
A Parallel Approach for 3D-Variational Data
Assimilation on GPUs in Ocean Circulation Models

Abstract—This work is the first dowel in a rather wide research
activity in collaboration with Euro Mediterranean Center for Climate
Changes, aimed at introducing scalable approaches in Ocean
Circulation Models. We discuss designing and implementation of
a parallel algorithm for solving the Variational Data Assimilation
(DA) problem on Graphics Processing Units (GPUs). The algorithm
is based on the fully scalable 3DVar DA model, previously proposed
by the authors, which uses a Domain Decomposition approach
(we refer to this model as the DD-DA model). We proceed with
an incremental porting process consisting of 3 distinct stages:
requirements and source code analysis, incremental development of
CUDA kernels, testing and optimization. Experiments confirm the
theoretic performance analysis based on the so-called scale up factor
demonstrating that the DD-DA model can be suitably mapped on
GPU architectures.

I. INTRODUCTION

DATA Assimilation (DA) is an Uncertainty Quantification
technique widely used in simulation science to

incorporate observational data into a prediction model [15].
Due to the scale of the forecasting area and the number
of state variables used to describe ocean or atmosphere for
climate or weather predictions, DA are large scale problems
that should be solved in near real-time. During the last
20 years, parallel algorithms for data assimilations reached
a widespread interests at many federal research institutes
as well as at many universities [NCAR (National Center
for Atmospheric Research), NCEP (National Centers for
Environmental Prediction), DWD (Deutscher Wetterdienst),
UK Met Office, JMA (Japan Meteorological Agency), CMC
(Canadian Association of Management Consultants) and the
CMCC (Euro- Mediterranean Center for Climate Changes)].
The CMCC makes use of a 3D Variational (3DVar)
DA software, called OceanVar, for assimilating data in
Mediterranean Forecasting System (MFS) context [10], [3].
MFS is a daily 10-day forecast system in operational use
since 1998, and its ocean general circulation model (OGCM)
is based on the Ocean Parallelise (OPA) code, which has
subsequently been set up for the Mediterranean Sea (NEMO
framework) [17].
Together with University of Naples Federico II, CMCC has

R.Arcucci is with the Imperial College London, London (UK) e-mail:
r.arcucci@imperial.ac.uk

S.Celestino, G.Scotti, L.D’Amore, G.Laccetti are with University of Naples
Federico II, Naples (IT), e-mail:

(simone.celestino,giuseppe.scotti,luisa.damore,giuliano.laccetti)@unina.it
L.D’Amore is with Euro Mediterranean Center for Climate Changes, Lecce

(IT)

developed a fully scalable 3DVar DA model which is based
on a Domain Decomposition approach (called DD-DA model)
[5], [4]. The resulted parallel algorithm consists of several
copies of a slightly modified 3D-Var algorithm, each one
requiring approximately the same amount of computations
on each sub domain and an exchange of boundary conditions
between adjacent sub domains. Data flow across the surfaces
and a so-called surface-to-volume effect is produced [1].
Over the last few years, the rapid evolution of Graphics
Processing Units (GPUs) into powerful, cost-effcient,
programmable computing architectures for general purpose
computations has provided application potential beyond the
primary purpose of graphics processing. As the number of
supercomputers equip GPUs is massively increasing [19],
large scale problems are embracing GPUs for massive thread
level parallelism. GPUs have enjoyed rapid adoption within
the high-performance computing (HPC) community because
GPUs enable high levels of fine-grain data parallelism.
The latest GPU programming interfaces such as NVIDIAs
Compute Unified Device Architecture (CUDA) [14], and more
recently Open Computing Language (OpenCL) [16] provide
the programmer a flexible model while exposing enough
of the hardware for optimization. GPU clusters, where fast
network connected compute-nodes are augmented with latest
GPUs, [18] are now being used to solve challenging problems
from various domains. These new systems are designed for
high performance as well as high power efficiency, which is
a crucial factor in future exascale computing.
However, GPU architecture is unlike that of any other, and
designing algorithms to fully harness the capabilities of
a GPU is not a straightforward task, especially when one
considers the advantages and disadvantages of the various
resources that a GPU has available to it. To best utilize the
computing capabilities provided by the graphic processors,
it is highly desired to study how to map algorithms and
programs on them. Briefly, the goal is to reduce the total
data transfer time as much as possible, meaning reducing the
amount of data that is transferred back and forth between
host (the CPU) and device (the GPU).
In this article we describe how DD-DA model is well-suited
for efficiently using GPU architecture. The paper is organized
as follows. In Section II our parallel approach is presented.
The mathematical model we implement is reviewed in
Section II-A. In Section II-B a brief overview of the GPU
architecture and some programming basics required to
understand our methods are provided. Section II-C shows
the implementative strategy we used for efficiently using
architecture of GPU to develope DD-DA model. In Section III

