Search results for: digital image processing
2291 The Grey Relational Analysis of the Influence Factors of Profit in Cartoon-s Character Merchandising Rights
Abstract:
This paper constructs a four factors theoretical model of Chinese small and medium enterprises based on the “cartoon characters- reputation - enterprise marketing and management capabilities – protection of the cartoon image - institutional environment" by literature research, case studies and investigation. The empirical study show that the greatest impact on current merchandising rights income is the institutional environment friendliness, followed by marketing and management capabilities, input of character image protection and Cartoon characters- reputation through the real-time grey relational analysis, and the greatest impact on post-merchandising rights profit is Cartoon characters reputation, followed by the institutional environment friendliness, then marketing and management ability and input of character image protection through the time-delay grey relational analysis.
Keywords: Cartoon characters, merchandising rights, influencefactors, grey relational analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15952290 Automatic Classification of Initial Categories of Alzheimer's Disease from Structural MRI Phase Images: A Comparison of PSVM, KNN and ANN Methods
Authors: Ahsan Bin Tufail, Ali Abidi, Adil Masood Siddiqui, Muhammad Shahzad Younis
Abstract:
An early and accurate detection of Alzheimer's disease (AD) is an important stage in the treatment of individuals suffering from AD. We present an approach based on the use of structural magnetic resonance imaging (sMRI) phase images to distinguish between normal controls (NC), mild cognitive impairment (MCI) and AD patients with clinical dementia rating (CDR) of 1. Independent component analysis (ICA) technique is used for extracting useful features which form the inputs to the support vector machines (SVM), K nearest neighbour (kNN) and multilayer artificial neural network (ANN) classifiers to discriminate between the three classes. The obtained results are encouraging in terms of classification accuracy and effectively ascertain the usefulness of phase images for the classification of different stages of Alzheimer-s disease.
Keywords: Biomedical image processing, classification algorithms, feature extraction, statistical learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27652289 Variable Input Range Continuous-time Switched Current Delta-sigma Analog Digital Converter for RFID CMOS Biosensor Applications
Authors: Boram Kim, Shigeyasu Uno, Kazuo Nakazato
Abstract:
Continuous-time delta-sigma analog digital converter (ADC) for radio frequency identification (RFID) complementary metal oxide semiconductor (CMOS) biosensor has been reported. This delta-sigma ADC is suitable for digital conversion of biosensor signal because of small process variation, and variable input range. As the input range of continuous-time switched current delta-sigma ADC (Dynamic range : 50 dB) can be limited by using current reference, amplification of biosensor signal is unnecessary. The input range is switched to wide input range mode or narrow input range mode by command of current reference. When the narrow input range mode, the input range becomes ± 0.8 V. The measured power consumption is 5 mW and chip area is 0.31 mm^2 using 1.2 um standard CMOS process. Additionally, automatic input range detecting system is proposed because of RFID biosensor applications.
Keywords: continuous time, delta sigma, A/D converter, RFID, biosensor, CMOS
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15622288 Biogas Control: Methane Production Monitoring Using Arduino
Authors: W. Ait Ahmed, M. Aggour, M. Naciri
Abstract:
Extracting energy from biomass is an important alternative to produce different types of energy (heat, electricity, or both) assuring low pollution and better efficiency. It is a new yet reliable approach to reduce green gas emission by extracting methane from industry effluents and use it to power machinery. We focused in our project on using paper and mill effluents, treated in a UASB reactor. The methane produced is used in the factory’s power supply. The aim of this work is to develop an electronic system using Arduino platform connected to a gas sensor, to measure and display the curve of daily methane production on processing. The sensor will send the gas values in ppm to the Arduino board so that the later sends the RS232 hardware protocol. The code developed with processing will transform the values into a curve and display it on the computer screen.Keywords: Biogas, Arduino, processing, code, methane, gas sensor, program.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35422287 Iterative Joint Power Control and Partial Crosstalk Cancellation in Upstream VDSL
Authors: H. Bagheri, H. Emami, M. R. Pakravan
Abstract:
Crosstalk is the major limiting issue in very high bit-rate digital subscriber line (VDSL) systems in terms of bit-rate or service coverage. At the central office side, joint signal processing accompanied by appropriate power allocation enables complex multiuser processors to provide near capacity rates. Unfortunately complexity grows with the square of the number of lines within a binder, so by taking into account that there are only a few dominant crosstalkers who contribute to main part of crosstalk power, the canceller structure can be simplified which resulted in a much lower run-time complexity. In this paper, a multiuser power control scheme, namely iterative waterfilling, is combined with previously proposed partial crosstalk cancellation approaches to demonstrate the best ever achieved performance which is verified by simulation results.
