Search results for: adaptive tabu search
432 Cross-Industry Innovations – Systematic Identification and Adaption
Authors: Niklas Echterhoff, Benjamin Amshoff, Jürgen Gausemeier
Abstract:
Due to today-s fierce competition, companies have to be proactive creators of the future by effectively developing innovations. Especially radical innovations allow high profit margins – but they also entail high risks. One possibility to realize radical innovations and reduce the risk of failure is cross-industry innovation (CII). CII brings together problems and solution ideas from different industries. However, there is a lack of systematic ways towards CII. Bridging this gap, the present paper provides a systematic approach towards planned CII. Starting with the analysis of potentials, the definition of promising search strategies is crucial. Subsequently, identified solution ideas need to be assessed. For the most promising ones, the adaption process has to be systematically planned – regarding the risk affinity of a company. The introduced method is explained on a project from the furniture industry.Keywords: Analogy building, cross-industry innovations, knowledge transfer, solution adaption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2688431 An Overview of Evaluations Using Augmented Reality for Assembly Training Tasks
Authors: S. Werrlich, E. Eichstetter, K. Nitsche, G. Notni
Abstract:
Augmented Reality (AR) is a strong growing research topic in different training domains such as medicine, sports, military, education and industrial use cases like assembly and maintenance tasks. AR claims to improve the efficiency and skill-transfer of training tasks. This paper gives a comprehensive overview of evaluations using AR for assembly and maintenance training tasks published between 1992 and 2017. We search in a structured way in four different online databases and get 862 results. We select 17 relevant articles focusing on evaluating AR-based training applications for assembly and maintenance tasks. This paper also indicates design guidelines which are necessary for creating a successful application for an AR-based training. We also present five scientific limitations in the field of AR-based training for assembly tasks. Finally, we show our approach to solve current research problems using Design Science Research (DSR).
Keywords: Assembly, augmented reality, survey, training.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1940430 Portable Continuous Aerosol Concentrator for the Determination of NO2 in the Air
Authors: J. Kellner, A. Bumbová, D. Pluskal, A. Langerová, Z. Večeřa, P. Mikuška
Abstract:
The paper deals with the development of portable aerosol concentrator and its application for the determination of nitrites and nitrates. The device enables the continuous trapping of pollutants in the air. An extensive literature search has been elaborated which aims at the development of samplers and the possibilities of their application in the continuous determination of volatile organic compounds. The practical part of the paper is focused on the development of the portable aerosol concentrator. The device using the Aerosol Enrichment Unit has been experimentally verified and subsequently realized. It operates on the principle of equilibrium accumulation of pollutants from the gaseous phase using absorption liquid polydisperse aerosol. The device has been applied for monitoring nitrites and nitrates in the air. The chemiluminescence detector was used for detection; the achieved detection limit for nitrites was 28 ng/m3 and for nitrates 78 ng/m3.
Keywords: aerosol enrichment unit, air pollution, NO2, portableaerosol concentrator
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1799429 A Pipelined FSBM Hardware Architecture for HTDV-H.26x
Authors: H. Loukil, A. Ben Atitallah, F. Ghozzi, M. A. Ben Ayed, N. Masmoudi
Abstract:
In MPEG and H.26x standards, to eliminate the temporal redundancy we use motion estimation. Given that the motion estimation stage is very complex in terms of computational effort, a hardware implementation on a re-configurable circuit is crucial for the requirements of different real time multimedia applications. In this paper, we present hardware architecture for motion estimation based on "Full Search Block Matching" (FSBM) algorithm. This architecture presents minimum latency, maximum throughput, full utilization of hardware resources such as embedded memory blocks, and combining both pipelining and parallel processing techniques. Our design is described in VHDL language, verified by simulation and implemented in a Stratix II EP2S130F1020C4 FPGA circuit. The experiment result show that the optimum operating clock frequency of the proposed design is 89MHz which achieves 160M pixels/sec.Keywords: SAD, FSBM, Hardware Implementation, FPGA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1647428 Mechanical Qualification Test Campaign on the Demise Observation Capsule
Authors: B. Tiseo, V. Quaranta, G. Bruno, R. Gardi, T. Watts, S. Dussy
Abstract:
This paper describes the qualification test campaign performed on the Demise Observation Capsule DOC-EQM as part of the Future Launch Preparatory Program FLPP3. The mechanical environment experienced during launch ascent and separation phase was first identified and then replicated in terms of sine, random and shock vibration. The loads identification is derived by selecting the worst possible case. Vibration and shock qualification test performed at CIRA Space Qualification laboratory is herein described. Mechanical fixtures’ design and validation, carried out by means of FEM, is also addressed due to its fundamental role in the vibrational test campaign. The Demise Observation Capsule (DOC) successfully passed the qualification test campaign. Functional test and resonance search have not been point any fault and damages of the capsule.
