries associated with building and operating wind projects, the wind energy industry provides indirect jobs and benefits. The optimal planning of a wind farm is one most important topic in renewable energy technology. Many methods have been implemented to optimize the cost and output benefit of wind farms, but the contribution of this paper is mentioning different types of service providers and also time of installation of wind turbines during planning horizon years. Genetic algorithm (GA) is used to optimize the problem. It is observed that an appropriate layout of wind farm can cause to minimize the different types of cost.

Keywords: Renewable energy, wind farm, optimization, planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1137
900 Relevant LMA Features for Human Motion Recognition

Authors: Insaf Ajili, Malik Mallem, Jean-Yves Didier

Abstract:

Motion recognition from videos is actually a very complex task due to the high variability of motions. This paper describes the challenges of human motion recognition, especially motion representation step with relevant features. Our descriptor vector is inspired from Laban Movement Analysis method. We propose discriminative features using the Random Forest algorithm in order to remove redundant features and make learning algorithms operate faster and more effectively. We validate our method on MSRC-12 and UTKinect datasets.

Keywords: Human motion recognition, Discriminative LMA features, random forest, features reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 772
899 Deep Learning for Renewable Power Forecasting: An Approach Using LSTM Neural Networks

Authors: Fazıl Gökgöz, Fahrettin Filiz

Abstract:

Load forecasting has become crucial in recent years and become popular in forecasting area. Many different power forecasting models have been tried out for this purpose. Electricity load forecasting is necessary for energy policies, healthy and reliable grid systems. Effective power forecasting of renewable energy load leads the decision makers to minimize the costs of electric utilities and power plants. Forecasting tools are required that can be used to predict how much renewable energy can be utilized. The purpose of this study is to explore the effectiveness of LSTM-based neural networks for estimating renewable energy loads. In this study, we present models for predicting renewable energy loads based on deep neural networks, especially the Long Term Memory (LSTM) algorithms. Deep learning allows multiple layers of models to learn representation of data. LSTM algorithms are able to store information for long periods of time. Deep learning models have recently been used to forecast the renewable energy sources such as predicting wind and solar energy power. Historical load and weather information represent the most important variables for the inputs within the power forecasting models. The dataset contained power consumption measurements are gathered between January 2016 and December 2017 with one-hour resolution. Models use publicly available data from the Turkish Renewable Energy Resources Support Mechanism. Forecasting studies have been carried out with these data via deep neural networks approach including LSTM technique for Turkish electricity markets. 432 different models are created by changing layers cell count and dropout. The adaptive moment estimation (ADAM) algorithm is used for training as a gradient-based optimizer instead of SGD (stochastic gradient). ADAM performed better than SGD in terms of faster convergence and lower error rates. Models performance is compared according to MAE (Mean Absolute Error) and MSE (Mean Squared Error). Best five MAE results out of 432 tested models are 0.66, 0.74, 0.85 and 1.09. The forecasting performance of the proposed LSTM models gives successful results compared to literature searches.

Keywords: Deep learning, long-short-term memory, energy, renewable energy load forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1594
898 Hardware Centric Machine Vision for High Precision Center of Gravity Calculation

Authors: Xin Cheng, Benny Thörnberg, Abdul Waheed Malik, Najeem Lawal

Abstract:

We present a hardware oriented method for real-time measurements of object-s position in video. The targeted application area is light spots used as references for robotic navigation. Different algorithms for dynamic thresholding are explored in combination with component labeling and Center Of Gravity (COG) for highest possible precision versus Signal-to-Noise Ratio (SNR). This method was developed with a low hardware cost in focus having only one convolution operation required for preprocessing of data.

Keywords: Dynamic thresholding, segmentation, position measurement, sub-pixel precision, center of gravity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2352
897 Hub Port Positioning and Route Planning of Feeder Lines for Regional Transportation Network

Authors: Huang Xiaoling, Liu Lufeng

Abstract:

In this paper, we seek to determine one reasonable local hub port and optimal routes for a containership fleet, performing pick-ups and deliveries, between the hub and spoke ports in a same region. The relationship between a hub port, and traffic in feeder lines is analyzed. A new network planning method is proposed, an integrated hub port location and route design, a capacitated vehicle routing problem with pick-ups, deliveries and time deadlines are formulated and solved using an improved genetic algorithm for positioning the hub port and establishing routes for a containership fleet. Results on the performance of the algorithm and the feasibility of the approach show that a relatively small fleet of containerships could provide efficient services within deadlines.

Keywords: Route planning, Hub port location, Container feeder service.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2217