Rossella Arcucci, Luisa D’Amore, Simone Celestino, Giuseppe Scotti, Giuliano Laccetti

Keywords—Data Assimilation, Parallel Algorithm, GPU
architectures, Ocean Models.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:9, No:5, 2015

1204International Scholarly and Scientific Research & Innovation 9(5) 2015 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:9

, N
o:

5,
 2

01
5

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
01

41
7.

pd
f

we present selected numerical results to demonstrate the
effectiveness of the GPU-based parallel DD-DA algorithm.
Section IV concludes the paper and outlines possible future
work.

II. DOMAIN DECOMPOSITION DA MODEL FOR GPUS

The DD-DA model is based on a Domain Decomposition
approach for solving Variational Data Assimilation problem
[5]. The model uses a partition of the global domain into
sub domains. On these sub domains we define local 3D-Var
functionals and we prove that the minimum of the global
3D-Var functional can be obtained by collecting the minimum
of each local functional. The (global) problem is decomposed
into (local) sub problems in such a way. The resulted algorithm
consists of several copies of a slightly modified 3D-Var
algorithm, each one requiring approximately the same amount
of computations on each sub domain and an exchange of
boundary conditions between adjacent sub domains.

Fig. 1 shows a simple example of how the DD-DA model
works on a decomposition of the global domain in six
subdomains. Red points represent the observed data which are
distributed geographically as the physical subdomains. Green
lines represent the overlapping regions between different
physical subdomains. With this decomposition, local DA
problem are solved concurrently, each subdomain is processed
on a processor node of the supercomputer, which make
this method fully scalable and highly parallel. It makes DA
applications feasible for big forecasted data and observations.

Fig. 1: Example of how the DD-DA method works on a
decomposition of the domain in six subdomains processed by six
Hardware Components (HC). The red points represent the observed
data. The green lines represent the overlapping regions between
different physical subdomains.

A. DD-DA computational model

Let tk, k = 0, 1, . . . , n be a sequence of observation
times and, for each k, let xMk

≡ xM (tk) ∈ �N be the
vector denoting the state of the Mediterranean sea system at
time tk as defined in (1) where T is the three-dimensional
temperature field, S the three-dimensional salinity field, η the
two-dimensional free surface elevation, and u,v are the total
horizontal velocity components and where with � we denote
the vector transposed.

xMk
= [T, S, η, u, v]� (1)

At each time step tk, let yk be the observations vector as
defined in (2) where Hk : �N �→ �p is a non-linear operator
collecting the observations at time tk [3].

yk = Hk(xk) (2)

Let (3) be an overlapping decomposition of the physical
domain Ω such that Ωi ∩ Ωj = Ωij �= 0 if Ωi and Ωj are
adjacent and Ωij is called overlapping region.

Ω =

Nsub⋃
i=1

Ωi (3)

According to this decomposition the DD-DA computational
model is a system of Nsub non-linear least square problems
[10], [5] described in (4)-(6) where Ji in (6) is a cost-function.

xDA(tk) =

Nsub∑
i=1

x̃DAi(tk) (4)

x̃DAi =

{
argminxk

Ji(xk) on Ωi

0 on Ω− Ωi
(5)

Ji(xk) = ‖Hki
(xki)− yki‖2Ri

+ ‖xki − xMki
‖2Bi

+

+‖xki/Ωij − xkj/Ωij‖2Bij
(6)

xDA in (4) is the analysis (i.e. the estimation of the
vector xki at time tk). The variables xMki

and yki in (6)
are the same vectors xMk and yk in (1) and (2) defined on
the subdomain Ωi, Ri and Bi are the covariance matrices
defined in (7) and (8), whose elements provide the estimate
of the errors on yki and on xMki

, respectively. Also the
variables xi/Ωij , xj/Ωij , Bij are the restriction on Ωij of
these quantities.

