Search results for: Heterogeneous Earliest Finish Time (HEFT) algorithm
8105 The Contribution of Diet and Lifestyle Factors in the Prevalence of Irritable Bowel Syndrome
Authors: Alexander Dao, Oscar Wambuguh
Abstract:
Irritable Bowel Syndrome (IBS) is a heterogeneous functional bowel disease that is characterized by chronic visceral abdominal pain and abnormal bowel function and habits. Its multifactorial pathophysiology and mechanisms are still largely a mystery to the contemporary biomedical community, although there are many hypotheses to try to explain IBS’s presumed physiological, psychosocial, genetic, and environmental etiologies. IBS’s symptomatic presentation is varied and divided into four major subtypes: IBS-C, IBS-D, IBS-M, and IBS-U. Given its diverse presentation and unclear mechanisms, diagnosis is done through a combination of positive identification utilizing the “Rome IV Irritable Bowel Syndrome Criteria'' (Rome IV) diagnostic criteria while also excluding other potential conditions with similar symptoms. Treatment of IBS is focused on the management of symptoms using an assortment of pharmaceuticals, lifestyle changes, and dietary changes, with future potential in microbial treatment and psychotherapy as other therapy methods. Its chronic, heterogeneous nature and disruptive gastrointestinal (GI) symptoms are negatively impactful on patients’ daily lives, health systems, and society. However, with a better understanding of the gaps in knowledge and technological advances in IBS’s pathophysiology, management, and treatment options, there is optimism for the millions of people worldwide who are suffering from the debilitating effects of IBS.
Keywords: Irritable bowel syndrome, lifestyle, diet, functional gastrointestinal disorder.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2118104 A Theory in Optimization of Ad-hoc Routing Algorithms
Authors: M. Kargar, F.Fartash, T. Saderi, M. Ebrahimi Dishabi
Abstract:
In this paper optimization of routing in ad-hoc networks is surveyed and a new method for reducing the complexity of routing algorithms is suggested. Using binary matrices for each node in the network and updating it once the routing is done, helps nodes to stop repeating the routing protocols in each data transfer. The algorithm suggested can reduce the complexity of routing to the least amount possible.Keywords: Ad-hoc Networks, Algorithm, Protocol, RoutingTrain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16768103 A Modified Laplace Decomposition Algorithm Solution for Blasius’ Boundary Layer Equation of the Flat Plate in a Uniform Stream
Authors: M. A. Koroma, Z. Chuangyi, A. F., Kamara, A. M. H. Conteh
Abstract:
In this work, we apply the Modified Laplace decomposition algorithm in finding a numerical solution of Blasius’ boundary layer equation for the flat plate in a uniform stream. The series solution is found by first applying the Laplace transform to the differential equation and then decomposing the nonlinear term by the use of Adomian polynomials. The resulting series, which is exactly the same as that obtained by Weyl 1942a, was expressed as a rational function by the use of diagonal padé approximant.
Keywords: Modified Laplace decomposition algorithm, Boundary layer equation, Padé approximant, Numerical solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23808102 An Anatomically-Based Model of the Nerves in the Human Foot
Authors: Muhammad Zeeshan UlHaque, Peng Du, Leo K. Cheng, Marc D. Jacobs
Abstract:
Sensory nerves in the foot play an important part in the diagnosis of various neuropathydisorders, especially in diabetes mellitus.However, a detailed description of the anatomical distribution of the nerves is currently lacking. A computationalmodel of the afferent nerves inthe foot may bea useful tool for the study of diabetic neuropathy. In this study, we present the development of an anatomically-based model of various major sensory nerves of the sole and dorsal sidesof the foot. In addition, we presentan algorithm for generating synthetic somatosensory nerve networks in the big-toe region of a right foot model. The algorithm was based on a modified version of the Monte Carlo algorithm, with the capability of being able to vary the intra-epidermal nerve fiber density in differentregionsof the foot model. Preliminary results from the combinedmodel show the realistic anatomical structure of the major nerves as well as the smaller somatosensory nerves of the foot. The model may now be developed to investigate the functional outcomes of structural neuropathyindiabetic patients.
