Search results for: environmental performance data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12752

Search results for: environmental performance data

11642 Parameters Influencing Human-Machine Interaction in Hospitals

Authors: Hind Bouami, Patrick Millot

Abstract:

Handling life-critical systems complexity requires to be equipped with appropriate technology and the right human agents’ functions such as knowledge, experience, and competence in problem’s prevention and solving. Human agents are involved in the management and control of human-machine system’s performance. Documenting human agent’s situation awareness is crucial to support human-machine designers’ decision-making. Knowledge about risks, critical parameters and factors that can impact and threaten automation system’s performance should be collected using preventive and retrospective approaches. This paper aims to document operators’ situation awareness through the analysis of automated organizations’ feedback. The analysis of automated hospital pharmacies feedback helps identify and control critical parameters influencing human machine interaction in order to enhance system’s performance and security. Our human machine system evaluation approach has been deployed in Macon hospital center’s pharmacy which is equipped with automated drug dispensing systems since 2015. Automation’s specifications are related to technical aspects, human-machine interaction, and human aspects. The evaluation of drug delivery automation performance in Macon hospital center has shown that the performance of the automated activity depends on the performance of the automated solution chosen, and also on the control of systemic factors. In fact, 80.95% of automation specification related to the chosen Sinteco’s automated solution is met. The performance of the chosen automated solution is involved in 28.38% of automation specifications performance in Macon hospital center. The remaining systemic parameters involved in automation specifications performance need to be controlled. 

Keywords: Life-critical systems, situation awareness, human-machine interaction, decision-making.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 575
11641 Generating Normally Distributed Clusters by Means of a Self-organizing Growing Neural Network– An Application to Market Segmentation –

Authors: Reinhold Decker, Christian Holsing, Sascha Lerke

Abstract:

This paper presents a new growing neural network for cluster analysis and market segmentation, which optimizes the size and structure of clusters by iteratively checking them for multivariate normality. We combine the recently published SGNN approach [8] with the basic principle underlying the Gaussian-means algorithm [13] and the Mardia test for multivariate normality [18, 19]. The new approach distinguishes from existing ones by its holistic design and its great autonomy regarding the clustering process as a whole. Its performance is demonstrated by means of synthetic 2D data and by real lifestyle survey data usable for market segmentation.

Keywords: Artificial neural network, clustering, multivariatenormality, market segmentation, self-organization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1200
11640 Analysis of the Operational Performance of Three Unconventional Arterial Intersection Designs: Median U-Turn, Superstreet and Single Quadrant

Authors: Hana Naghawi, Khair Jadaan, Rabab Al-Louzi, Taqwa Hadidi

Abstract:

This paper is aimed to evaluate and compare the operational performance of three Unconventional Arterial Intersection Designs (UAIDs) including Median U-Turn, Superstreet, and Single Quadrant Intersection using real traffic data. For this purpose, the heavily congested signalized intersection of Wadi Saqra in Amman was selected. The effect of implementing each of the proposed UAIDs was not only evaluated on the isolated Wadi Saqra signalized intersection, but also on the arterial road including both surrounding intersections. The operational performance of the isolated intersection was based on the level of service (LOS) expressed in terms of control delay and volume to capacity ratio. On the other hand, the measures used to evaluate the operational performance on the arterial road included traffic progression, stopped delay per vehicle, number of stops and the travel speed. The analysis was performed using SYNCHRO 8 microscopic software. The simulation results showed that all three selected UAIDs outperformed the conventional intersection design in terms of control delay but only the Single Quadrant Intersection design improved the main intersection LOS from F to B. Also, the results indicated that the Single Quadrant Intersection design resulted in an increase in average travel speed by 52%, and a decrease in the average stopped delay by 34% on the selected corridor when compared to the corridor with conventional intersection design. On basis of these results, it can be concluded that the Median U-Turn and the Superstreet do not perform the best under heavy traffic volumes.