Ri = σ2
oIp (7)

where σ2
o is the observational error variance.

Bi = σ2
bC (8)

where

cij = ρ|i−j|2 , ρ = exp

(
Δx2

2L2

)
, |i− j| < N/2

N is the size of domain, C denotes the Gaussian correlation
structure of the background errors while σ2

b is the background
error variance. As a consequence:

μ(B) = μ(C)

where μ(·) denote the condition number.

The ill conditioning of the DA inverse problem [11] (i.e. the
sensitivity of the analysis to small perturbations in the data),

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:9, No:5, 2015

1205International Scholarly and Scientific Research & Innovation 9(5) 2015 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:9

, N
o:

5,
 2

01
5

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
01

41
7.

pd
f

Fig. 2: Model variables on overlapping regions.

depends on the conditioning of the Hessian of each Ji in (6).
Small errors in the Hessian lead to large errors in its inverse,
so the computed solution to the DA problem may be very
inaccurate. In designing of the DA schemes, it is important
to ensure that the conditioning of the Hessian is as small as
possible, or it is essential to use preconditioning techniques to
improve the conditioning.
In our model, matrix Bi is decomposed as in (9) to have a
preconditioner.

Bi = UiDiU
T
i = UiD

1
2
i D

1
2
i U

T
i =

(
UiD

1
2
i

)(
UiD

1
2
i

)T

(9)

The matrix Vi = UiD
1
2
i such that (10) is a preconditioner.

Bi = ViV
T
i . (10)

Let d = [yk −H(xk)] be the misfit, by using the following
linearization of H:

H(x) = H(x+ δx) +H δx

where H is the matrix obtained by the first order
approximation of the Jacobian of H and, by setting vi =
V T
i δxi, the preconditioned (see [2]) cost function is:

Ji(vi) =
1

2
vTi vi +

1

2
(HiVivi − di)

TR−1
i (HiVivi − di)+

+
1

2
(Vijv

+
i − Vijv

−
i)

T (Vijv
+
i − Vijv

−
i) (11)

where v+i and v−i are shown in Fig. 2.

On each subdomain of Ω, the function Ji (∀i = 1, . . . , Nsub),
is minimized using the L-BFGS method [20], [8].

B. GPU architecture

This section is a short overview of the basic key properties
of a GPU device architecture and CUDA API necessary to
comprehend our implementation of the DD-DA algorithm
for GPU which is discussed on the next section. In this
section we just summarize some key properties, in [13] can
be found more detailed descriptions of the architecture and
the programming model. Fig. 3 shows graphically the layout
of a GPU. A GPU can be viewed as a set of independent
streaming multiprocessors. One such multiprocessor contains,
amid other components, several scalar processors which can
execute floating-point arithmetic (ALU). The Global Memory
can be accessed by all processors while the Shared Memory
can be accessed by all scalar processors of a multiprocessor.

Fig. 3: GPU device architecture

Before describing the algorithm, it is worth noting that
the GPU architecture is much more optimized for performing
calculations than for memory accesses. Therefore, considering
the multiple types of memory that the GPU architecture
typically includes, it is important to keep this in mind when
accessing these types of memory, particularly the slower,
off-chip ones such as the GPUs global and the hosts main
memory. The most costly memory access is by far the
host-to-device (CPU to GPU) data transfer, and reducing
that transfer can have a tremendous impact on the overall
performance of any algorithm that is implemented in part or
fully on a GPU.

