
 

 

  
Abstract—The author proposes an extension of particle swarm 

optimization (PSO) for solving interval-valued optimization problems 
and applies the extended PSO to evolutionary training of neural 
networks (NNs) with interval weights. In the proposed PSO, values in 
the genotypes are not real numbers but intervals. Experimental results 
show that interval-valued NNs trained by the proposed method could 
well approximate hidden target functions despite the fact that no 
training data was explicitly provided. 
 

Keywords—Evolutionary algorithms, swarm intelligence, particle 
swarm optimization, neural network, interval arithmetic. 

I. INTRODUCTION 
multi-layered feed forward neural network (NN) with 
interval-valued weights and biases was proposed in 

literature [1]. A supervised learning method for the interval NN 
(INN) was also proposed [1] as an extension of the traditional 
back propagation. The INN approximately models an interval 
function , where  is an interval and   is a real 
vector, by learning data , , 1,2, …. The INN can learn 
the data in which  include both of real values and interval 
values, because a real value can be specified as an interval 
value with zero width (i.e., with the same value of upper and 
lower limits). As the learning method for the INN, the 
supervised method was proposed but no unsupervised one has 
been proposed. 

Besides, evolutionary algorithms (EAs) have recently been 
applied to the unsupervised learning of NNs, known as 
neuroevolution (NE) [2]-[5]. In NE, weights and biases are 
tuned by evolutionary operations, not by the back propagation 
(BP) algorithm. Because NE does not utilize BP, NE does not 
require errors between NN output values and their target 
signals. Thus, NE is applicable for problems in which the error 
function is hard to be determined. EAs have been applied to NE 
of traditional NNs with real-valued weights and biases, where 
the genotypes (chromosomes) consist of real numbers or bit 
strings that encode real numbers. 

The author previously proposed extensions of EAs for 
handling fuzzy-valued genotypes [6]. In this paper, the author 
applies an instance of the proposed EAs, interval-valued 
particle swarm optimization (IPSO), to NE of INNs. 
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II. NEURAL NETWORKS WITH INTERVAL WEIGHTS AND BIASES 
The INN employed in this research is the same as in the 

literature [1], which is a three-layered feed forward NN with 
interval weights and biases. Fig. 1 shows its structure. An INN 
receives an input real vector and calculates its output interval 
value  (for the sake of simplicity, the output layer includes a 
single unit) as follows [1]: 
 
Input layer: 

 (1)
 
Hidden layer: 

,  
 

(2)

 (3)
 
Output layer: 

 
 

(4)

 (5)
 

 
Fig. 1 Neural network with interval weights and biases [1] 

 
In (1)-(5),  and  are real numbers, while , , , , 
, ,  ,  and  are intervals.  is the unit activation 

function which is typically the sigmoidal one: 1/ 1
. The feed-forward calculation of the INN is based on the 

interval arithmetic [7] (for more detail, see the literature [1]). 
 maps an interval input to an interval output as illustrated 

in Fig. 2. 
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Fig. 2 Input-output relation of each unit in the hidden/output layers [1] 

 
The FNN includes  weights (i.e.,  weights 

between  input units and  hidden units, and  weights 
between  hidden units and an output unit) and 1 biases (= 
the total number of units in the hidden and output layers). Thus, 
the INN includes 2 1 interval variables in total. Our 
IPSO handles these interval variables as a genotype 

, , … ,  where  is an interval and 2
1.  can be specified by its upper and lower limits or by its 
center and width values: ,  or ,  where 

, ,  and  denote the lower limit, upper limit, center 
and width of  respectively. 

III. PSO WITH INTERVAL GENOTYPES 
Our IPSO consists of the same processes as those in the 

ordinary PSO. Processes of initialization of populations, 
updates of particles and fitness evaluation are extended so that 
these processes can handle interval-valued genotypes. 

A. Initialization of Population 
In the initialization process, , , … ,  are randomly 

initialized where  is the population size. Because the elements 
in  (i.e., , , , , … , , ) are weights and biases in an INN 
in this research, smaller absolute values of ,  are preferable as 
initial values. Thus, the initial values for ,  are randomly 
sampled from the normal distribution 0,  or uniformly 
from an interval ,  where is a small positive number. In 
the case of using the [lower, upper] model for specifying 
interval genotype values, two values are sampled per , : the 
smaller (larger) one is set to ,  , . In the case of using the 
(center, width) model, two values are sampled per , : one of 
the two values is set to ,  and the absolute value of the other is 
set to , . 

B. Fitness Evaluation 
To evaluate fitness of an INN as a phenotype instance of the 

corresponding genotype instance , , , , … , ,  
where , , … , , the INN is supplied with several 
samples of input real vectors and calculates output values. The 
input values are sampled within the variable domain of 
application problem. Fitness of the genotype instance  is 
evaluated based on the output values. The method for scoring 
the fitness based on the output values depends on the problem 
to which the INN is applied. For example, in a case where the 
INN is applied to controlling an automated system, some 

performance measure of the system can be used as the fitness 
score of the genotype instance corresponding to the INN. 