Keywords: Median U-turn, single quadrant, superstreet, unconventional arterial intersection design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 864
11639 A Risk Assessment Tool for the Contamination of Aflatoxins on Dried Figs based on Machine Learning Algorithms

Authors: Kottaridi Klimentia, Demopoulos Vasilis, Sidiropoulos Anastasios, Ihara Diego, Nikolaidis Vasileios, Antonopoulos Dimitrios

Abstract:

Aflatoxins are highly poisonous and carcinogenic compounds produced by species of the genus Aspergillus spp. that can infect a variety of agricultural foods, including dried figs. Biological and environmental factors, such as population, pathogenicity and aflatoxinogenic capacity of the strains, topography, soil and climate parameters of the fig orchards are believed to have a strong effect on aflatoxin levels. Existing methods for aflatoxin detection and measurement, such as high-performance liquid chromatography (HPLC), and enzyme-linked immunosorbent assay (ELISA), can provide accurate results, but the procedures are usually time-consuming, sample-destructive and expensive. Predicting aflatoxin levels prior to crop harvest is useful for minimizing the health and financial impact of a contaminated crop. Consequently, there is interest in developing a tool that predicts aflatoxin levels based on topography and soil analysis data of fig orchards. This paper describes the development of a risk assessment tool for the contamination of aflatoxin on dried figs, based on the location and altitude of the fig orchards, the population of the fungus Aspergillus spp. in the soil, and soil parameters such as pH, saturation percentage (SP), electrical conductivity (EC), organic matter, particle size analysis (sand, silt, clay), concentration of the exchangeable cations (Ca, Mg, K, Na), extractable P and trace of elements (B, Fe, Mn, Zn and Cu), by employing machine learning methods. In particular, our proposed method integrates three machine learning techniques i.e., dimensionality reduction on the original dataset (Principal Component Analysis), metric learning (Mahalanobis Metric for Clustering) and K-nearest Neighbors learning algorithm (KNN), into an enhanced model, with mean performance equal to 85% by terms of the Pearson Correlation Coefficient (PCC) between observed and predicted values.

Keywords: aflatoxins, Aspergillus spp., dried figs, k-nearest neighbors, machine learning, prediction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 649
11638 Combining Variable Ordering Heuristics for Improving Search Algorithms Performance

Authors: Abdolreza Hatamlou, Yusef Farhang, Mohammad Reza Meybodi

Abstract:

Variable ordering heuristics are used in constraint satisfaction algorithms. Different characteristics of various variable ordering heuristics are complementary. Therefore we have tried to get the advantages of all heuristics to improve search algorithms performance for solving constraint satisfaction problems. This paper considers combinations based on products and quotients, and then a newer form of combination based on weighted sums of ratings from a set of base heuristics, some of which result in definite improvements in performance.

Keywords: Constraint Satisfaction Problems, Variable Ordering Heuristics, Combination, Search Algorithms

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1368
11637 A Study of Feedback Strategy to Improve Inspector Performance by Using Computer Based Training

Authors: Santirat Nansaarng, Sittichai Kaewkuekool, Supreeya Siripattanakunkajorn

Abstract:

The purpose of this research was to study the inspector performance by using computer based training (CBT). Visual inspection task was printed circuit board (PCB) simulated on several types of defects. Subjects were 16 undergraduate randomly selected from King Mongkut-s University of Technology Thonburi and test for 20/20. Then, they were equally divided on performance into two groups (control and treatment groups) and were provided information before running the experiment. Only treatment group was provided feedback information after first experiment. Results revealed that treatment group was showed significantly difference at the level of 0.01. The treatment group showed high percentage on defects detected. Moreover, the attitude of inspectors on using the CBT to inspection was showed on good. These results have been showed that CBT could be used for training to improve inspector performance.

Keywords: Training, Feedback, Computer based Training (CBT)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1422
11636 Enhance Performance of Secure Image Using Wavelet Compression

Authors: Goh Han Keat, Azman Samsudin Zurinahni Zainol

Abstract:

The increase popularity of multimedia application especially in image processing places a great demand on efficient data storage and transmission techniques. Network communication such as wireless network can easily be intercepted and cause of confidential information leaked. Unfortunately, conventional compression and encryption methods are too slow; it is impossible to carry out real time secure image processing. In this research, Embedded Zerotree Wavelet (EZW) encoder which specially designs for wavelet compression is examined. With this algorithm, three methods are proposed to reduce the processing time, space and security protection that will be secured enough to protect the data.

Keywords: Embedded Zerotree Wavelet (EZW), Imagecompression, Wavelet encoder, Entropy encoder, Encryption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1671
11635 Estimation of Train Operation Using an Exponential Smoothing Method

Authors: Taiyo Matsumura, Kuninori Takahashi, Takashi Ono

Abstract:

The purpose of this research is to improve the convenience of waiting for trains at level crossings and stations and to prevent accidents resulting from forcible entry into level crossings, by providing level crossing users and passengers with information that tells them when the next train will pass through or arrive. For this paper, we proposed methods for estimating operation by means of an average value method, variable response smoothing method, and exponential smoothing method, on the basis of open data, which has low accuracy, but for which performance schedules are distributed in real time. We then examined the accuracy of the estimations. The results showed that the application of an exponential smoothing method is valid.