C. Mapping of DD-DA model on GPU architecture

Let nx×ny ×nz be the size of a computational grid which
discretize Ω and let Nsub = p × q be the number of sub
domains partition of Ω. We group gridpoints into blocks, we
partition the computational grid into p × q three-dimensional
(3-D) blocks of size nxloc

×nyloc
×nz , each of which can be

viewed as consisting of q two-dimensional (2-D) blocks (see
Fig. 4) with nxloc

and nyloc
defined in (12). These dimensions

include overlapping (2ox × 2oy).

nxloc
=

nx

p
+ 2ox, nyloc

=
ny

q
+ 2oy. (12)

In Fig. 4, orange points represent overlapping regions. From
the viewpoint of the blocks, the overlapping region are not
completely part of blocks, but come from adjacent blocks: the
North, South, East, West overlapping are from neighboring
blocks in those respectively directions.
Let us now describe the mapping of the DD-DA model on
the GPU architecture. In any GPU implementation, the CPU
(the host) runs the program and unloads some kernel functions
(generally the more computationally demanding code parts) to
the GPU (the device). In our algorithm, the CPU acquires the
input data (data from forecasting model and observations) of

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:9, No:5, 2015

1206International Scholarly and Scientific Research & Innovation 9(5) 2015 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:9

, N
o:

5,
 2

01
5

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
01

41
7.

pd
f

Fig. 4: Application of our partitioning approach on an example
computational grid of size nx × ny × nz = 12 × 10 × 3, with
nxloc = 6 and nyloc = 5. In this example, the computational domain
is partitioned into 3-D blocks of size nxloc×nyloc×nz = 6×5×3.

the geographical region which is been assigned to it. It also
computes Nsub covariances matrices and the misfits.
In any GPU implementation when a C program, using CUDA
extensions and running on the CPU, invokes a kernel, many
copies of this kernel (which are referred to as threads) are
distributed to the available multiprocessors, where they are
executed. Threads are grouped into thread-blocks, which are
in turn arranged on a grid. Threads in a thread-block are
executed by processors within a single multiprocessor. All
threads in a thread-block can read from and write on any
shared memory location assigned to that thread-block. Threads
within the same thread-block are able to communicate with
each other very efficiently via the shared memory and are able
to synchronize their executions. Thread-blocks can execute
in any order relative to each other, which allows transparent
scalability in the parallelism of CUDA kernels.
In our algorithm, we decided to assign each 3-D block of
physical grid-points to a thread-block which carries out all
the computations/work associated with all grid-points. Hence,
thread-blocks are been solved on the GPU concurrently. Each
one computes the minimum of the function Ji defined in
(11) on its part of the computational grid, by using a CUDA
version of the L-BFGS routine [8]. The boundary conditions
between adjacent subdomains are efficiently communicated
via the shared memory by introducing a synchronization of
thread-blocks, as described in Algorithm 1. The global solution
xDA defined in (4) is computed on the host finally.

III. NUMERICAL RESULTS

In this section, we present selected numerical results
to demonstrate the effectiveness of the GPU-based parallel
DD-DA algorithm. We used the CUDA 3.2 driver and toolkit,
and all the experiments with the GPU code were conducted
on a NVIDIA Tesla K20, which allows double-precision
computations, and is connected to a quad-core Intel i7 CPU
running at 3.07GHz, 12 GB of RAM. Out test case is based
on shallow water equations which are a a simplified version of
NEMO forecasting model. Occording with NEMO, we have a
variable time t, and space coordinates (x and y) as independent

variables. The dependent variables are the fluid height or depth
h and the two-dimensional fluid velocity field u and v. The
state variable is given in (13).

xMk
= [h, u, v]

�
. (13)

We assume nx = ny = n and nz = 3 which implies
a problem size N = n2 × 3. The time step used for the
temporal discretization of model is dt = 0.01.

For executing Algorithm 1 on shallow water test case,
we need to acquire xMk

in (13) by running shallow water
forecasting code. Observations vector yk is obtained by
randomly choosing and randomly perturbing values of xMk

[5]. We assume Hki in (2) is a piecewise linear interpolation
function and operators Bki and Rki defined in (14) and (15).

Bki = σ2
bC, σ2

b = 0.5, L = 1 (14)

Rki = σ2
oI, σ2

o = 0.5. (15)

For fixed values of Nsub, the size of each subdomain used
is N

Nsub
as explained in Section II-C.

In [5] the authors provided a formal mathematical proof of
the reliability of DD-DA model and accuracy of its solution.
Also, our implementation on GPU does not affect accuracy
of numerical results as the arithmetic system we are using is
double precision.