Keywords: Diabetic neuropathy, Finite element modeling, Monte Carlo Algorithm, Somatosensory nerve networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23428101 Clustering Unstructured Text Documents Using Fading Function
Authors: Pallav Roxy, Durga Toshniwal
Abstract:
Clustering unstructured text documents is an important issue in data mining community and has a number of applications such as document archive filtering, document organization and topic detection and subject tracing. In the real world, some of the already clustered documents may not be of importance while new documents of more significance may evolve. Most of the work done so far in clustering unstructured text documents overlooks this aspect of clustering. This paper, addresses this issue by using the Fading Function. The unstructured text documents are clustered. And for each cluster a statistics structure called Cluster Profile (CP) is implemented. The cluster profile incorporates the Fading Function. This Fading Function keeps an account of the time-dependent importance of the cluster. The work proposes a novel algorithm Clustering n-ary Merge Algorithm (CnMA) for unstructured text documents, that uses Cluster Profile and Fading Function. Experimental results illustrating the effectiveness of the proposed technique are also included.Keywords: Clustering, Text Mining, Unstructured TextDocuments, Fading Function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19928100 Distributed Motion Control Real-Time Contouring Algorithm Implementation and Performance Test
Authors: Francisco J. Lopez-Jaquez, Sandra E. Ramirez-Jara
Abstract:
This paper presents an implementation and performance test of a distributed motion control system based on a master-slave configuration used to move a plasma-cutting torch over a predefined trajectory. The master is a general-purpose computer running on an open source operating system platform and software developer. Software running in the master computer generates commands on real time and we measure performance based on a selected set of differences between expected and observed distances. We are testing the null hypothesis that the outcome trajectory is identical to the input against the alternative hypothesis that there is a shift to the right or left of the input one. We used the Wilcoxon signed ranks test method for the hypothesis test.
Keywords: Distributed, motion, control, real-time, contouring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14978099 Investigating Polynomial Interpolation Functions for Zooming Low Resolution Digital Medical Images
Authors: Maninder Pal
Abstract:
Medical digital images usually have low resolution because of nature of their acquisition. Therefore, this paper focuses on zooming these images to obtain better level of information, required for the purpose of medical diagnosis. For this purpose, a strategy for selecting pixels in zooming operation is proposed. It is based on the principle of analog clock and utilizes a combination of point and neighborhood image processing. In this approach, the hour hand of clock covers the portion of image to be processed. For alignment, the center of clock points at middle pixel of the selected portion of image. The minute hand is longer in length, and is used to gain information about pixels of the surrounding area. This area is called neighborhood pixels region. This information is used to zoom the selected portion of the image. The proposed algorithm is implemented and its performance is evaluated for many medical images obtained from various sources such as X-ray, Computerized Tomography (CT) scan and Magnetic Resonance Imaging (MRI). However, for illustration and simplicity, the results obtained from a CT scanned image of head is presented. The performance of algorithm is evaluated in comparison to various traditional algorithms in terms of Peak signal-to-noise ratio (PSNR), maximum error, SSIM index, mutual information and processing time. From the results, the proposed algorithm is found to give better performance than traditional algorithms.
Keywords: Zooming, interpolation, medical images, resolution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15828098 Modeling HIV/AIDS Prevention by Defense
Authors: Farai Nyabadza
Abstract:
The functional response of an infective is the relationship between an infected individual-s infection rate and the abundance of the number of susceptibles that one can potentially be infected. In this paper, we consider defensive attitudes for HIV prevention (primary prevention) while at the same time emphasizing on offensive attitudes that reduce infection for those infected (secondary prevention). We look at how defenses can protect an uninfected individual in the case where high risk groups such as commercial sex workers and those who deliberately go out to look for partners. We propose an infection cycle that begins with a search, then an encounter, a proposal and contact. The infection cycle illustrates the various steps an infected individual goes through to successfully infect a susceptible. For heterogeneous transmission of HIV, there will be no infection unless there is contact. The ability to avoid an encounter, detection, proposal and contact constitute defense.Keywords: Functional response, Infection cycle, Prevention, Defences, SSS equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15338097 The Algorithm to Solve the Extend General Malfatti’s Problem in a Convex Circular Triangle
Authors: Ching-Shoei Chiang
Abstract:
The Malfatti’s problem solves the problem of fitting three circles into a right triangle such that these three circles are tangent to each other, and each circle is also tangent to a pair of the triangle’s sides. This problem has been extended to any triangle (called general Malfatti’s problem). Furthermore, the problem has been extended to have 1 + 2 + … + n circles inside the triangle with special tangency properties among circles and triangle sides; it is called the extended general Malfatti’s problem. In the extended general Malfatti’s problem, call it Tri(Tn), where Tn is the triangle number, there are closed-form solutions for the Tri(T₁) (inscribed circle) problem and Tri(T₂) (3 Malfatti’s circles) problem. These problems become more complex when n is greater than 2. In solving the Tri(Tn) problem, n > 2, algorithms have been proposed to solve these problems numerically. With a similar idea, this paper proposed an algorithm to find the radii of circles with the same tangency properties. Instead of the boundary of the triangle being a straight line, we use a convex circular arc as the boundary and try to find Tn circles inside this convex circular triangle with the same tangency properties among circles and boundary as in Tri(Tn) problems. We call these problems the Carc(Tn) problems. The algorithm is a mO(Tn) algorithm, where m is the number of iterations in the loop. It takes less than 1000 iterations and less than 1 second for the Carc(T16) problem, which finds 136 circles inside a convex circular triangle with specified tangency properties. This algorithm gives a solution for circle packing problem inside convex circular triangle with arbitrarily-sized circles. Many applications concerning circle packing may come from the result of the algorithm, such as logo design, architecture design, etc.