Keywords: Exponential smoothing method, open data, operation estimation, train schedule.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 714
11634 A Parallel Approach for 3D-Variational Data Assimilation on GPUs in Ocean Circulation Models

Authors: Rossella Arcucci, Luisa D’Amore, Simone Celestino, Giuseppe Scotti, Giuliano Laccetti

Abstract:

This work is the first dowel in a rather wide research activity in collaboration with Euro Mediterranean Center for Climate Changes, aimed at introducing scalable approaches in Ocean Circulation Models. We discuss designing and implementation of a parallel algorithm for solving the Variational Data Assimilation (DA) problem on Graphics Processing Units (GPUs). The algorithm is based on the fully scalable 3DVar DA model, previously proposed by the authors, which uses a Domain Decomposition approach (we refer to this model as the DD-DA model). We proceed with an incremental porting process consisting of 3 distinct stages: requirements and source code analysis, incremental development of CUDA kernels, testing and optimization. Experiments confirm the theoretic performance analysis based on the so-called scale up factor demonstrating that the DD-DA model can be suitably mapped on GPU architectures.

Keywords: Data Assimilation, Parallel Algorithm, GPU architectures, Ocean Models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2011
11633 The DAQ Debugger for iFDAQ of the COMPASS Experiment

Authors: Y. Bai, M. Bodlak, V. Frolov, S. Huber, V. Jary, I. Konorov, D. Levit, J. Novy, D. Steffen, O. Subrt, M. Virius

Abstract:

In general, state-of-the-art Data Acquisition Systems (DAQ) in high energy physics experiments must satisfy high requirements in terms of reliability, efficiency and data rate capability. This paper presents the development and deployment of a debugging tool named DAQ Debugger for the intelligent, FPGA-based Data Acquisition System (iFDAQ) of the COMPASS experiment at CERN. Utilizing a hardware event builder, the iFDAQ is designed to be able to readout data at the average maximum rate of 1.5 GB/s of the experiment. In complex softwares, such as the iFDAQ, having thousands of lines of code, the debugging process is absolutely essential to reveal all software issues. Unfortunately, conventional debugging of the iFDAQ is not possible during the real data taking. The DAQ Debugger is a tool for identifying a problem, isolating the source of the problem, and then either correcting the problem or determining a way to work around it. It provides the layer for an easy integration to any process and has no impact on the process performance. Based on handling of system signals, the DAQ Debugger represents an alternative to conventional debuggers provided by most integrated development environments. Whenever problem occurs, it generates reports containing all necessary information important for a deeper investigation and analysis. The DAQ Debugger was fully incorporated to all processes in the iFDAQ during the run 2016. It helped to reveal remaining software issues and improved significantly the stability of the system in comparison with the previous run. In the paper, we present the DAQ Debugger from several insights and discuss it in a detailed way.

Keywords: DAQ debugger, data acquisition system, FPGA, system signals, Qt framework.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 893
11632 Genetic Algorithm for Feature Subset Selection with Exploitation of Feature Correlations from Continuous Wavelet Transform: a real-case Application

Authors: G. Van Dijck, M. M. Van Hulle, M. Wevers

Abstract:

A genetic algorithm (GA) based feature subset selection algorithm is proposed in which the correlation structure of the features is exploited. The subset of features is validated according to the classification performance. Features derived from the continuous wavelet transform are potentially strongly correlated. GA-s that do not take the correlation structure of features into account are inefficient. The proposed algorithm forms clusters of correlated features and searches for a good candidate set of clusters. Secondly a search within the clusters is performed. Different simulations of the algorithm on a real-case data set with strong correlations between features show the increased classification performance. Comparison is performed with a standard GA without use of the correlation structure.