Let TNsub(N) be the execution time of Algorithm 1
for a problem size N defined in (16) where TNsub

H (N)
is the execution time of algorithm running on the CPU,
TNsub

com(H↔D)(N) is the communication time between host
and device and with TNsub

D (N) execution time of algorithm
running on the GPU. Then

TNsub(N) =︸︷︷︸
def

TNsub

H (N) + TNsub

com(H↔D)(N) + TNsub

D (N) .

(16)

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:9, No:5, 2015

1207International Scholarly and Scientific Research & Innovation 9(5) 2015 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:9

, N
o:

5,
 2

01
5

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
01

41
7.

pd
f

N p Nsub T
Nsub
D (N)

O(107) 1 2 0.144
2 4 0.044
4 8 0.025
8 16 0.024

TABLE I: Values of Execution Time of Algorithm Running on GPU for
N=128 which Give a Problem Size O(107).

As explained at the end of Section II-C, in Algorithm 1,
the host acquires input data, it computes operators Hki ,
dki , Rki and Vki and sends all these data to device which
solves concurrently Nsub thread-blocks for computing the
minimum of function J in (11). In practice, the host computes
operators which are input for computations on device and the
device solves the DD-DA model (4)-(6). Hence, TNsub

H (N)
is execution time that CPU needs for building data. These
data are transferred just once as well as output data xDA

ki

so we have that TNsub

com(H↔D)(N) is reduced to the time of
I/O transfer. For this reasons we evaluate the performance
of DD-DA implementation on GPU by analysing TNsub

D (N).
Table I shows execution time of algorithm running on GPU
for N=128 which give a problem size O(107).

Execution time TNsub

D (N) is given by summing time for
computing and time for global and local memories transfers
(see for instance [6]):

TNsub

D (N) =︸︷︷︸
def

TNsub

flop(D)(N) + TNsub

mem(D)(N), (17)

where TNsub

mem(D)(N) is the time for global and local memories
transfers into the device. TNsub

flop(D)(N) is the computing time
required for execution of floating point operations.

TNsub

mem(D)(N) can be estimates as in (18) by using size of
processed data DN which is the problem size espressed in GB
and bandwidth value BW (see [12]) which is the rate of data
transfer espressed in GB/seconds.

TNsub

mem(D)(N) �︸︷︷︸
def

DN

BW
secs . (18)

Theoretical bandwidth BW can be calculated using
hardware specifications available in the product literature as
in (19) where MCR is the memory clock rate and MSW is
the wide memory interface. In (19) we convert the memory
clock rate to Hz, multiply it by the interface width (divided
by 8, to convert bits to bytes) and multiply by 2 due to the
double data rate. Finally, we divide by 109 to convert the result
to GB/secs.

BW = MCR · 106 · MSW

8
· 2

109
GB/secs . (19)

In our case, the NVIDIA Tesla K20 GPU uses DDR (double
data rate) RAM with a memory clock rate of 2,6 MHz and
a 320-bit wide memory interface. Using these data items, the
peak theoretical memory bandwidth of the NVIDIA Tesla K20
is 208 GB/secs, as computed in the following

N p T
Nsub
flop(D)

(N) Measured SDD−DA
2p SDD−DA

2p

O(107) 1 0.127 - -
2 0.027 4.7 4
4 0.008 15.9 8
8 0.007 18.1 16

TABLE II: Values of TNsub
flop(D)

BW = 2600 · 106 · 320
8

· 2

109
GB/s = 208 GB/secs .

For a domain of dimension O(107) we have DN = 3.7 GB
which gives Tcom(D) � 3.7/208 secs � 0.017 secs.

The Scale-Up factor (see [5]) of algorithm running on the
GPU is function of TNsub

flop(D)(N) as given in (20)

SDD−DA
Nsub

=︸︷︷︸
def

TNsub

flop(D)(N)

Nsub TNsub

flop(D)

(
N

Nsub

) . (20)

We implement on GPU a decomposition into
subdomains/thread-blocks as a multiple of 2, that is
Nsub = 2p where p is called “decomposition step”. For
example, for p = 1 the global domain is divided into
Nsub = 2 subdomains, for p = 2 it is divided into Nsub = 4
subdomains, etc. Also we assume (21) be an eximation
for TNsub

flop(D)(N) in terms of time complexity, where T (N)
denotes the time complexity of Algorithm and tflop is the
time required for one floating point operation.