Keywords: Circle packing, computer-aided geometric design, geometric constraint solver, Malfatti’s problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1688096 An Energy Detection-Based Algorithm for Cooperative Spectrum Sensing in Rayleigh Fading Channel
Authors: H. Bakhshi, E. Khayyamian
Abstract:
Cognitive radios have been recognized as one of the most promising technologies dealing with the scarcity of the radio spectrum. In cognitive radio systems, secondary users are allowed to utilize the frequency bands of primary users when the bands are idle. Hence, how to accurately detect the idle frequency bands has attracted many researchers’ interest. Detection performance is sensitive toward noise power and gain fluctuation. Since signal to noise ratio (SNR) between primary user and secondary users are not the same and change over the time, SNR and noise power estimation is essential. In this paper, we present a cooperative spectrum sensing algorithm using SNR estimation to improve detection performance in the real situation.Keywords: Cognitive radio, cooperative spectrum sensing, energy detection, SNR estimation, spectrum sensing, Rayleigh fading channel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14158095 Design of Permanent Sensor Fault Tolerance Algorithms by Sliding Mode Observer for Smart Hybrid Powerpack
Authors: Sungsik Jo, Hyeonwoo Kim, Iksu Choi, Hunmo Kim
Abstract:
In the SHP, LVDT sensor is for detecting the length changes of the EHA output, and the thrust of the EHA is controlled by the pressure sensor. Sensor is possible to cause hardware fault by internal problem or external disturbance. The EHA of SHP is able to be uncontrollable due to control by feedback from uncertain information, on this paper; the sliding mode observer algorithm estimates the original sensor output information in permanent sensor fault. The proposed algorithm shows performance to recovery fault of disconnection and short circuit basically, also the algorithm detect various of sensor fault mode.Keywords: Smart Hybrid Powerpack (SHP), Electro Hydraulic Actuator (EHA), Permanent Sensor fault tolerance, Sliding mode observer (SMO), Graphic User Interface (GUI).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15008094 Genetic Algorithm based Optimization approach for MR Dampers Fuzzy Modeling
Authors: Behnam Mehrkian, Arash Bahar, Ali Chaibakhsh
Abstract:
Magneto-rheological (MR) fluid damper is a semiactive control device that has recently received more attention by the vibration control community. But inherent hysteretic and highly nonlinear dynamics of MR fluid damper is one of the challenging aspects to employ its unique characteristics. The combination of artificial neural network (ANN) and fuzzy logic system (FLS) have been used to imitate more precisely the behavior of this device. However, the derivative-based nature of adaptive networks causes some deficiencies. Therefore, in this paper, a novel approach that employ genetic algorithm, as a free-derivative algorithm, to enhance the capability of fuzzy systems, is proposed. The proposed method used to model MR damper. The results will be compared with adaptive neuro-fuzzy inference system (ANFIS) model, which is one of the well-known approaches in soft computing framework, and two best parametric models of MR damper. Data are generated based on benchmark program by applying a number of famous earthquake records.Keywords: Benchmark program, earthquake record filtering, fuzzy logic, genetic algorithm, MR damper.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21248093 Navigation Patterns Mining Approach based on Expectation Maximization Algorithm
Authors: Norwati Mustapha, Manijeh Jalali, Abolghasem Bozorgniya, Mehrdad Jalali
Abstract:
Web usage mining algorithms have been widely utilized for modeling user web navigation behavior. In this study we advance a model for mining of user-s navigation pattern. The model makes user model based on expectation-maximization (EM) algorithm.An EM algorithm is used in statistics for finding maximum likelihood estimates of parameters in probabilistic models, where the model depends on unobserved latent variables. The experimental results represent that by decreasing the number of clusters, the log likelihood converges toward lower values and probability of the largest cluster will be decreased while the number of the clusters increases in each treatment.Keywords: Web Usage Mining, Expectation maximization, navigation pattern mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15858092 A New Approach to Solve Blasius Equation using Parameter Identification of Nonlinear Functions based on the Bees Algorithm (BA)
Authors: E. Assareh, M.A. Behrang, M. Ghalambaz, A.R. Noghrehabadi, A. Ghanbarzadeh
Abstract:
In this paper, a new approach is introduced to solve Blasius equation using parameter identification of a nonlinear function which is used as approximation function. Bees Algorithm (BA) is applied in order to find the adjustable parameters of approximation function regarding minimizing a fitness function including these parameters (i.e. adjustable parameters). These parameters are determined how the approximation function has to satisfy the boundary conditions. In order to demonstrate the presented method, the obtained results are compared with another numerical method. Present method can be easily extended to solve a wide range of problems.Keywords: Bees Algorithm (BA); Approximate Solutions; Blasius Differential Equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18148091 A Forward Automatic Censored Cell-Averaging Detector for Multiple Target Situations in Log-Normal Clutter
Authors: Musa'ed N. Almarshad, Saleh A. Alshebeili, Mourad Barkat
Abstract:
A challenging problem in radar signal processing is to achieve reliable target detection in the presence of interferences. In this paper, we propose a novel algorithm for automatic censoring of radar interfering targets in log-normal clutter. The proposed algorithm, termed the forward automatic censored cell averaging detector (F-ACCAD), consists of two steps: removing the corrupted reference cells (censoring) and the actual detection. Both steps are performed dynamically by using a suitable set of ranked cells to estimate the unknown background level and set the adaptive thresholds accordingly. The F-ACCAD algorithm does not require any prior information about the clutter parameters nor does it require the number of interfering targets. The effectiveness of the F-ACCAD algorithm is assessed by computing, using Monte Carlo simulations, the probability of censoring and the probability of detection in different background environments.Keywords: CFAR, Log-normal clutter, Censoring, Probabilityof detection, Probability of false alarm, Probability of falsecensoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19228090 Bee Parameter Determination via Weighted Centriod Modified Simplex and Constrained Response Surface Optimisation Methods
Authors: P. Luangpaiboon
Abstract:
Various intelligences and inspirations have been adopted into the iterative searching process called as meta-heuristics. They intelligently perform the exploration and exploitation in the solution domain space aiming to efficiently seek near optimal solutions. In this work, the bee algorithm, inspired by the natural foraging behaviour of honey bees, was adapted to find the near optimal solutions of the transportation management system, dynamic multi-zone dispatching. This problem prepares for an uncertainty and changing customers- demand. In striving to remain competitive, transportation system should therefore be flexible in order to cope with the changes of customers- demand in terms of in-bound and outbound goods and technological innovations. To remain higher service level but lower cost management via the minimal imbalance scenario, the rearrangement penalty of the area, in each zone, including time periods are also included. However, the performance of the algorithm depends on the appropriate parameters- setting and need to be determined and analysed before its implementation. BEE parameters are determined through the linear constrained response surface optimisation or LCRSOM and weighted centroid modified simplex methods or WCMSM. Experimental results were analysed in terms of best solutions found so far, mean and standard deviation on the imbalance values including the convergence of the solutions obtained. It was found that the results obtained from the LCRSOM were better than those using the WCMSM. However, the average execution time of experimental run using the LCRSOM was longer than those using the WCMSM. Finally a recommendation of proper level settings of BEE parameters for some selected problem sizes is given as a guideline for future applications.Keywords: Meta-heuristic, Bee Algorithm, Dynamic Multi-Zone Dispatching, Linear Constrained Response SurfaceOptimisation Method, Weighted Centroid Modified Simplex Method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13778089 An Improved Algorithm for Calculation of the Third-order Orthogonal Tensor Product Expansion by Using Singular Value Decomposition
Authors: Chiharu Okuma, Naoki Yamamoto, Jun Murakami
Abstract:
As a method of expanding a higher-order tensor data to tensor products of vectors we have proposed the Third-order Orthogonal Tensor Product Expansion (3OTPE) that did similar expansion as Higher-Order Singular Value Decomposition (HOSVD). In this paper we provide a computation algorithm to improve our previous method, in which SVD is applied to the matrix that constituted by the contraction of original tensor data and one of the expansion vector obtained. The residual of the improved method is smaller than the previous method, truncating the expanding tensor products to the same number of terms. Moreover, the residual is smaller than HOSVD when applying to color image data. It is able to be confirmed that the computing time of improved method is the same as the previous method and considerably better than HOSVD.