Keywords: Classification, genetic algorithm, hierarchicalagglomerative clustering, wavelet transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1224
11631 Multitasking Trends and Impact on Education: A Literature Review

Authors: Mohammed Alkahtani, Ali Ahmad, Saber Darmoul, Shatha Samman, Ayoub Al-zabidi, Khaled Ba Matraf

Abstract:

Education systems are complex and involve interactions between humans (teachers and students); media based technologies, lectures, classrooms, etc. to provide educational services. The education system performance is characterized by how well students learn, which is measured using student grades on exams and quizzes, achievements on standardized tests, among others. Advances in portable communications technologies, such as mobile phones, tablets, and laptops, created a different type of classroom, where students seem to engage in more than just the intended learning activities. The performance of more than one task in parallel or in rapid transition is commonly known as multitasking. Several operations in educational systems are performed simultaneously, resulting in a multitasking education environment. This paper surveys existing research on multitasking in educational settings, summarizes literature findings, provides a synthesis of the impact of multitasking on performance, and identifies directions of future research.

Keywords: Education systems, GPA, multitasking, performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6052
11630 The Techno-Economic and Environmental Assessments of Grid-Connected Photovoltaic Systems in Bhubaneswar, India

Authors: A. K. Pradhan, M. K. Mohanty, S. K. Kar

Abstract:

The power system utility has started to think about the green power technology in order to have an eco-friendly environment. The green power technology utilizes renewable energy sources for reduction of GHG emissions. Odisha state (India) is very rich in potential of renewable energy sources especially in solar energy (about 300 solar days), for installation of grid connected photovoltaic system. This paper focuses on the utilization of photovoltaic systems in an Institute building of Bhubaneswar city, Odisha. Different data like solar insolation (kW/m2/day), sunshine duration has been collected from metrological stations for Bhubaneswar city. The required electrical power and cost are calculated for daily load of 1.0 kW. The HOMER (Hybrid Optimization Model of Electric Renewable) software is used to estimate system size and its performance analysis. The simulation result shows that the cost of energy (COE) is $ 0.194/kWh, the Operating cost is $63/yr and the net present cost (NPC) is $3,917. The energy produced from PV array is 1,756kWh/yr and energy purchased from grid is 410kWh/yr. The AC primary load consumption is 1314 kWh/yr and the Grid sales are 746 kWh/yr. One battery is connected in parallel with 12V DC Bus and the usable nominal capacity 2.4 kWh with 9.6 h autonomy capacity.

Keywords: Economic assessment, HOMER, Optimization, Photovoltaic (PV), Renewable energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2262
11629 Load Forecasting in Microgrid Systems with R and Cortana Intelligence Suite

Authors: F. Lazzeri, I. Reiter

Abstract:

Energy production optimization has been traditionally very important for utilities in order to improve resource consumption. However, load forecasting is a challenging task, as there are a large number of relevant variables that must be considered, and several strategies have been used to deal with this complex problem. This is especially true also in microgrids where many elements have to adjust their performance depending on the future generation and consumption conditions. The goal of this paper is to present a solution for short-term load forecasting in microgrids, based on three machine learning experiments developed in R and web services built and deployed with different components of Cortana Intelligence Suite: Azure Machine Learning, a fully managed cloud service that enables to easily build, deploy, and share predictive analytics solutions; SQL database, a Microsoft database service for app developers; and PowerBI, a suite of business analytics tools to analyze data and share insights. Our results show that Boosted Decision Tree and Fast Forest Quantile regression methods can be very useful to predict hourly short-term consumption in microgrids; moreover, we found that for these types of forecasting models, weather data (temperature, wind, humidity and dew point) can play a crucial role in improving the accuracy of the forecasting solution. Data cleaning and feature engineering methods performed in R and different types of machine learning algorithms (Boosted Decision Tree, Fast Forest Quantile and ARIMA) will be presented, and results and performance metrics discussed.

Keywords: Time-series, features engineering methods for forecasting, energy demand forecasting, Azure machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1290
11628 Dynamic Visualization on Student's Performance, Retention and Transfer of Procedural Learning

Authors: Fauzy M. Wan, Reem S.A. Baragash

Abstract:

This study examined the effects of two dynamic visualizations on 60 Malaysian primary school student-s performance (time on task), retention and transference. The independent variables in this study were the two dynamic visualizations, the video and the animated instructions. The dependent variables were the gain score of performance, retention and transference. The results showed that the students in the animation group significantly outperformed the students in the video group in retention. There were no significant differences in terms of gain scores in the performance and transference among the animation and the video groups, although the scores were slightly higher in the animation group compared to the video group. The conclusion of this study is that the animation visualization is superior compared to the video in the retention for a procedural task.

