Search results for: decision based artificial neural network.
12738 Multi-Agent Approach for Monitoring and Control of Biotechnological Processes
Authors: Ivanka Valova
Abstract:
This paper is aimed at using a multi-agent approach to monitor and diagnose a biotechnological system in order to validate certain control actions depending on the process development and the operating conditions. A multi-agent system is defined as a network of interacting software modules that collectively solve complex tasks. Remote monitoring and control of biotechnological processes is a necessity when automated and reliable systems operating with no interruption of certain activities are required. The advantage of our approach is in its flexibility, modularity and the possibility of improving by acquiring functionalities through the integration of artificial intelligence.
Keywords: Multi-agent approach, artificial intelligence, biotechnological processes, anaerobic biodegradation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7612737 Clustering Approach to Unveiling Relationships between Gene Regulatory Networks
Authors: Hiba Hasan, Khalid Raza
Abstract:
Reverse engineering of genetic regulatory network involves the modeling of the given gene expression data into a form of the network. Computationally it is possible to have the relationships between genes, so called gene regulatory networks (GRNs), that can help to find the genomics and proteomics based diagnostic approach for any disease. In this paper, clustering based method has been used to reconstruct genetic regulatory network from time series gene expression data. Supercoiled data set from Escherichia coli has been taken to demonstrate the proposed method.
Keywords: Gene expression, gene regulatory networks (GRNs), clustering, data preprocessing, network visualization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 215212736 Self-Organizing Map Network for Wheeled Robot Movement Optimization
Authors: Boguslaw Schreyer
Abstract:
The paper investigates the application of the Kohonen’s Self-Organizing Map (SOM) to the wheeled robot starting and braking dynamic states. In securing wheeled robot stability as well as minimum starting and braking time, it is important to ensure correct torque distribution as well as proper slope of braking and driving moments. In this paper, a correct movement distribution has been formulated, securing optimum adhesion coefficient and good transversal stability of a wheeled robot. A neural tuner has been proposed to secure the above properties, although most of the attention is attached to the SOM network application. If the delay of the torque application or torque release is not negligible, it is important to change the rising and falling slopes of the torque. The road/surface condition is also paramount in robot dynamic states control. As the road conditions may randomly change in time, application of the SOM network has been suggested in order to classify the actual road conditions.
Keywords: SOM network, torque distribution, torque slope, wheeled robots.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 59012735 Reliability Optimization for 3G Cellular Access Networks
Authors: Ekkaluk Eksook, Chutima Prommak
Abstract:
This paper address the network reliability optimization problem in the optical access network design for the 3G cellular systems. We presents a novel 0-1 integer programming model for designing optical access network topologies comprised of multi-rings with common-edge in order to guarantee always-on services. The results show that the proposed model yields access network topologies with the optimal reliablity and satisfies both network cost limitations and traffic demand requirements.Keywords: Network Reliability, Topological Network Design, 3G Cellular Networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 153912734 A Preliminary Study on the Suitability of Data Driven Approach for Continuous Water Level Modeling
Authors: Muhammad Aqil, Ichiro Kita, Moses Macalinao
Abstract:
Reliable water level forecasts are particularly important for warning against dangerous flood and inundation. The current study aims at investigating the suitability of the adaptive network based fuzzy inference system for continuous water level modeling. A hybrid learning algorithm, which combines the least square method and the back propagation algorithm, is used to identify the parameters of the network. For this study, water levels data are available for a hydrological year of 2002 with a sampling interval of 1-hour. The number of antecedent water level that should be included in the input variables is determined by two statistical methods, i.e. autocorrelation function and partial autocorrelation function between the variables. Forecasting was done for 1-hour until 12-hour ahead in order to compare the models generalization at higher horizons. The results demonstrate that the adaptive networkbased fuzzy inference system model can be applied successfully and provide high accuracy and reliability for river water level estimation. In general, the adaptive network-based fuzzy inference system provides accurate and reliable water level prediction for 1-hour ahead where the MAPE=1.15% and correlation=0.98 was achieved. Up to 12-hour ahead prediction, the model still shows relatively good performance where the error of prediction resulted was less than 9.65%. The information gathered from the preliminary results provide a useful guidance or reference for flood early warning system design in which the magnitude and the timing of a potential extreme flood are indicated.Keywords: Neural Network, Fuzzy, River, Forecasting
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 128912733 A Combined Fuzzy Decision Making Approach to Supply Chain Risk Assessment
Authors: P. Moeinzadeh, A. Hajfathaliha
Abstract:
Many firms implemented various initiatives such as outsourced manufacturing which could make a supply chain (SC) more vulnerable to various types of disruptions. So managing risk has become a critical component of SC management. Different types of SC vulnerability management methodologies have been proposed for managing SC risk, most offer only point-based solutions that deal with a limited set of risks. This research aims to reinforce SC risk management by proposing an integrated approach. SC risks are identified and a risk index classification structure is created. Then we develop a SC risk assessment approach based on the analytic network process (ANP) and the VIKOR methods under the fuzzy environment where the vagueness and subjectivity are handled with linguistic terms parameterized by triangular fuzzy numbers. By using FANP, risks weights are calculated and then inserted to the FVIKOR to rank the SC members and find the most risky partner.
Keywords: Analytic network process (ANP), Fuzzy sets, Supply chain risk management (SCRM), VIšekriterijumsko KOmpromisno Rangiranje (VIKOR)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 292812732 Performance Analysis of ERA Using Fuzzy Logic in Wireless Sensor Network
Authors: Kamalpreet Kaur, Harjit Pal Singh, Vikas Khullar
Abstract:
In Wireless Sensor Network (WSN), the main limitation is generally inimitable energy consumption during processing of the sensor nodes. Cluster head (CH) election is one of the main issues that can reduce the energy consumption. Therefore, discovering energy saving routing protocol is the focused area for research. In this paper, fuzzy-based energy aware routing protocol is presented, which enhances the stability and network lifetime of the network. Fuzzy logic ensures the well-organized selection of CH by taking four linguistic variables that are concentration, energy, centrality, and distance to base station (BS). The results show that the proposed protocol shows better results in requisites of stability and throughput of the network.
Keywords: ERA, fuzzy logic, network model, WSN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 87912731 Investigation on Novel Based Naturally-Inspired Swarm Intelligence Algorithms for Optimization Problems in Mobile Ad Hoc Networks
Authors: C. Rajan, K. Geetha, C. Rasi Priya, S. Geetha
Abstract:
Nature is the immense gifted source for solving complex problems. It always helps to find the optimal solution to solve the problem. Mobile Ad Hoc NETwork (MANET) is a wide research area of networks which has set of independent nodes. The characteristics involved in MANET’s are Dynamic, does not depend on any fixed infrastructure or centralized networks, High mobility. The Bio-Inspired algorithms are mimics the nature for solving optimization problems opening a new era in MANET. The typical Swarm Intelligence (SI) algorithms are Ant Colony Optimization (ACO), Artificial Bee Colony (ABC), Particle Swarm Optimization (PSO), Modified Termite Algorithm, Bat Algorithm (BA), Wolf Search Algorithm (WSA) and so on. This work mainly concentrated on nature of MANET and behavior of nodes. Also it analyses various performance metrics such as throughput, QoS and End-to-End delay etc.