Keywords: iterative waterfilling, partial crosstalk cancellation, run-time complexity, VDSL.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14012286 Data Privacy and Safety with Large Language Models
Authors: Ashly Joseph, Jithu Paulose
Abstract:
Large language models (LLMs) have revolutionized natural language processing capabilities, enabling applications such as chatbots, dialogue agents, image, and video generators. Nevertheless, their trainings on extensive datasets comprising personal information poses notable privacy and safety hazards. This study examines methods for addressing these challenges, specifically focusing on approaches to enhance the security of LLM outputs, safeguard user privacy, and adhere to data protection rules. We explore several methods including post-processing detection algorithms, content filtering, reinforcement learning from human and AI inputs, and the difficulties in maintaining a balance between model safety and performance. The study also emphasizes the dangers of unintentional data leakage, privacy issues related to user prompts, and the possibility of data breaches. We highlight the significance of corporate data governance rules and optimal methods for engaging with chatbots. In addition, we analyze the development of data protection frameworks, evaluate the adherence of LLMs to General Data Protection Regulation (GDPR), and examine privacy legislation in academic and business policies. We demonstrate the difficulties and remedies involved in preserving data privacy and security in the age of sophisticated artificial intelligence by employing case studies and real-life instances. This article seeks to educate stakeholders on practical strategies for improving the security and privacy of LLMs, while also assuring their responsible and ethical implementation.
Keywords: Data privacy, large language models, artificial intelligence, machine learning, cybersecurity, general data protection regulation, data safety.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1022285 MJPEG Real-Time Transmission in Industrial Environments Using a CBR Channel
Authors: J. Silvestre, L. Almeida, R. Marau, P. Pedreiras
Abstract:
Currently, there are many local area industrial networks that can give guaranteed bandwidth to synchronous traffic, particularly providing CBR channels (Constant Bit Rate), which allow improved bandwidth management. Some of such networks operate over Ethernet, delivering channels with enough capacity, specially with compressors, to integrate multimedia traffic in industrial monitoring and image processing applications with many sources. In these industrial environments where a low latency is an essential requirement, JPEG is an adequate compressing technique but it generates VBR traffic (Variable Bit Rate). Transmitting VBR traffic in CBR channels is inefficient and current solutions to this problem significantly increase the latency or further degrade the quality. In this paper an R(q) model is used which allows on-line calculation of the JPEG quantification factor. We obtained increased quality, a lower requirement for the CBR channel with reduced number of discarded frames along with better use of the channel bandwidth.Keywords: Industrial Networks, Multimedia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15932284 An Improved Scheduling Strategy in Cloud Using Trust Based Mechanism
Authors: D. Sumathi, P. Poongodi
Abstract:
Cloud Computing refers to applications delivered as services over the internet, and the datacenters that provide those services with hardware and systems software. These were earlier referred to as Software as a Service (SaaS). Scheduling is justified by job components (called tasks), lack of information. In fact, in a large fraction of jobs from machine learning, bio-computing, and image processing domains, it is possible to estimate the maximum time required for a task in the job. This study focuses on Trust based scheduling to improve cloud security by modifying Heterogeneous Earliest Finish Time (HEFT) algorithm. It also proposes TR-HEFT (Trust Reputation HEFT) which is then compared to Dynamic Load Scheduling.Keywords: Software as a Service (SaaS), Trust, Heterogeneous Earliest Finish Time (HEFT) algorithm, Dynamic Load Scheduling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21942283 A Programmer’s Survey of the Quantum Computing Paradigm
Authors: Philippe Jorrand
Abstract:
Research in quantum computation is looking for the consequences of having information encoding, processing and communication exploit the laws of quantum physics, i.e. the laws which govern the ultimate knowledge that we have, today, of the foreign world of elementary particles, as described by quantum mechanics. This paper starts with a short survey of the principles which underlie quantum computing, and of some of the major breakthroughs brought by the first ten to fifteen years of research in this domain; quantum algorithms and quantum teleportation are very biefly presented. The next sections are devoted to one among the many directions of current research in the quantum computation paradigm, namely quantum programming languages and their semantics. A few other hot topics and open problems in quantum information processing and communication are mentionned in few words in the concluding remarks, the most difficult of them being the physical implementation of a quantum computer. The interested reader will find a list of useful references at the end of the paper.