Keywords: Dynamic visualization, Procedural Task, Retention, Transference

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1429
11627 Effects of Length of Time of Fasting upon Subjective and Objective Variables When Controlling Sleep, Food and Fluid Intakes

Authors: H. Alabed, K. Abuzayan. L. Fgie, K. Zarug

Abstract:

Ramadan requires individuals to abstain from food and fluid intake between sunrise and sunset; physiological considerations predict that poorer mood, physical performance and mental performance will result. In addition, any difficulties will be worsened because preparations for fasting and recovery from it often mean that nocturnal sleep is decreased in length, and this independently affects mood and performance.

A difficulty of interpretation in many studies is that the observed changes could be due to fasting but also to the decreased length of sleep and altered food and fluid intakes before and after the daytime fasting. These factors were separated in this study, which took place over three separate days and compared the effects of different durations of fasting (4, 8 or 16h) upon a wide variety of measures (including subjective and objective assessments of performance, body composition, dehydration and responses to a short bout of exercise) - but with an unchanged amount of nocturnal sleep, controlled supper the previous evening, controlled intakes at breakfast and daytime naps not being allowed. Many of the negative effects of fasting observed in previous studies were present in this experiment also. These findings indicate that fasting was responsible for many of the changes previously observed, though some effect of sleep loss, particularly if occurring on successive days (as would occur in Ramadan) cannot be excluded.

Keywords: Drinking, Eating, Mental Performance, Physical Performance, Social Activity, Blood, Sleepiness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1650
11626 Analysis of Codebook Based Channel Feedback Techniques for MIMO-OFDM Systems

Authors: Muhammad Rehan Khalid, Ahmed Farhan Hanif, Adnan Ahmed Khan

Abstract:

This paper investigates the performance of Multiple- Input Multiple-Output (MIMO) feedback system combined with Orthogonal Frequency Division Multiplexing (OFDM). Two types of codebook based channel feedback techniques are used in this work. The first feedback technique uses a combination of both the long-term and short-term channel state information (CSI) at the transmitter, whereas the second technique uses only the short term CSI. The long-term and short-term CSI at the transmitter is used for efficient channel utilization. OFDM is a powerful technique employed in communication systems suffering from frequency selectivity. Combined with multiple antennas at the transmitter and receiver, OFDM proves to be robust against delay spread. Moreover, it leads to significant data rates with improved bit error performance over links having only a single antenna at both the transmitter and receiver. The effectiveness of these techniques has been demonstrated through the simulation of a MIMO-OFDM feedback system. The results have been evaluated for 4x4 MIMO channels. Simulation results indicate the benefits of the MIMO-OFDM channel feedback system over the one without incorporating OFDM. Performance gain of about 3 dB is observed for MIMO-OFDM feedback system as compared to the one without employing OFDM. Hence MIMO-OFDM becomes an attractive approach for future high speed wireless communication systems.

Keywords: MIMO systems, OFDM, Codebooks, Channel Feedback

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1674
11625 AniMoveMineR: Animal Behavior Exploratory Analysis Using Association Rules Mining

Authors: Suelane Garcia Fontes, Silvio Luiz Stanzani, Pedro L. Pizzigatti Corrła Ronaldo G. Morato

Abstract:

Environmental changes and major natural disasters are most prevalent in the world due to the damage that humanity has caused to nature and these damages directly affect the lives of animals. Thus, the study of animal behavior and their interactions with the environment can provide knowledge that guides researchers and public agencies in preservation and conservation actions. Exploratory analysis of animal movement can determine the patterns of animal behavior and with technological advances the ability of animals to be tracked and, consequently, behavioral studies have been expanded. There is a lot of research on animal movement and behavior, but we note that a proposal that combines resources and allows for exploratory analysis of animal movement and provide statistical measures on individual animal behavior and its interaction with the environment is missing. The contribution of this paper is to present the framework AniMoveMineR, a unified solution that aggregates trajectory analysis and data mining techniques to explore animal movement data and provide a first step in responding questions about the animal individual behavior and their interactions with other animals over time and space. We evaluated the framework through the use of monitored jaguar data in the city of Miranda Pantanal, Brazil, in order to verify if the use of AniMoveMineR allows to identify the interaction level between these jaguars. The results were positive and provided indications about the individual behavior of jaguars and about which jaguars have the highest or lowest correlation.