TNsub

flop(D)(N) = T (N)× tflop . (21)

With this assumption, the scale-up factor of algorithm is
given in (22) as we have in our case T (N) = O(N2).

SDD−DA
2p =

T (N)

2p T
(

N
2p

) = O

⎛
⎝ N2

2p
(

N2

22p2

)
⎞
⎠ = O (2p) .

(22)
Table 2 shows values of TNsub

flop(D) and values of measured
Scale-up factor compared with theoretical once. Finally, we
observe that measured values of Scale-up factor are defined
as in (23) with α1 < 1 and αNsub

< 1 as the parallel
implementation we have by using CUDA.

measured SDD−DA
Nsub

=︸︷︷︸
def

T
Nsub
flop(D)

(N) α1

Nsub T
Nsub
flop(D)

(
N

Nsub

)
αNsub

, (23)

since α1

αNsub
= β ≥ 1, we have

measured SDD−DA
Nsub

�
T

Nsub
flop(D)

(N)

Nsub T
Nsub
flop(D)

(
N

Nsub

)β

≥
T

Nsub
flop(D)

(N)

Nsub T
Nsub
flop(D)

(
N

Nsub

) = SDD−DA
Nsub

.

and Measured Scale-Up Factor Compared
with Theoretical One.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:9, No:5, 2015

1208International Scholarly and Scientific Research & Innovation 9(5) 2015 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:9

, N
o:

5,
 2

01
5

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
01

41
7.

pd
f

IV. CONCLUSIONS AND FUTURE WORK

Moving forward to exascale will put heavier demands on
algorithms in at least two areas: the need for increasing
amounts of data locality in order to perform computations
efficiently, and the need to obtain much higher factors
of fine-grained parallelism as high-end systems support
increasing numbers of compute threads. As a consequence,
parallel algorithms must adapt to this environment, and new
algorithms and implementations must be developed to extract
the computational capabilities of the new hardware.
We presented a parallel algorithm on GPU which is based
on a domain decomposition approach. The standard approach
for reducing the execution time of an algorithm on GPU
is to place concurrency inside the most time-consuming
computational kernels, i.e. to introduce a parallelism at the
level of fine-grained computations. Furthermore, in order to
reduce the data movement between host and device, thus
increasing the computation/communication ratio, the parallel
algorithm relies on a domain decomposition approach that
introduces a coarse-grained data decomposition which have
more favorable performance characteristics. Finally, coarse
and fine grained computations are suitably mapped on the
processing elements of our target architecture, that is the
multiprocessors and the ALUs respectively [9].
We are currently working on the deployment of this algorithm
in a concrete scenario. Mainly, we are working on the
variational DA systems used with the NEMO ocean model,
on emerging exascale computing architectures [7].

REFERENCES

[1] L. Carracciuolo, L. D’Amore, A. Murli, Towards a parallel component
for imaging in PETSc programming environment: A case study in 3-D
echocardiography, Parallel Computing, Vol. 32, (1), 2006, pp. 67-83.

[2] L. D’Amore, R. Arcucci, L. Marcellino and A. Murli, HPC
computation issues of the incremental 3D variational data assimilation
scheme in OceanVar software - Journal of Numerical Analysis,
Industrial and Applied Mathematics, vol. 7, no. 3-4, 2012, pp. 91-105.

[3] L. D’Amore, R. Arcucci, L. Marcellino, A. Murli - A Parallel
Three-dimensional Variational Data Assimilation Scheme - Numerical
Analysis and Applied Mathematics, AIP Conference Proccedings, Vol.
1389, 2011, pp. 1829-1831.

[4] L. D’Amore, R. Arcucci, L. Carracciuolo, A. Murli - DD-OceanVar:
a Domain Decomposition fully parallel Data Assimilation software
in Mediterranean Sea - Procedia Computer Science 18, 2013, pp.
1235-1244.

[5] L. D’Amore, R. Arcucci, L. Carracciuolo, A. Murli - A Scalable
Approach for Variational Data Assimilation - Journal of Scientific
Computing, Vol. 61, 2014, pp. 239-257.

[6] L. D’Amore, D. Casaburi, A. Galletti, L. Marcellino, A. Murli -
Integration of emerging computer technologies for an efficient image
sequences analysis, Vol. 18, (4), 2011, pp. 365-378.