Keywords: Quantum information processing, quantum algorithms, quantum programming languages.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20032282 Ray Tracing Modified 3D Image Method Simulation of Picocellular Propagation Channel Environment
Authors: F. Alwafie
Abstract:
In this paper, we present the simulation of the propagation characteristics of the picocellular propagation channel environment. The first aim has been to find a correct description of the environment for received wave.
The result of the first investigations is that the environment of the indoor wave significantly changes as we change the electric parameters of material constructions. A modified 3D ray tracing image method tool has been utilized for the coverage prediction. A detailed analysis of the dependence of the indoor wave on the wideband characteristics of the channel: root mean square (RMS) delay spread characteristics and Mean excess delay, is also investigated.
Keywords: Propagation, Ray Tracing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19522281 Information Overload, Information Literacy and Use of Technology by Students
Authors: Elena Krelja Kurelović, Jasminka Tomljanović, Vlatka Davidović
Abstract:
The development of web technologies and mobile devices makes creating, accessing, using and sharing information or communicating with each other simpler every day. However, while the amount of information constantly increasing it is becoming harder to effectively organize and find quality information despite the availability of web search engines, filtering and indexing tools. Although digital technologies have overall positive impact on students’ lives, frequent use of these technologies and digital media enriched with dynamic hypertext and hypermedia content, as well as multitasking, distractions caused by notifications, calls or messages; can decrease the attention span, make thinking, memorizing and learning more difficult, which can lead to stress and mental exhaustion. This is referred to as “information overload”, “information glut” or “information anxiety”. Objective of this study is to determine whether students show signs of information overload and to identify the possible predictors. Research was conducted using a questionnaire developed for the purpose of this study. The results show that students frequently use technology (computers, gadgets and digital media), while they show moderate level of information literacy. They have sometimes experienced symptoms of information overload. According to the statistical analysis, higher frequency of technology use and lower level of information literacy are correlated with larger information overload. The multiple regression analysis has confirmed that the combination of these two independent variables has statistically significant predictive capacity for information overload. Therefore, the information science teachers should pay attention to improving the level of students’ information literacy and educate them about the risks of excessive technology use.
Keywords: Information overload, technology use, digital media, information literacy, students.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26862280 Non-Rigid Registration of Medical Images Using an Automated Method
Authors: Panos Kotsas
Abstract:
This paper presents the application of a signal intensity independent registration criterion for non-rigid body registration of medical images. The criterion is defined as the weighted ratio image of two images. The ratio is computed on a voxel per voxel basis and weighting is performed by setting the ratios between signal and background voxels to a standard high value. The mean squared value of the weighted ratio is computed over the union of the signal areas of the two images and it is minimized using the Chebyshev polynomial approximation. The geometric transformation model adopted is a local cubic B-splines based model.
Keywords: Medical image, non-rigid, registration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14482279 Quantum Enhanced Correlation Matrix Memories via States Orthogonalisation
Authors: Mario Mastriani, Marcelo Naiouf
Abstract:
This paper introduces a Quantum Correlation Matrix Memory (QCMM) and Enhanced QCMM (EQCMM), which are useful to work with quantum memories. A version of classical Gram-Schmidt orthogonalisation process in Dirac notation (called Quantum Orthogonalisation Process: QOP) is presented to convert a non-orthonormal quantum basis, i.e., a set of non-orthonormal quantum vectors (called qudits) to an orthonormal quantum basis, i.e., a set of orthonormal quantum qudits. This work shows that it is possible to improve the performance of QCMM thanks QOP algorithm. Besides, the EQCMM algorithm has a lot of additional fields of applications, e.g.: Steganography, as a replacement Hopfield Networks, Bilevel image processing, etc. Finally, it is important to mention that the EQCMM is an extremely easy to implement in any firmware.