Keywords: Singular value decomposition (SVD), higher-orderSVD (HOSVD), outer product expansion, power method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16968088 Minimal Residual Method for Adaptive Filtering with Finite Termination
Authors: Noor Atinah Ahmad, Shazia Javed
Abstract:
We present a discussion of three adaptive filtering algorithms well known for their one-step termination property, in terms of their relationship with the minimal residual method. These algorithms are the normalized least mean square (NLMS), Affine Projection algorithm (APA) and the recursive least squares algorithm (RLS). The NLMS is shown to be a result of the orthogonality condition imposed on the instantaneous approximation of the Wiener equation, while APA and RLS algorithm result from orthogonality condition in multi-dimensional minimal residual formulation. Further analysis of the minimal residual formulation for the RLS leads to a triangular system which also possesses the one-step termination property (in exact arithmetic)Keywords: Adaptive filtering, minimal residual method, projection method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15618087 A “Greedy“ Czech Manufacturing Case
Authors: George Cristian Gruia, Michal Kavan
Abstract:
The article describes a case study on one of Czech Republic-s manufacturing middle size enterprises (ME), where due to the European financial crisis, production lines had to be redesigned and optimized in order to minimize the total costs of the production of goods. It is considered an optimization problem of minimizing the total cost of the work load, according to the costs of the possible locations of the workplaces, with an application of the Greedy algorithm and a partial analogy to a Set Packing Problem. The displacement of working tables in a company should be as a one-toone monotone increasing function in order for the total costs of production of the goods to be at minimum. We use a heuristic approach with greedy algorithm for solving this linear optimization problem, regardless the possible greediness which may appear and we apply it in a Czech ME.Keywords: Czech, greedy algorithm, minimize, total costs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16318086 Motion Area Estimated Motion Estimation with Triplet Search Patterns for H.264/AVC
Authors: T. Song, T. Shimamoto
Abstract:
In this paper a fast motion estimation method for H.264/AVC named Triplet Search Motion Estimation (TS-ME) is proposed. Similar to some of the traditional fast motion estimation methods and their improved proposals which restrict the search points only to some selected candidates to decrease the computation complexity, proposed algorithm separate the motion search process to several steps but with some new features. First, proposed algorithm try to search the real motion area using proposed triplet patterns instead of some selected search points to avoid dropping into the local minimum. Then, in the localized motion area a novel 3-step motion search algorithm is performed. Proposed search patterns are categorized into three rings on the basis of the distance from the search center. These three rings are adaptively selected by referencing the surrounding motion vectors to early terminate the motion search process. On the other hand, computation reduction for sub pixel motion search is also discussed considering the appearance probability of the sub pixel motion vector. From the simulation results, motion estimation speed improved by a factor of up to 38 when using proposed algorithm than that of the reference software of H.264/AVC with ignorable picture quality loss.Keywords: Motion estimation, VLSI, image processing, search patterns
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13398085 A Multi-Population Differential Evolution with Adaptive Mutation and Local Search for Global Optimization
Authors: Zhoucheng Bao, Haiyan Zhu, Tingting Pang, Zuling Wang
Abstract:
This paper presents a multi population Differential Evolution (DE) with adaptive mutation and local search for global optimization, named AMMADE in order to better coordinate the cooperation between the populations and the rational use of resources. In AMMADE, the population is divided based on the Euclidean distance sorting method at each generation to appropriately coordinate the cooperation between subpopulations and the usage of resources, such that the best-performed subpopulation will get more computing resources in the next generation. Further, an adaptive local search strategy is employed on the best-performed subpopulation to achieve a balanced search. The proposed algorithm has been tested by solving optimization problems taken from CEC2014 benchmark problems. Experimental results show that our algorithm can achieve a competitive or better result than related methods. The results also confirm the significance of devised strategies in the proposed algorithm.