[7] L. D’Amore, A. Murli, V. Boccia, L. Carracciuolo - Insertion of
PETSc in the NEMO stack software Driving NEMO towards Exascale
Computing, High Performance Computing and Simulation (HPCS),
July 2014, pp. 724 - 731, DOI:10.1109/HPCSim.2014.6903761.

[8] L. D’Amore, G. Laccetti, D. Romano, G. Scotti, A. Murli - Towards
a parallel component in a GPU-CUDA environment: a case study
with the L-BFGS Harwell routine - International Journal of Computer
Mathematics, DOI: 10.1080/00207160.2014.899589, 2015, Vol 92 (1),
pp. 59-76.

[9] L. D’Amore , D. Casaburi, A. Galletti, L. Marcellino, A. Murli -
Integration of emerging computer technologies for an efficient image
sequences analysis - Integrated Computer-Aided Engineering, Vol. 18,
(4), 2011, pp. 365-378.

[10] S. Dobricic, N. Pinardi, An oceanographic three-dimensional
variational data assimilation scheme - Ocean Modelling 22, 2008, pp.
89-105.

[11] S.A. Haben, A.S. Lawless,N.K. Nichols: Conditioning of the 3DVAR
Data Assimilation Problem, Mathematics Report 3/2009. Department
of Mathematics, University of Reading (2009)

[12] M. Harris - How to Implement Performance Metrics in CUDA C/C++
- November 7 2012, NVIDIA Web Site.

[13] NVIDIA, NVIDIA Compute Unified Device Architecture programming
guide version 2.3, NVIDIA Developer Web Site, (2009). Available at
http://developer.download.nvidia.com.

[14] NVIDIA, NVIDIA CUDA Programming Guide 3.1.1, 2010.
[15] E. Kalnay - Atmospheric Modeling, Data Assimilation and

Predictability. - Cambridge University Press, Cambridge, MA (2003)
[16] Khronos OpenCL Working Group, The OpenCL Specification: Version

797 1.1, 2010.
[17] The NEMO System Home Page - http://www.nemo-ocean.eu
[18] M. Showerman, J. Enos, A. Pant, V. Kindratenko, C. Steffen, R.

Pennington, W.M. Hwu - QP: A heterogeneous multi-accelerator
cluster - Proceedings of the 10th LCD International Conference on
High-Performance Clustered Computing, Boulder, Colorado, 2009.

[19] TOP500 Supercomputer Site. 2014. TOP500 Supercomputer
Novermeber 2014 List. http://www.top500.org/lists/2014/11

[20] C. Zhu, R.H. Byrd, P. Lu, and J. Nocedal, Algorithm 778: L-BFGS-B:
Fortran subroutines for large-scale bound constrained optimization,
ACM Trans. Math. Softw. 23, 1997, pp. 550-560.

Rossella Arcucci Her area of expertise is in Numerical Analysis, Scientific
Computing and development of methods, algorithms and software for
scientific applications on high performance architectures including parallel
and distributed computing. During her master degree in Mathematics she
started to work on mathematical models to study real phenomena and in her
master degree thesis in 2008, she used discretization methods to solve partial
differential equations (PDE). She gave particular attention to discretization
methods for elliptic, parabolic and hyperbolic problems which are the basis
of all the models that describe real phenomena. During and after her PhD
(obtained in 2012), she worked on Data Assimilation problem. Her main
contribution was been the development of a fully scalable mathematical
model for Variational Data Assimilation based on Domain Decomposition
method. Another interest of her is on high performance computing (HPC).
In this field she worked on a project aimed at the development of fully
scalable software for Data Assimilation able to effectively take advantage of
the available HPC resources and handle big data. By working on numerical
models which describe real phenomena, she realised the importance of
producing solutions as accurate as possible. She became aware of the
importance for a scientist of knowing how errors generated in hardware
propagate in numerical solutions. She has worked on models for error
detection in circuits in the context of reliable systems with electrical and
electronic engineers. At the moment, she is combining her competences in
numerical analysis and hardware architectures by working on numerical and
parallel techniques for both improving accuracy of solution and reducing
execution time for solving Data Assimilation models on supercomputers. She
is a researcher of University of Naples Federico II and she is collaborating
with a group of physics at Imperial College London on Data Assimilation
problems for oceanographic data.