Keywords: Data mining, data science, trajectory, animal behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 918
11624 Real-time Network Anomaly Detection Systems Based on Machine-Learning Algorithms

Authors: Zahra Ramezanpanah, Joachim Carvallo, Aurelien Rodriguez

Abstract:

This paper aims to detect anomalies in streaming data using machine learning algorithms. In this regard, we designed two separate pipelines and evaluated the effectiveness of each separately. The first pipeline, based on supervised machine learning methods, consists of two phases. In the first phase, we trained several supervised models using the UNSW-NB15 data set. We measured the efficiency of each using different performance metrics and selected the best model for the second phase. At the beginning of the second phase, we first, using Argus Server, sniffed a local area network. Several types of attacks were simulated and then sent the sniffed data to a running algorithm at short intervals. This algorithm can display the results of each packet of received data in real-time using the trained model. The second pipeline presented in this paper is based on unsupervised algorithms, in which a Temporal Graph Network (TGN) is used to monitor a local network. The TGN is trained to predict the probability of future states of the network based on its past behavior. Our contribution in this section is introducing an indicator to identify anomalies from these predicted probabilities.

Keywords: Cyber-security, Intrusion Detection Systems, Temporal Graph Network, Anomaly Detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 505
11623 Enhancing the Error-Correcting Performance of LDPC Codes through an Efficient Use of Decoding Iterations

Authors: Insah Bhurtah, P. Clarel Catherine, K. M. Sunjiv Soyjaudah

Abstract:

The decoding of Low-Density Parity-Check (LDPC) codes is operated over a redundant structure known as the bipartite graph, meaning that the full set of bit nodes is not absolutely necessary for decoder convergence. In 2008, Soyjaudah and Catherine designed a recovery algorithm for LDPC codes based on this assumption and showed that the error-correcting performance of their codes outperformed conventional LDPC Codes. In this work, the use of the recovery algorithm is further explored to test the performance of LDPC codes while the number of iterations is progressively increased. For experiments conducted with small blocklengths of up to 800 bits and number of iterations of up to 2000, the results interestingly demonstrate that contrary to conventional wisdom, the error-correcting performance keeps increasing with increasing number of iterations.

Keywords: Error-correcting codes, information theory, low-density parity-check codes, sum-product algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1708
11622 Q-Map: Clinical Concept Mining from Clinical Documents

Authors: Sheikh Shams Azam, Manoj Raju, Venkatesh Pagidimarri, Vamsi Kasivajjala

Abstract:

Over the past decade, there has been a steep rise in the data-driven analysis in major areas of medicine, such as clinical decision support system, survival analysis, patient similarity analysis, image analytics etc. Most of the data in the field are well-structured and available in numerical or categorical formats which can be used for experiments directly. But on the opposite end of the spectrum, there exists a wide expanse of data that is intractable for direct analysis owing to its unstructured nature which can be found in the form of discharge summaries, clinical notes, procedural notes which are in human written narrative format and neither have any relational model nor any standard grammatical structure. An important step in the utilization of these texts for such studies is to transform and process the data to retrieve structured information from the haystack of irrelevant data using information retrieval and data mining techniques. To address this problem, the authors present Q-Map in this paper, which is a simple yet robust system that can sift through massive datasets with unregulated formats to retrieve structured information aggressively and efficiently. It is backed by an effective mining technique which is based on a string matching algorithm that is indexed on curated knowledge sources, that is both fast and configurable. The authors also briefly examine its comparative performance with MetaMap, one of the most reputed tools for medical concepts retrieval and present the advantages the former displays over the latter.

Keywords: Information retrieval (IR), unified medical language system (UMLS), Syntax Based Analysis, natural language processing (NLP), medical informatics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 779
11621 The Influence of RHA on the Mechanical Properties of Mortar Heated Up To High Temperature

Authors: Md. Harunur Rashid, S. M. Kamal Uddin, Sobura khatun

Abstract:

The performance of mortar subjected to high temperature and cooled in normal ambient temperature was examined in the laboratory to comply with the situation of burning & cooling of a structure. Four series of cubical (5 X 5 X 5 cm) mortar specimens were made from OPC, and partial replacement (10, 15, 20, 25 & 30%) of OPC by Rice Husk Ash (RHA) produced in the uncontrolled environment. These specimens were heated in electric furnace to 200, 300, 400, 500 and 7000C. The specimens were kept in normal room temperature for cooling. They were then tested for mechanical properties and the results shows that particular 20% RHA mixed mortar shows better fire performance.