Keywords: Quantum Algebra, correlation matrix memory, Dirac notation, orthogonalisation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17182278 Local Spectrum Feature Extraction for Face Recognition
Authors: Muhammad Imran Ahmad, Ruzelita Ngadiran, Mohd Nazrin Md Isa, Nor Ashidi Mat Isa, Mohd Zaizu Ilyas, Raja Abdullah Raja Ahmad, Said Amirul Anwar Ab Hamid, Muzammil Jusoh
Abstract:
This paper presents two techniques, local feature extraction using image spectrum and low frequency spectrum modelling using GMM to capture the underlying statistical information to improve the performance of face recognition system. Local spectrum features are extracted using overlap sub block window that are mapped on the face image. For each of this block, spatial domain is transformed to frequency domain using DFT. A low frequency coefficient is preserved by discarding high frequency coefficients by applying rectangular mask on the spectrum of the facial image. Low frequency information is non- Gaussian in the feature space and by using combination of several Gaussian functions that has different statistical properties, the best feature representation can be modelled using probability density function. The recognition process is performed using maximum likelihood value computed using pre-calculated GMM components. The method is tested using FERET datasets and is able to achieved 92% recognition rates.
Keywords: Local features modelling, face recognition system, Gaussian mixture models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22522277 Frequency-Domain Design of Fractional-Order FIR Differentiators
Authors: Wei-Der Chang, Dai-Ming Chang, Eri-Wei Chiang, Chia-Hung Lin, Jian-Liung Chen
Abstract:
In this paper, a fractional-order FIR differentiator design method using the differential evolution (DE) algorithm is presented. In the proposed method, the FIR digital filter is designed to meet the frequency response of a desired fractal-order differentiator, which is evaluated in the frequency domain. To verify the design performance, another design method considered in the time-domain is also provided. Simulation results reveal the efficiency of the proposed method.Keywords: Fractional-order differentiator, FIR digital filter, Differential evolution algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22492276 Greek Compounds: A Challenging Case for the Parsing Techniques of PC-KIMMO v.2
Authors: Angela Ralli, Eleni Galiotou
Abstract:
In this paper we describe the recognition process of Greek compound words using the PC-KIMMO software. We try to show certain limitations of the system with respect to the principles of compound formation in Greek. Moreover, we discuss the computational processing of phenomena such as stress and syllabification which are indispensable for the analysis of such constructions and we try to propose linguistically-acceptable solutions within the particular system.
Keywords: Morpho-phonological parsing, compound words, two-level morphology, natural language processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16082275 Effective Context Lossless Image Coding Approach Based on Adaptive Prediction
Authors: Grzegorz Ulacha, Ryszard Stasiński
Abstract:
In the paper an effective context based lossless coding technique is presented. Three principal and few auxiliary contexts are defined. The predictor adaptation technique is an improved CoBALP algorithm, denoted CoBALP+. Cumulated predictor error combining 8 bias estimators is calculated. It is shown experimentally that indeed, the new technique is time-effective while it outperforms the well known methods having reasonable time complexity, and is inferior only to extremely computationally complex ones.Keywords: Adaptive prediction, context coding, image losslesscoding, prediction error bias correction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13492274 Massively-Parallel Bit-Serial Neural Networks for Fast Epilepsy Diagnosis: A Feasibility Study
Authors: Si Mon Kueh, Tom J. Kazmierski
Abstract:
There are about 1% of the world population suffering from the hidden disability known as epilepsy and major developing countries are not fully equipped to counter this problem. In order to reduce the inconvenience and danger of epilepsy, different methods have been researched by using a artificial neural network (ANN) classification to distinguish epileptic waveforms from normal brain waveforms. This paper outlines the aim of achieving massive ANN parallelization through a dedicated hardware using bit-serial processing. The design of this bit-serial Neural Processing Element (NPE) is presented which implements the functionality of a complete neuron using variable accuracy. The proposed design has been tested taking into consideration non-idealities of a hardware ANN. The NPE consists of a bit-serial multiplier which uses only 16 logic elements on an Altera Cyclone IV FPGA and a bit-serial ALU as well as a look-up table. Arrays of NPEs can be driven by a single controller which executes the neural processing algorithm. In conclusion, the proposed compact NPE design allows the construction of complex hardware ANNs that can be implemented in a portable equipment that suits the needs of a single epileptic patient in his or her daily activities to predict the occurrences of impending tonic conic seizures.Keywords: Artificial Neural Networks, bit-serial neural processor, FPGA, Neural Processing Element.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15722273 Networked Radar System to Increase Safety of Urban Railroad Crossing