Keywords: Differential evolution, multi-mutation strategies, memetic algorithm, adaptive local search.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4598084 The Impact of Cutting Tool Materials on Cutting Force
Authors: M.A. Kamely, M.Y. Noordin
Abstract:
A judicious choice of insert material, tool geometry and cutting conditions can make hard turning produce better surfaces than grinding. In the present study, an attempt has been made to investigate the effect of cutting tool materials on cutting forces (feed force, thrust force and cutting force) in finish hard turning of AISI D2 cold work tool steel. In conclusion of the results obtained with a constant depth of cut and feed rate, it is important to note that cutting force is directly affected by cutting tool material.Keywords: hard turning, cutting force, cutting tool materials, mixed ceramic, cbn
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35528083 K-Means for Spherical Clusters with Large Variance in Sizes
Authors: A. M. Fahim, G. Saake, A. M. Salem, F. A. Torkey, M. A. Ramadan
Abstract:
Data clustering is an important data exploration technique with many applications in data mining. The k-means algorithm is well known for its efficiency in clustering large data sets. However, this algorithm is suitable for spherical shaped clusters of similar sizes and densities. The quality of the resulting clusters decreases when the data set contains spherical shaped with large variance in sizes. In this paper, we introduce a competent procedure to overcome this problem. The proposed method is based on shifting the center of the large cluster toward the small cluster, and recomputing the membership of small cluster points, the experimental results reveal that the proposed algorithm produces satisfactory results.Keywords: K-Means, Data Clustering, Cluster Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32878082 Learning an Overcomplete Dictionary using a Cauchy Mixture Model for Sparse Decay
Authors: E. S. Gower, M. O. J. Hawksford
Abstract:
An algorithm for learning an overcomplete dictionary using a Cauchy mixture model for sparse decomposition of an underdetermined mixing system is introduced. The mixture density function is derived from a ratio sample of the observed mixture signals where 1) there are at least two but not necessarily more mixture signals observed, 2) the source signals are statistically independent and 3) the sources are sparse. The basis vectors of the dictionary are learned via the optimization of the location parameters of the Cauchy mixture components, which is shown to be more accurate and robust than the conventional data mining methods usually employed for this task. Using a well known sparse decomposition algorithm, we extract three speech signals from two mixtures based on the estimated dictionary. Further tests with additive Gaussian noise are used to demonstrate the proposed algorithm-s robustness to outliers.Keywords: expectation-maximization, Pitman estimator, sparsedecomposition
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19578081 LumaCert: Conception and Creation of New Digital Certificate for Online User Authentication in e-Banking Systems
Authors: Artan Luma, Betim Prevalla, Besart Qoku, Bujar Raufi
Abstract:
Electronic banking must be secure and easy to use and many banks heavily advertise an apparent of 100% secure system which is contestable in many points. In this work, an alternative approach to the design of e-banking system, through a new solution for user authentication and security with digital certificate called LumaCert is introduced. The certificate applies new algorithm for asymmetric encryption by utilizing two mathematical operators called Pentors and UltraPentors. The public and private key in this algorithm represent a quadruple of parameters which are directly dependent from the above mentioned operators. The strength of the algorithm resides in the inability to find the respective Pentor and UltraPentor operator from the mentioned parameters.Keywords: Security, Digital Certificate, Cryptography.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22208080 On One Mathematical Model for Filtration of Weakly Compressible Chemical Compound in the Porous Heterogeneous 3D Medium. Part I: Model Construction with the Aid of the Ollendorff Approach
Authors: Sharif E. Guseynov, Jekaterina V. Aleksejeva, Janis S. Rimshans
Abstract:
A filtering problem of almost incompressible liquid chemical compound in the porous inhomogeneous 3D domain is studied. In this work general approaches to the solution of twodimensional filtering problems in ananisotropic, inhomogeneous and multilayered medium are developed, and on the basis of the obtained results mathematical models are constructed (according to Ollendorff method) for studying the certain engineering and technical problem of filtering the almost incompressible liquid chemical compound in the porous inhomogeneous 3D domain. For some of the formulated mathematical problems with additional requirements for the structure of the porous inhomogeneous medium, namely, its isotropy, spatial periodicity of its permeability coefficient, solution algorithms are proposed. Continuation of the current work titled ”On one mathematical model for filtration of weakly compressible chemical compound in the porous heterogeneous 3D medium. Part II: Determination of the reference directions of anisotropy and permeabilities on these directions” will be prepared in the shortest terms by the authors.