C. Updates of Particles 
Let the position vector of a particle, its personal best and its 

global (or local) best be denoted as , ,  (or 
). In the case of using the [lower, upper] model, 

, , , , … , ,  and , , , , . Let the 
velocity for ,  and ,  be denoted as 1 ,  and 2 ,  
respectively. Note that 1 ,  ( 2 , ) is not the lower (upper) 
limit of an interval so that 2 ,  can be smaller than 1 , . 1 ,  
and 2 ,  are updated as:  
 

1 , · 1 , , , , , (6)
  

2 , · 2 , , , , , (7)
 
employing the global best model, or as:  
 

1 , · 1 , , , , ,  
 

(8)

2 , · 2 , , , , , (9)
 
employing the local best model. The constant values , ,  
and the random values ,  are the same as those in the 
ordinary PSO with the real-valued genotypes. Similarly, in the 
case of using the (center, width) model, 1 ,  and 2 ,  are 
updated as: 
 

1 , · 1 , , , , ,
 

(10)

2 , · 2 , , , , , (11)
 
employing the global best model, or as:  
 

1 , · 1 , , , , , (12)
 

2 , · 2 , , , , , (13)
 
employing the local best model.  

By using the updated 1 ,  and 2 , , ,  is updated as:  
 

, , 1 ,  
 

(14)

, , 2 ,  (15)
 
or as:  

, , 1 ,  
 

(16)

, , 2 ,  (17)
 

Note that ,  must not be larger than ,  because ,  and 
,  are the lower and upper limits of the interval , . Similarly, 
,  must not be negative because ,  is the width of the 

interval , . If the value of ,  becomes larger than the value 
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of ,  after the updates by (14) and (15), these values must be 
repaired to meet the constraint. The repair method can be as 
follows:  

 the value of ,  is assigned to , , 
 the value of ,  is assigned to , , 
 the mean value of ,  and ,  is calculated and assigned to 

both of ,  and , , or  
 the two values for ,  and ,  are switched.  
Similarly, if the value of ,  becomes negative after the 

updates by (17), the value must be repaired to meet the 
constraint. The repair method can be as follows:  

 the value of ,  is assigned to 0, or 
 the absolute value of ,  is assigned to , .  

IV. APPLICATION OF IPSO TO NEUROEVOLUTION 
The author has been experimentally evaluating the ability of 

our IPSO in evolving INNs. INNs are challenged to 
approximately model target interval functions . For the 
sake of simplicity,  is a real value (so that the INN includes 
only a single input unit) and 0 1, as in the literature [1]. 

A target function is ,  where, 
 

0.2 sin 2 0.1 0.4 
 

(18)

0.2 sin 2 0.1 0.6 (19)
 
The two dotted curves in Fig. 3 show  and .  

The [lower, upper] model is experimentally employed in this 
experiment. The INN is designed as follows:  

 Number of units: 1 input, 10 hidden, 1 output. 
 Unit activation function: the sigmoidal one. 
The IPSO is designed as follows:  
 Population size: 100. 
 Number of cycle: 10,000. 
 0.9, 1.4, 1.4. 
 Initial values of , , ,  for the interval weights and 

biases: uniformly random within 1.0,1.0 . 
 Initial values of 1 , , 2 , : 0.0. 
 10.0 1 , , 2 , 10.0 
 10.0 , , 10.0. 
The fitness value of , 1,2, … , , is calculated as 

follows. An INN which corresponds to  is supplied with 101 
real input values 0.0,0.01,0.02, … ,0.99,1.0  and calculates 
101 output intervals , , , , , j 1,2, … ,101. Besides, 
the same input values are supplied to the target function  
and 101 intervals , , , , , 1,2, … ,101 , are 
obtained. Then, the error  is calculated as ∑ ,

, , , . The value of  is used as the fitness of 
 where a smaller value of  is better. Note that scores of  

are not utilized for the process of updating the particles but only 
for comparing the fitness of the particles: the target function 

 is completely hidden from the IPSO.  
 

 

Fig. 3 Target interval function  and output interval by the evolved 
INN. The two dotted curves show the target function, and the two solid 

curves show the output interval by the evolved INN. The error was 
9.0 10  

 
The two solid curves in Fig. 3 show the output interval 

function by the evolved INN with the smallest error. The result 
shows that the INN trained by our IPSO could well 
approximate the target function despite the fact that no training 
data is explicitly provided.  

V. CONCLUSION 
In this paper, the author has applied the interval-valued 

extension of particle swarm optimization to the neuroevolution 
of interval-valued neural networks. In the IPSO, values in the 
genotype are not real numbers but intervals. To handle the 
interval-valued genotype, the IPSO extends its processes of 
initialization of populations, fitness evaluation and updates of 
particles. The experimental result showed that the neural 
networks evolved by our IPSO approximated well the hidden 
target function despite the fact that no training data was 
explicitly provided. 

In the future work, the author will further evaluate the ability 
of the IPSO by experimentally applying it to problems other 
than neuroevolution.  
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