Authors: S. Saponara, L. Fanucci, R. Cassettari, P. Ruggiero, M. Righetto
Abstract:
The paper presents an innovative networked radar system for detection of obstacles in a railway level crossing scenario. This Monitoring System (MS) is able to detect moving or still obstacles within the railway level crossing area automatically, avoiding the need of human presence for surveillance. The MS is also connected to the National Railway Information and Signaling System to communicate in real-time the level crossing status. The architecture is compliant with the highest Safety Integrity Level (SIL4) of the CENELEC standard. The number of radar sensors used is configurable at set-up time and depends on how large the level crossing area can be. At least two sensors are expected and up four can be used for larger areas. The whole processing chain that elaborates the output sensor signals, as well as the communication interface, is fully-digital, was designed in VHDL code and implemented onto a Xilinx Virtex 6.
Keywords: Radar for safe mobility, railroad crossing, railway, transport safety.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30892272 Face Recognition Using Morphological Shared-weight Neural Networks
Authors: Hossein Sahoolizadeh, Mahdi Rahimi, Hamid Dehghani
Abstract:
We introduce an algorithm based on the morphological shared-weight neural network. Being nonlinear and translation-invariant, the MSNN can be used to create better generalization during face recognition. Feature extraction is performed on grayscale images using hit-miss transforms that are independent of gray-level shifts. The output is then learned by interacting with the classification process. The feature extraction and classification networks are trained together, allowing the MSNN to simultaneously learn feature extraction and classification for a face. For evaluation, we test for robustness under variations in gray levels and noise while varying the network-s configuration to optimize recognition efficiency and processing time. Results show that the MSNN performs better for grayscale image pattern classification than ordinary neural networks.Keywords: Face recognition, Neural Networks, Multi-layer Perceptron, masking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15142271 An Approach for Blind Source Separation using the Sliding DFT and Time Domain Independent Component Analysis
Authors: Koji Yamanouchi, Masaru Fujieda, Takahiro Murakami, Yoshihisa Ishida
Abstract:
''Cocktail party problem'' is well known as one of the human auditory abilities. We can recognize the specific sound that we want to listen by this ability even if a lot of undesirable sounds or noises are mixed. Blind source separation (BSS) based on independent component analysis (ICA) is one of the methods by which we can separate only a special signal from their mixed signals with simple hypothesis. In this paper, we propose an online approach for blind source separation using the sliding DFT and the time domain independent component analysis. The proposed method can reduce calculation complexity in comparison with conventional methods, and can be applied to parallel processing by using digital signal processors (DSPs) and so on. We evaluate this method and show its availability.Keywords: Cocktail party problem, blind Source Separation(BSS), independent component analysis, sliding DFT, onlineprocessing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16372270 Modelling Silica Optical Fibre Reliability: A Software Application
Authors: I. Severin, M. Caramihai, R. El Abdi, M. Poulain, A. Avadanii
Abstract:
In order to assess optical fiber reliability in different environmental and stress conditions series of testing are performed simulating overlapping of chemical and mechanical controlled varying factors. Each series of testing may be compared using statistical processing: i.e. Weibull plots. Due to the numerous data to treat, a software application has appeared useful to interpret selected series of experiments in function of envisaged factors. The current paper presents a software application used in the storage, modelling and interpretation of experimental data gathered from optical fibre testing. The present paper strictly deals with the software part of the project (regarding the modelling, storage and processing of user supplied data).