Keywords: Ant Colony Algorithm, Artificial Bee Colony algorithm, Bio-Inspired algorithm, Modified Termite Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 247112730 Efficient Realization of an ADFE with a New Adaptive Algorithm
Authors: N. Praveen Kumar, Abhijit Mitra, C. Ardil
Abstract:
Decision feedback equalizers are commonly employed to reduce the error caused by intersymbol interference. Here, an adaptive decision feedback equalizer is presented with a new adaptation algorithm. The algorithm follows a block-based approach of normalized least mean square (NLMS) algorithm with set-membership filtering and achieves a significantly less computational complexity over its conventional NLMS counterpart with set-membership filtering. It is shown in the results that the proposed algorithm yields similar type of bit error rate performance over a reasonable signal to noise ratio in comparison with the latter one.Keywords: Decision feedback equalizer, Adaptive algorithm, Block based computation, Set membership filtering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 167712729 Enhancement of Stereo Video Pairs Using SDNs To Aid In 3D Reconstruction
Authors: Lewis E. Hibell, Honghai Liu, David J. Brown
Abstract:
This paper presents the results of enhancing images from a left and right stereo pair in order to increase the resolution of a 3D representation of a scene generated from that same pair. A new neural network structure known as a Self Delaying Dynamic Network (SDN) has been used to perform the enhancement. The advantage of SDNs over existing techniques such as bicubic interpolation is their ability to cope with motion and noise effects. SDNs are used to generate two high resolution images, one based on frames taken from the left view of the subject, and one based on the frames from the right. This new high resolution stereo pair is then processed by a disparity map generator. The disparity map generated is compared to two other disparity maps generated from the same scene. The first is a map generated from an original high resolution stereo pair and the second is a map generated using a stereo pair which has been enhanced using bicubic interpolation. The maps generated using the SDN enhanced pairs match more closely the target maps. The addition of extra noise into the input images is less problematic for the SDN system which is still able to out perform bicubic interpolation.
Keywords: Genetic Evolution, Image Enhancement, Neuron Networks, Stereo Vision
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 142412728 A New Recognition Scheme for Machine- Printed Arabic Texts based on Neural Networks
Authors: Z. Shaaban
Abstract:
This paper presents a new approach to tackle the problem of recognizing machine-printed Arabic texts. Because of the difficulty of recognizing cursive Arabic words, the text has to be normalized and segmented to be ready for the recognition stage. The new scheme for recognizing Arabic characters depends on multiple parallel neural networks classifier. The classifier has two phases. The first phase categories the input character into one of eight groups. The second phase classifies the character into one of the Arabic character classes in the group. The system achieved high recognition rate.
Keywords: Neural Networks, character recognition, feature extraction, multiple networks, Arabic text.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 147712727 Exponential State Estimation for Neural Networks with Leakage, Discrete and Distributed Delays
Authors: Liyuan Wang, Shouming Zhong
Abstract:
In this paper, the design problem of state estimator for neural networks with the mixed time-varying delays are investigated by constructing appropriate Lyapunov-Krasovskii functionals and using some effective mathematical techniques. In order to derive several conditions to guarantee the estimation error systems to be globally exponential stable, we transform the considered systems into the neural-type time-delay systems. Then with a set of linear inequalities(LMIs), we can obtain the stable criteria. Finally, three numerical examples are given to show the effectiveness and less conservatism of the proposed criterion.
Keywords: State estimator, Neural networks, Globally exponential stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 166412726 Improving Similarity Search Using Clustered Data
Authors: Deokho Kim, Wonwoo Lee, Jaewoong Lee, Teresa Ng, Gun-Ill Lee, Jiwon Jeong
Abstract:
This paper presents a method for improving object search accuracy using a deep learning model. A major limitation to provide accurate similarity with deep learning is the requirement of huge amount of data for training pairwise similarity scores (metrics), which is impractical to collect. Thus, similarity scores are usually trained with a relatively small dataset, which comes from a different domain, causing limited accuracy on measuring similarity. For this reason, this paper proposes a deep learning model that can be trained with a significantly small amount of data, a clustered data which of each cluster contains a set of visually similar images. In order to measure similarity distance with the proposed method, visual features of two images are extracted from intermediate layers of a convolutional neural network with various pooling methods, and the network is trained with pairwise similarity scores which is defined zero for images in identical cluster. The proposed method outperforms the state-of-the-art object similarity scoring techniques on evaluation for finding exact items. The proposed method achieves 86.5% of accuracy compared to the accuracy of the state-of-the-art technique, which is 59.9%. That is, an exact item can be found among four retrieved images with an accuracy of 86.5%, and the rest can possibly be similar products more than the accuracy. Therefore, the proposed method can greatly reduce the amount of training data with an order of magnitude as well as providing a reliable similarity metric.