Luisa D’Amore. Degree in Mathematics, in 1988. PhD in Applied
Mathematics and Computer Science, in 1995. Researcher in Numerical
Analysis, in 1996. Associate professor of Numerical Analysis, , at University
of Naples Federico II, (IT), since 2001. Associate staff researcher of the ASC
(Advanced Scientific Computing) Division of CMCC (Euro Mediterranean
Center on Climate Changes), since 2011. Member of the Academic Board of
the PhD in Mathematics and Informatics, of University of Naples Federico
II. Teacher of courses in Numerical Analysis, Scientific Computing and
Parallel Computing. Research activity focuses on Scientific Computing and
it is addressed to the numerical solution of ill-posed inverse problems with
applications in image analysis, medical imaging, astronomy, digital restoration
of films and data assimilation. The need of computing the numerical solution
on a suitable time, induced by the applications, often requires the use of
advanced computing architectures. This involves designing and development
of algorithms and software capable of exploiting the high performance of
emerging computing infrastructures. Research produces a total of about 100
publications in refereed journals and conference proceedings.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:9, No:5, 2015

1209International Scholarly and Scientific Research & Innovation 9(5) 2015 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:9

, N
o:

5,
 2

01
5

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
01

41
7.

pd
f

Simone Celestino He is currently a PhD student in Mathematics and
Computer Science at University of Naples ”Federico II”. His area of interest
is the High Performance Computing with particular attention to parallel
implementations on General Purpose Graphic Processing Unit (GPGPU). He
had a Master Degree in Computer Science obtained at the same University
where he is a PhD student, the subject of him thesis was on the development
of a parallel software implementing a rendering algorithm on GPUs.

Giuseppe Scotti. Degree in Computer Science at University of Naples
”Parthenope”. His thesis was on an implementation of a biological model on
Graphics Processing Units (GPU). He is currently a master degree student in
Computer Science at University of Naples Federico II. During his degree and
master degree he also worked as software developer in High Performance
Computing.

Giuliano Laccetti is presently Full professor of computer science at the
University of Naples Federico II, in Naples, Italy. He received his Laurea
degree (cum laude) in Physics from the University of Naples; his main
research interests are Mathematical Software, Scientific Computing, High
Performance Architecture for Scientific Computing, Distributed Computing,
Grid Computing, Cloud Computing, Algorithms on emerging hybrid
architectures (CPU+GPU, etc.). He is author (or co-author) of about 90 papers
published on refereed international Journals, chapters of books, Conference
Proceedings and Technical Reports. He has been involved in several EU
funded Projects (EGEE, EGEE II, EGEE III; in this last case he served as
University of Naples scientific coordinator). He has been involved also in
National (EU funded) Projects as SCOPE, and, presently, RECAS; in this
case, he is member of the Scientific and Management Board and he is also
coordinator of the curriculum Master Degree of the University of Naples about
Technologies for The High Performance Scientific Computing, funded by the
RECAS Project itself. In the recent past, he organised and chaired international
workshops (joined to the PPAM Conference, from 2007 to 2013) in Gdansk,
Torun, Warsaw, as well as he is planning to organise another one next year, in
Krakow, about methodologies, algorithms and software for hybrid computer
architectures; most recently, he (co)organised and (co)chaired, in Naples,
the International Conference Advances in Pure and Applied Mathematics.
Giuliano Laccetti is head of the High Performance Scientific Computing
Lab of the Department of Mathematics of the University of Naples; he is
also member of the editorial board of the journal Advances in Computer
Science and Engineering. Presently, he teaches Computer Programming I and
Computer Programming II to Computer Science undergraduate students, and
Parallel and Distributed Computing to Computer Science graduate students, as
well as to Mathematics graduate students. He is also member of the Teaching
and Steering Committee of the Ph.D. school on Mathematics and Computer
Science of the University of Naples. Giuliano Laccetti is (or has been) member
of ACM, IEEE-Computer Society, SIAM, SIMAI, AICA.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:9, No:5, 2015

1210International Scholarly and Scientific Research & Innovation 9(5) 2015 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:9

, N
o:

5,
 2

01
5

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
01

41
7.

pd
f