Keywords: Optical fibres, computer aided analysis, data models, data processing, graphical user interfaces.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18222269 Air Handling Units Power Consumption Using Generalized Additive Model for Anomaly Detection: A Case Study in a Singapore Campus
Authors: Ju Peng Poh, Jun Yu Charles Lee, Jonathan Chew Hoe Khoo
Abstract:
The emergence of digital twin technology, a digital replica of physical world, has improved the real-time access to data from sensors about the performance of buildings. This digital transformation has opened up many opportunities to improve the management of the building by using the data collected to help monitor consumption patterns and energy leakages. One example is the integration of predictive models for anomaly detection. In this paper, we use the GAM (Generalised Additive Model) for the anomaly detection of Air Handling Units (AHU) power consumption pattern. There is ample research work on the use of GAM for the prediction of power consumption at the office building and nation-wide level. However, there is limited illustration of its anomaly detection capabilities, prescriptive analytics case study, and its integration with the latest development of digital twin technology. In this paper, we applied the general GAM modelling framework on the historical data of the AHU power consumption and cooling load of the building between Jan 2018 to Aug 2019 from an education campus in Singapore to train prediction models that, in turn, yield predicted values and ranges. The historical data are seamlessly extracted from the digital twin for modelling purposes. We enhanced the utility of the GAM model by using it to power a real-time anomaly detection system based on the forward predicted ranges. The magnitude of deviation from the upper and lower bounds of the uncertainty intervals is used to inform and identify anomalous data points, all based on historical data, without explicit intervention from domain experts. Notwithstanding, the domain expert fits in through an optional feedback loop through which iterative data cleansing is performed. After an anomalously high or low level of power consumption detected, a set of rule-based conditions are evaluated in real-time to help determine the next course of action for the facilities manager. The performance of GAM is then compared with other approaches to evaluate its effectiveness. Lastly, we discuss the successfully deployment of this approach for the detection of anomalous power consumption pattern and illustrated with real-world use cases.
Keywords: Anomaly detection, digital twin, Generalised Additive Model, Power Consumption Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5002268 Speech Enhancement Using Kalman Filter in Communication
Authors: Eng. Alaa K. Satti Salih
Abstract:
Revolutions Applications such as telecommunications, hands-free communications, recording, etc. which need at least one microphone, the signal is usually infected by noise and echo. The important application is the speech enhancement, which is done to remove suppressed noises and echoes taken by a microphone, beside preferred speech. Accordingly, the microphone signal has to be cleaned using digital signal processing DSP tools before it is played out, transmitted, or stored. Engineers have so far tried different approaches to improving the speech by get back the desired speech signal from the noisy observations. Especially Mobile communication, so in this paper will do reconstruction of the speech signal, observed in additive background noise, using the Kalman filter technique to estimate the parameters of the Autoregressive Process (AR) in the state space model and the output speech signal obtained by the MATLAB. The accurate estimation by Kalman filter on speech would enhance and reduce the noise then compare and discuss the results between actual values and estimated values which produce the reconstructed signals.
Keywords: Autoregressive Process, Kalman filter, Matlab and Noise speech.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40242267 Computer-based Alarm Processing and Presentation Methods in Nuclear Power Plants
Authors: Jung-Woon Lee, Jung-Taek Kim, Jae-Chang Park, In-Koo Hwang, Sung-Pil Lyu
Abstract:
Computerized alarm systems have been applied increasingly to nuclear power plants. For existing plants, an add-on computer alarm system is often installed to the control rooms. Alarm avalanches during the plant transients are major problems with the alarm systems in nuclear power plants. Computerized alarm systems can process alarms to reduce the number of alarms during the plant transients. This paper describes various alarm processing methods, an alarm cause tracking function, and various alarm presentation schemes to show alarm information to the operators effectively which are considered during the development of several computerized alarm systems for Korean nuclear power plants and are found to be helpful to the operators.Keywords: Alarm processing, Alarm presentation, Alarm causetracking, Alarm logic diagram computerization, Alarm patternrecognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23722266 Efficient HAAR Wavelet Transform with Embedded Zerotrees of Wavelet Compression for Color Images
Authors: S. Piramu Kailasam
Abstract:
This study is expected to compress true color image with compression algorithms in color spaces to provide high compression rates. The need of high compression ratio is to improve storage space. Alternative aim is to rank compression algorithms in a suitable color space. The dataset is sequence of true color images with size 128 x 128. HAAR Wavelet is one of the famous wavelet transforms, has great potential and maintains image quality of color images. HAAR wavelet Transform using Set Partitioning in Hierarchical Trees (SPIHT) algorithm with different color spaces framework is applied to compress sequence of images with angles. Embedded Zerotrees of Wavelet (EZW) is a powerful standard method to sequence data. Hence the proposed compression frame work of HAAR wavelet, xyz color space, morphological gradient and applied image with EZW compression, obtained improvement to other methods, in terms of Compression Ratio, Mean Square Error, Peak Signal Noise Ratio and Bits Per Pixel quality measures.