Keywords: Fire performance, Rice Husk

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1564
11620 Multipath Routing Protocol Using Basic Reconstruction Routing (BRR) Algorithm in Wireless Sensor Network

Authors: K. Rajasekaran, Kannan Balasubramanian

Abstract:

A sensory network consists of multiple detection locations called sensor nodes, each of which is tiny, featherweight and portable. A single path routing protocols in wireless sensor network can lead to holes in the network, since only the nodes present in the single path is used for the data transmission. Apart from the advantages like reduced computation, complexity and resource utilization, there are some drawbacks like throughput, increased traffic load and delay in data delivery. Therefore, multipath routing protocols are preferred for WSN. Distributing the traffic among multiple paths increases the network lifetime. We propose a scheme, for the data to be transmitted through a dominant path to save energy. In order to obtain a high delivery ratio, a basic route reconstruction protocol is utilized to reconstruct the path whenever a failure is detected. A basic reconstruction routing (BRR) algorithm is proposed, in which a node can leap over path failure by using the already existing routing information from its neighbourhood while the composed data is transmitted from the source to the sink. In order to save the energy and attain high data delivery ratio, data is transmitted along a multiple path, which is achieved by BRR algorithm whenever a failure is detected. Further, the analysis of how the proposed protocol overcomes the drawback of the existing protocols is presented. The performance of our protocol is compared to AOMDV and energy efficient node-disjoint multipath routing protocol (EENDMRP). The system is implemented using NS-2.34. The simulation results show that the proposed protocol has high delivery ratio with low energy consumption.

Keywords: Multipath routing, WSN, energy efficient routing, alternate route, assured data delivery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1723
11619 Environmental Interference Cancellation of Speech with the Radial Basis Function Networks: An Experimental Comparison

Authors: Nima Hatami

Abstract:

In this paper, we use Radial Basis Function Networks (RBFN) for solving the problem of environmental interference cancellation of speech signal. We show that the Second Order Thin- Plate Spline (SOTPS) kernel cancels the interferences effectively. For make comparison, we test our experiments on two conventional most used RBFN kernels: the Gaussian and First order TPS (FOTPS) basis functions. The speech signals used here were taken from the OGI Multi-Language Telephone Speech Corpus database and were corrupted with six type of environmental noise from NOISEX-92 database. Experimental results show that the SOTPS kernel can considerably outperform the Gaussian and FOTPS functions on speech interference cancellation problem.

Keywords: Environmental interference, interference cancellation of speech, Radial Basis Function networks, Gaussian and TPS kernels.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1563
11618 Balancing of Quad Tree using Point Pattern Analysis

Authors: Amitava Chakraborty, Sudip Kumar De, Ranjan Dasgupta

Abstract:

Point quad tree is considered as one of the most common data organizations to deal with spatial data & can be used to increase the efficiency for searching the point features. As the efficiency of the searching technique depends on the height of the tree, arbitrary insertion of the point features may make the tree unbalanced and lead to higher time of searching. This paper attempts to design an algorithm to make a nearly balanced quad tree. Point pattern analysis technique has been applied for this purpose which shows a significant enhancement of the performance and the results are also included in the paper for the sake of completeness.

Keywords: Algorithm, Height balanced tree, Point patternanalysis, Point quad tree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2700
11617 Utilizing the Analytic Hierarchy Process in Improving Performances of Blind Judo

Authors: Hyun Chul Cho, Hyunkyoung Oh, Hyun Yoon, Jooyeon Jin, Jae Won Lee

Abstract:

Identifying, structuring, and racking the most important factors related to improving athletes’ performances could pave the way for improve training system. The purpose of this study was to identify the relative importance factors to improve performance of the of judo athletes with visual impairments, including blindness by using the Analytic Hierarchy Process (AHP). After reviewing the literature, the relative importance of factors affecting performance of the blind judo was selected. A group of expert reviewed the first draft of the questionnaires, and then finally selected performance factors were classified into the major categories of techniques, physical fitness, and psychological categories. Later, a pre-selected experts group was asked to review the final version of questionnaire and confirm the priories of performance factors. The order of priority was determined by performing pairwise comparisons using Expert Choice 2000. Results indicated that “grappling” (.303) and “throwing” (.234) were the most important lower hierarchy factors for blind judo skills. In addition, the most important physical factors affecting performance were “muscular strength and endurance” (.238). Further, among other psychological factors “competitive anxiety” (.393) was important factor that affects performance. It is important to offer psychological skills training to reduce anxiety of judo athletes with visual impairments and blindness, so they can compete in their optimal states. These findings offer insights into what should be considered when determining factors to improve performance of judo athletes with visual impairments and blindness.