Keywords: Porous media, filtering, permeability, elliptic PDE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17618079 Active Surface Tracking Algorithm for All-Fiber Common-Path Fourier-Domain Optical Coherence Tomography
Authors: Bang Young Kim, Sang Hoon Park, Chul Gyu Song
Abstract:
A conventional optical coherence tomography (OCT) system has limited imaging depth, which is 1-2 mm, and suffers unwanted noise such as speckle noise. The motorized-stage-based OCT system, using a common-path Fourier-domain optical coherence tomography (CP-FD-OCT) configuration, provides enhanced imaging depth and less noise so that we can overcome these limitations. Using this OCT systems, OCT images were obtained from an onion, and their subsurface structure was observed. As a result, the images obtained using the developed motorized-stage-based system showed enhanced imaging depth than the conventional system, since it is real-time accurate depth tracking. Consequently, the developed CP-FD-OCT systems and algorithms have good potential for the further development of endoscopic OCT for microsurgery.Keywords: Common-path OCT, FD-OCT, OCT, Tracking algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16698078 Automated Algorithm for Removing Continuous Flame Spectrum Based On Sampled Linear Bases
Authors: Luis Arias, Jorge E. Pezoa, Daniel Sbárbaro
Abstract:
In this paper, an automated algorithm to estimate and remove the continuous baseline from measured spectra containing both continuous and discontinuous bands is proposed. The algorithm uses previous information contained in a Continuous Database Spectra (CDBS) to obtain a linear basis, with minimum number of sampled vectors, capable of representing a continuous baseline. The proposed algorithm was tested by using a CDBS of flame spectra where Principal Components Analysis and Non-negative Matrix Factorization were used to obtain linear bases. Thus, the radical emissions of natural gas, oil and bio-oil flames spectra at different combustion conditions were obtained. In order to validate the performance in the baseline estimation process, the Goodness-of-fit Coefficient and the Root Mean-squared Error quality metrics were evaluated between the estimated and the real spectra in absence of discontinuous emission. The achieved results make the proposed method a key element in the development of automatic monitoring processes strategies involving discontinuous spectral bands.
Keywords: Flame spectra, removing baseline, recovering spectrum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17588077 Sampling and Characterization of Fines Created during the Shredding of Non Hazardous Waste
Authors: Soukaina Oujana, Peggy Zwolinski
Abstract:
Fines are heterogeneous residues created during the shredding of non-hazardous waste. They are one of the most challenging issues faced by recyclers, because they are at the present time considered as non-sortable and non-reusable mixtures destined to landfill. However, fines contain a large amount of recoverable materials that could be recycled or reused for the production of solid recovered fuel. This research is conducted in relation to a project named ValoRABES. The aim is to characterize fines and establish a suitable sorting process in order to extract the materials contained in the mixture and define their suitable recovery paths. This paper will highlight the importance of a good sampling and will propose a sampling methodology for fines characterization. First results about the characterization will be also presented.
Keywords: Fines, non-hazardous waste, recovery, shredding residues, waste characterization, waste sampling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7928076 Evolving Neural Networks using Moment Method for Handwritten Digit Recognition
Authors: H. El Fadili, K. Zenkouar, H. Qjidaa
Abstract:
This paper proposes a neural network weights and topology optimization using genetic evolution and the backpropagation training algorithm. The proposed crossover and mutation operators aims to adapt the networks architectures and weights during the evolution process. Through a specific inheritance procedure, the weights are transmitted from the parents to their offsprings, which allows re-exploitation of the already trained networks and hence the acceleration of the global convergence of the algorithm. In the preprocessing phase, a new feature extraction method is proposed based on Legendre moments with the Maximum entropy principle MEP as a selection criterion. This allows a global search space reduction in the design of the networks. The proposed method has been applied and tested on the well known MNIST database of handwritten digits.Keywords: Genetic algorithm, Legendre Moments, MEP, Neural Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1671