Keywords: Color Spaces, HAAR Wavelet, Morphological Gradient, Embedded Zerotrees Wavelet Compression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5172265 Tracking Activity of Real Individuals in Web Logs
Authors: Sándor Juhász, Renáta Iváncsy
Abstract:
This paper describes an enhanced cookie-based method for counting the visitors of web sites by using a web log processing system that aims to cope with the ambitious goal of creating countrywide statistics about the browsing practices of real human individuals. The focus is put on describing a new more efficient way of detecting human beings behind web users by placing different identifiers on the client computers. We briefly introduce our processing system designed to handle the massive amount of data records continuously gathered from the most important content providers of the Hungary. We conclude by showing statistics of different time spans comparing the efficiency of multiple visitor counting methods to the one presented here, and some interesting charts about content providers and web usage based on real data recorded in 2007 will also be presented.Keywords: Cookie based identification, real data, user activitytracking, web auditing, web log processing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13122264 An Approach to Image Extraction and Accurate Skin Detection from Web Pages
Authors: Moheb R. Girgis, Tarek M. Mahmoud, Tarek Abd-El-Hafeez
Abstract:
This paper proposes a system to extract images from web pages and then detect the skin color regions of these images. As part of the proposed system, using BandObject control, we built a Tool bar named 'Filter Tool Bar (FTB)' by modifying the Pavel Zolnikov implementation. The Yahoo! Team provides us with the Yahoo! SDK API, which also supports image search and is really useful. In the proposed system, we introduced three new methods for extracting images from the web pages (after loading the web page by using the proposed FTB, before loading the web page physically from the localhost, and before loading the web page from any server). These methods overcome the drawback of the regular expressions method for extracting images suggested by Ilan Assayag. The second part of the proposed system is concerned with the detection of the skin color regions of the extracted images. So, we studied two famous skin color detection techniques. The first technique is based on the RGB color space and the second technique is based on YUV and YIQ color spaces. We modified the second technique to overcome the failure of detecting complex image's background by using the saturation parameter to obtain an accurate skin detection results. The performance evaluation of the efficiency of the proposed system in extracting images before and after loading the web page from localhost or any server in terms of the number of extracted images is presented. Finally, the results of comparing the two skin detection techniques in terms of the number of pixels detected are presented.
Keywords: Browser Helper Object, Color spaces, Image and URL extraction, Skin detection, Web Browser events.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18942263 Rigid and Non-rigid Registration of Binary Objects using the Weighted Ratio Image
Authors: Panos Kotsas, Tony Dodd
Abstract:
This paper presents the application of a signal intensity independent similarity criterion for rigid and non-rigid body registration of binary objects. The criterion is defined as the weighted ratio image of two images. The ratio is computed on a voxel per voxel basis and weighting is performed by setting the raios between signal and background voxels to a standard high value. The mean squared value of the weighted ratio is computed over the union of the signal areas of the two images and it is minimized using the Chebyshev polynomial approximation.Keywords: rigid and non-rigid body registration, binary objects
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13302262 Spatial Audio Player Using Musical Genre Classification
Authors: Jun-Yong Lee, Hyoung-Gook Kim
Abstract:
In this paper, we propose a smart music player that combines the musical genre classification and the spatial audio processing. The musical genre is classified based on content analysis of the musical segment detected from the audio stream. In parallel with the classification, the spatial audio quality is achieved by adding an artificial reverberation in a virtual acoustic space to the input mono sound. Thereafter, the spatial sound is boosted with the given frequency gains based on the musical genre when played back. Experiments measured the accuracy of detecting the musical segment from the audio stream and its musical genre classification. A listening test was performed based on the virtual acoustic space based spatial audio processing.
Keywords: Automatic equalization, genre classification, music segment detection, spatial audio processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1623