Keywords: Visual search, deep learning, convolutional neural network, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 82512725 Efficient Design of Distribution Logistics by Using a Model-Based Decision Support System
Abstract:
The design of distribution logistics has a decisive impact on a company's logistics costs and performance. Hence, such solutions make an essential contribution to corporate success. This article describes a decision support system for analyzing the potential of distribution logistics in terms of logistics costs and performance. In contrast to previous procedures of business process re-engineering (BPR), this method maps distribution logistics holistically under variable distribution structures. Combined with qualitative measures the decision support system will contribute to a more efficient design of distribution logistics.
Keywords: Decision support system distribution logistics, potential analyses, supply chain management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 182312724 Improved Artificial Immune System Algorithm with Local Search
Authors: Ramin Javadzadeh., Zahra Afsahi, MohammadReza Meybodi
Abstract:
The Artificial immune systems algorithms are Meta heuristic optimization method, which are used for clustering and pattern recognition applications are abundantly. These algorithms in multimodal optimization problems are more efficient than genetic algorithms. A major drawback in these algorithms is their slow convergence to global optimum and their weak stability can be considered in various running of these algorithms. In this paper, improved Artificial Immune System Algorithm is introduced for the first time to overcome its problems of artificial immune system. That use of the small size of a local search around the memory antibodies is used for improving the algorithm efficiently. The credibility of the proposed approach is evaluated by simulations, and it is shown that the proposed approach achieves better results can be achieved compared to the standard artificial immune system algorithmsKeywords: Artificial immune system, Cellular Automata, Cellular learning automata, Cellular learning automata, , Local search, Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 189212723 Discrete Particle Swarm Optimization Algorithm Used for TNEP Considering Network Adequacy Restriction
Authors: H. Shayeghi, M. Mahdavi, A. Kazemi
Abstract:
Transmission network expansion planning (TNEP) is a basic part of power system planning that determines where, when and how many new transmission lines should be added to the network. Up till now, various methods have been presented to solve the static transmission network expansion planning (STNEP) problem. But in all of these methods, transmission expansion planning considering network adequacy restriction has not been investigated. Thus, in this paper, STNEP problem is being studied considering network adequacy restriction using discrete particle swarm optimization (DPSO) algorithm. The goal of this paper is obtaining a configuration for network expansion with lowest expansion cost and a specific adequacy. The proposed idea has been tested on the Garvers network and compared with the decimal codification genetic algorithm (DCGA). The results show that the network will possess maximum efficiency economically. Also, it is shown that precision and convergence speed of the proposed DPSO based method for the solution of the STNEP problem is more than DCGA approach.Keywords: DPSO algorithm, Adequacy restriction, STNEP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 154912722 A Soft Set based Group Decision Making Method with Criteria Weight
Authors: Samsiah Abdul Razak, Daud Mohamad
Abstract:
Molodstov-s soft sets theory was originally proposed as general mathematical tool for dealing with uncertainty problems. The matrix form has been introduced in soft set and some of its properties have been discussed. However, the formulation of soft matrix in group decision making problem only with equal importance weights of criteria, which does not show the true opinion of decision maker on each criteria. The aim of this paper is to propose a method for solving group decision making problem incorporating the importance of criteria by using soft matrices in a more objective manner. The weight of each criterion is calculated by using the Analytic Hierarchy Process (AHP) method. An example of house selection process is given to illustrate the effectiveness of the proposed method.Keywords: Soft set, Soft Matrix, Soft max-min decision making (SMmDM), Analytic hierarchy process (AHP)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 190012721 ANN Based Currency Recognition System using Compressed Gray Scale and Application for Sri Lankan Currency Notes - SLCRec
Authors: D. A. K. S. Gunaratna, N. D. Kodikara, H. L. Premaratne
Abstract:
Automatic currency note recognition invariably depends on the currency note characteristics of a particular country and the extraction of features directly affects the recognition ability. Sri Lanka has not been involved in any kind of research or implementation of this kind. The proposed system “SLCRec" comes up with a solution focusing on minimizing false rejection of notes. Sri Lankan currency notes undergo severe changes in image quality in usage. Hence a special linear transformation function is adapted to wipe out noise patterns from backgrounds without affecting the notes- characteristic images and re-appear images of interest. The transformation maps the original gray scale range into a smaller range of 0 to 125. Applying Edge detection after the transformation provided better robustness for noise and fair representation of edges for new and old damaged notes. A three layer back propagation neural network is presented with the number of edges detected in row order of the notes and classification is accepted in four classes of interest which are 100, 500, 1000 and 2000 rupee notes. The experiments showed good classification results and proved that the proposed methodology has the capability of separating classes properly in varying image conditions.Keywords: Artificial intelligence, linear transformation and pattern recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 283312720 On-line Handwritten Character Recognition: An Implementation of Counterpropagation Neural Net
Authors: Muhammad Faisal Zafar, Dzulkifli Mohamad, Razib M. Othman
Abstract:
On-line handwritten scripts are usually dealt with pen tip traces from pen-down to pen-up positions. Time evaluation of the pen coordinates is also considered along with trajectory information. However, the data obtained needs a lot of preprocessing including filtering, smoothing, slant removing and size normalization before recognition process. Instead of doing such lengthy preprocessing, this paper presents a simple approach to extract the useful character information. This work evaluates the use of the counter- propagation neural network (CPN) and presents feature extraction mechanism in full detail to work with on-line handwriting recognition. The obtained recognition rates were 60% to 94% using the CPN for different sets of character samples. This paper also describes a performance study in which a recognition mechanism with multiple thresholds is evaluated for counter-propagation architecture. The results indicate that the application of multiple thresholds has significant effect on recognition mechanism. The method is applicable for off-line character recognition as well. The technique is tested for upper-case English alphabets for a number of different styles from different peoples.
Keywords: On-line character recognition, character digitization, counter-propagation neural networks, extreme coordinates.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 243112719 Adolescents’ Role in Family Buying Decision Making
Authors: Harleen Kaur, Deepika Jindal Singla
Abstract:
Buying decision making is a complicated process, in which consumer’s decision is under the impact of others. The buying decision making is directed in a way that they have to act as customers in the society. Media and family are key socialising agents for adolescents’. Moreover, changes in the socio-cultural environment in India necessitate that adolescents’ influence in family’s buying decision-making should be investigated. In comparison to Western society, Indian is quite different, when compared in terms of family composition and structure, behaviour, values and norms which effect adolescents’ buying decision-making.
Keywords: Adolescents’, buying behaviour, Indian urban families, consumer socialization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 93012718 3D Object Model Reconstruction Based on Polywogs Wavelet Network Parametrization
Authors: Mohamed Othmani, Yassine Khlifi
Abstract:
This paper presents a technique for compact three dimensional (3D) object model reconstruction using wavelet networks. It consists to transform an input surface vertices into signals,and uses wavelet network parameters for signal approximations. To prove this, we use a wavelet network architecture founded on several mother wavelet families. POLYnomials WindOwed with Gaussians (POLYWOG) wavelet families are used to maximize the probability to select the best wavelets which ensure the good generalization of the network. To achieve a better reconstruction, the network is trained several iterations to optimize the wavelet network parameters until the error criterion is small enough. Experimental results will shown that our proposed technique can effectively reconstruct an irregular 3D object models when using the optimized wavelet network parameters. We will prove that an accurateness reconstruction depends on the best choice of the mother wavelets.Keywords: 3D object, optimization, parametrization, Polywog wavelets, reconstruction, wavelet networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 150112717 Implementation of TinyHash based on Hash Algorithm for Sensor Network
Authors: HangRok Lee, YongJe Choi, HoWon Kim
Abstract:
In recent years, it has been proposed security architecture for sensor network.[2][4]. One of these, TinySec by Chris Kalof, Naveen Sastry, David Wagner had proposed Link layer security architecture, considering some problems of sensor network. (i.e : energy, bandwidth, computation capability,etc). The TinySec employs CBC_mode of encryption and CBC-MAC for authentication based on SkipJack Block Cipher. Currently, This TinySec is incorporated in the TinyOS for sensor network security. This paper introduces TinyHash based on general hash algorithm. TinyHash is the module in order to replace parts of authentication and integrity in the TinySec. it implies that apply hash algorithm on TinySec architecture. For compatibility about TinySec, Components in TinyHash is constructed as similar structure of TinySec. And TinyHash implements the HMAC component for authentication and the Digest component for integrity of messages. Additionally, we define the some interfaces for service associated with hash algorithm.Keywords: sensor network security, nesC, TinySec, TinyOS, Hash, HMAC, integrity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 235412716 Model-Based Small Area Estimation with Application to Unemployment Estimates
Authors: Hichem Omrani, Philippe Gerber, Patrick Bousch
Abstract:
The problem of Small Area Estimation (SAE) is complex because of various information sources and insufficient data. In this paper, an approach for SAE is presented for decision-making at national, regional and local level. We propose an Empirical Best Linear Unbiased Predictor (EBLUP) as an estimator in order to combine several information sources to evaluate various indicators. First, we present the urban audit project and its environmental, social and economic indicators. Secondly, we propose an approach for decision making in order to estimate indicators. An application is used to validate the theoretical proposal. Finally, a decision support system is presented based on open-source environment.
Keywords: Small area estimation, statistical method, sampling, empirical best linear unbiased predictor (EBLUP), decision-making.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 171212715 Comparison among Various Question Generations for Decision Tree Based State Tying in Persian Language
Authors: Nasibeh Nasiri, Dawood Talebi Khanmiri
Abstract:
Performance of any continuous speech recognition system is highly dependent on performance of the acoustic models. Generally, development of the robust spoken language technology relies on the availability of large amounts of data. Common way to cope with little data for training each state of Markov models is treebased state tying. This tying method applies contextual questions to tie states. Manual procedure for question generation suffers from human errors and is time consuming. Various automatically generated questions are used to construct decision tree. There are three approaches to generate questions to construct HMMs based on decision tree. One approach is based on misrecognized phonemes, another approach basically uses feature table and the other is based on state distributions corresponding to context-independent subword units. In this paper, all these methods of automatic question generation are applied to the decision tree on FARSDAT corpus in Persian language and their results are compared with those of manually generated questions. The results show that automatically generated questions yield much better results and can replace manually generated questions in Persian language.
Keywords: Decision Tree, Markov Models, Speech Recognition, State Tying.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 172212714 Home Network-Specific RBAC Model
Authors: Geon-Woo Kim, Do-Woo Kim, Jun-Ho Lee, Jin-Beon Hwang, Jong-Wook Han
Abstract:
As various mobile sensing technologies, remote control and ubiquitous infrastructure are developing and expectations on quality of life are increasing, a lot of researches and developments on home network technologies and services are actively on going, Until now, we have focused on how to provide users with high-level home network services, while not many researches on home network security for guaranteeing safety are progressing. So, in this paper, we propose an access control model specific to home network that provides various kinds of users with home network services up one-s characteristics and features, and protects home network systems from illegal/unnecessary accesses or intrusions.Keywords: Home network security, RBAC, access control, authentication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 173012713 Behavioral Signature Generation using Shadow Honeypot
Authors: Maros Barabas, Michal Drozd, Petr Hanacek
Abstract:
A novel behavioral detection framework is proposed to detect zero day buffer overflow vulnerabilities (based on network behavioral signatures) using zero-day exploits, instead of the signature-based or anomaly-based detection solutions currently available for IDPS techniques. At first we present the detection model that uses shadow honeypot. Our system is used for the online processing of network attacks and generating a behavior detection profile. The detection profile represents the dataset of 112 types of metrics describing the exact behavior of malware in the network. In this paper we present the examples of generating behavioral signatures for two attacks – a buffer overflow exploit on FTP server and well known Conficker worm. We demonstrated the visualization of important aspects by showing the differences between valid behavior and the attacks. Based on these metrics we can detect attacks with a very high probability of success, the process of detection is however very expensive.Keywords: behavioral signatures, metrics, network, security design
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 205312712 Pruning Method of Belief Decision Trees
Authors: Salsabil Trabelsi, Zied Elouedi, Khaled Mellouli
Abstract:
The belief decision tree (BDT) approach is a decision tree in an uncertain environment where the uncertainty is represented through the Transferable Belief Model (TBM), one interpretation of the belief function theory. The uncertainty can appear either in the actual class of training objects or attribute values of objects to classify. In this paper, we develop a post-pruning method of belief decision trees in order to reduce size and improve classification accuracy on unseen cases. The pruning of decision tree has a considerable intention in the areas of machine learning.Keywords: machine learning, uncertainty, belief function theory, belief decision tree, pruning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 191012711 The Use of Dynamically Optimised High Frequency Moving Average Strategies for Intraday Trading
Authors: Abdalla Kablan, Joseph Falzon
Abstract:
This paper is motivated by the aspect of uncertainty in financial decision making, and how artificial intelligence and soft computing, with its uncertainty reducing aspects can be used for algorithmic trading applications that trade in high frequency. This paper presents an optimized high frequency trading system that has been combined with various moving averages to produce a hybrid system that outperforms trading systems that rely solely on moving averages. The paper optimizes an adaptive neuro-fuzzy inference system that takes both the price and its moving average as input, learns to predict price movements from training data consisting of intraday data, dynamically switches between the best performing moving averages, and performs decision making of when to buy or sell a certain currency in high frequency.Keywords: Financial decision making, High frequency trading, Adaprive neuro-fuzzy systems, moving average strategy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 507212710 Financing Decision and Productivity Growth for the Venture Capital Industry Using High-Order Fuzzy Time Series
Authors: Shang-En Yu
Abstract:
Human society, there are many uncertainties, such as economic growth rate forecast of the financial crisis, many scholars have, since the the Song Chissom two scholars in 1993 the concept of the so-called fuzzy time series (Fuzzy Time Series)different mode to deal with these problems, a previous study, however, usually does not consider the relevant variables selected and fuzzy process based solely on subjective opinions the fuzzy semantic discrete, so can not objectively reflect the characteristics of the data set, in addition to carrying outforecasts are often fuzzy rules as equally important, failed to consider the importance of each fuzzy rule. For these reasons, the variable selection (Factor Selection) through self-organizing map (Self-Organizing Map, SOM) and proposed high-end weighted multivariate fuzzy time series model based on fuzzy neural network (Fuzzy-BPN), and using the the sequential weighted average operator (Ordered Weighted Averaging operator, OWA) weighted prediction. Therefore, in order to verify the proposed method, the Taiwan stock exchange (Taiwan Stock Exchange Corporation) Taiwan Weighted Stock Index (Taiwan Stock Exchange Capitalization Weighted Stock Index, TAIEX) as experimental forecast target, in order to filter the appropriate variables in the experiment Finally, included in other studies in recent years mode in conjunction with this study, the results showed that the predictive ability of this study further improve.
Keywords: Heterogeneity, residential mortgage loans, foreclosure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 138812709 Reduction of Overheads with Dynamic Caching in Fixed AODV based MANETs
Authors: Babar S. Kawish, Baber Aslam, Shoab A Khan
Abstract:
In this paper we show that adjusting ART in accordance with static network scenario can substantially improve the performance of AODV by reducing control overheads. We explain the relationship of control overheads with network size and request patterns of the users. Through simulation we show that making ART proportionate to network static time reduces the amount of control overheads independent of network size and user request patterns.
Keywords: AODV, ART, MANET, Route Cache, TTL.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1745