Keywords: Analytic hierarchy process, blind athlete, judo, sport performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 801
11616 An Approach to Manage and Evaluate Asset Performance

Authors: Mohammed S. ALSaidi, John P. Mo

Abstract:

Modern engineering assets are complex and very high in value. They are expected to function for years to come, with ability to handle the change in technology and ageing modification. The aging of an engineering asset and continues increase of vendors and contractors numbers forces the asset operation management (or Owner) to design an asset system which can capture these changes. Furthermore, an accurate performance measurement and risk evaluation processes are highly needed. Therefore, this paper explores the nature of the asset management system performance evaluation for an engineering asset based on the System Support Engineering (SSE) principles. The research work explores the asset support system from a range of perspectives, interviewing managers from across a refinery organization. The factors contributing to complexity of an asset management system are described in context which clusters them into several key areas. It is proposed that SSE framework may then be used as a tool for analysis and management of asset. The paper will conclude with discussion of potential application of the framework and opportunities for future research.

Keywords: Asset management, performance, evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2358
11615 CEO Duality and Firm Performance: An Integration of Institutional Perceptive with Agency Theory

Authors: A. Ujunwa, P. O. Salami, A. H. Umar

Abstract:

The recommendation of the committee on corporate governance for public companies in Nigeria, that the position of the CEO be separated from board chair has generated serious debate among scholars and practitioners. They have questioned the appropriateness of implementing corporate governance model that is based on Anglo-Saxon agency problem characterized by dispersed ownership structure; where markets for corporate control, legal regulation, and contractual incentives are the key governance mechanisms. This paper strives to resolve the argument by adopting an institutional perspective in testing the agency theory on board duality. The study developed a theoretical and empirical model to better understand how ownership structure influences agency conflict and how such affects firm performance. Hence, the study examines the relationship between CEO duality and firm performance using two institutional ownership structures – dispersed ownership and concentrated ownership structures. The empirical results show that CEO duality is negatively correlated with firm performance in Nigeria irrespective of the firm-s ownership structure. The findings give credence to the recommendation of the Peterside Commission on the need to separate the position of CEO from board chair.

Keywords: Corporate Governance, CEO-Duality, Firm Performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3979
11614 Summarizing Data Sets for Data Mining by Using Statistical Methods in Coastal Engineering

Authors: Yunus Doğan, Ahmet Durap

Abstract:

Coastal regions are the one of the most commonly used places by the natural balance and the growing population. In coastal engineering, the most valuable data is wave behaviors. The amount of this data becomes very big because of observations that take place for periods of hours, days and months. In this study, some statistical methods such as the wave spectrum analysis methods and the standard statistical methods have been used. The goal of this study is the discovery profiles of the different coast areas by using these statistical methods, and thus, obtaining an instance based data set from the big data to analysis by using data mining algorithms. In the experimental studies, the six sample data sets about the wave behaviors obtained by 20 minutes of observations from Mersin Bay in Turkey and converted to an instance based form, while different clustering techniques in data mining algorithms were used to discover similar coastal places. Moreover, this study discusses that this summarization approach can be used in other branches collecting big data such as medicine.

Keywords: Clustering algorithms, coastal engineering, data mining, data summarization, statistical methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1244
11613 Dimensional Modeling of HIV Data Using Open Source

Authors: Charles D. Otine, Samuel B. Kucel, Lena Trojer

Abstract:

Selecting the data modeling technique for an information system is determined by the objective of the resultant data model. Dimensional modeling is the preferred modeling technique for data destined for data warehouses and data mining, presenting data models that ease analysis and queries which are in contrast with entity relationship modeling. The establishment of data warehouses as components of information system landscapes in many organizations has subsequently led to the development of dimensional modeling. This has been significantly more developed and reported for the commercial database management systems as compared to the open sources thereby making it less affordable for those in resource constrained settings. This paper presents dimensional modeling of HIV patient information using open source modeling tools. It aims to take advantage of the fact that the most affected regions by the HIV virus are also heavily resource constrained (sub-Saharan Africa) whereas having large quantities of HIV data. Two HIV data source systems were studied to identify appropriate dimensions and facts these were then modeled using two open source dimensional modeling tools. Use of open source would reduce the software costs for dimensional modeling and in turn make data warehousing and data mining more feasible even for those in resource constrained settings but with data available.

Keywords: About Database, Data Mining, Data warehouse, Dimensional Modeling, Open Source.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1959