Keywords: Capsule, demise, DOC, launch environment, Re-Entry, qualification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 587427 An Image Segmentation Algorithm for Gradient Target Based on Mean-Shift and Dictionary Learning
Authors: Yanwen Li, Shuguo Xie
Abstract:
In electromagnetic imaging, because of the diffraction limited system, the pixel values could change slowly near the edge of the image targets and they also change with the location in the same target. Using traditional digital image segmentation methods to segment electromagnetic gradient images could result in lots of errors because of this change in pixel values. To address this issue, this paper proposes a novel image segmentation and extraction algorithm based on Mean-Shift and dictionary learning. Firstly, the preliminary segmentation results from adaptive bandwidth Mean-Shift algorithm are expanded, merged and extracted. Then the overlap rate of the extracted image block is detected before determining a segmentation region with a single complete target. Last, the gradient edge of the extracted targets is recovered and reconstructed by using a dictionary-learning algorithm, while the final segmentation results are obtained which are very close to the gradient target in the original image. Both the experimental results and the simulated results show that the segmentation results are very accurate. The Dice coefficients are improved by 70% to 80% compared with the Mean-Shift only method.
Keywords: Gradient image, segmentation and extract, mean-shift algorithm, dictionary learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 978426 Motion Control of an Autonomous Surface Vessel for Enhanced Situational Awareness
Authors: Igor Astrov, Mikhail Pikkov, Rein Paluoja
Abstract:
This paper focuses on the critical components of the situational awareness (SA), the controls of position and orientation of an autonomous surface vessel (ASV). Moving of vessel into desired area in particular sea is a challenging but important task for ASVs to achieve high level of autonomy under adverse conditions. With the SA strategy, the approach motion by neural control of an initial stage of an ASV trajectory using neural network predictive controller and the circular motion by control of yaw moment in the final stage of trajectory were proposed. This control system has been demonstrated and evaluated by simulation of maritime maneuvers using software package Simulink. From the simulation results it can be seen that the fast SA of similar ASVs with economy in energy can be asserted during the maritime missions in search-and-rescue operations.
Keywords: Autonomous surface vessels, neurocontrollers, situational awareness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1985425 Optimizing Telehealth Internet of Things Integration: A Sustainable Approach through Fog and Cloud Computing Platforms for Energy Efficiency
Authors: Yunyong Guo, Sudhakar Ganti, Bryan Guo
Abstract:
The swift proliferation of telehealth Internet of Things (IoT) devices has sparked concerns regarding energy consumption and the need for streamlined data processing. This paper presents an energy-efficient model that integrates telehealth IoT devices into a platform based on fog and cloud computing. This integrated system provides a sustainable and robust solution to address the challenges. Our model strategically utilizes fog computing as a localized data processing layer and leverages cloud computing for resource-intensive tasks, resulting in a significant reduction in overall energy consumption. The incorporation of adaptive energy-saving strategies further enhances the efficiency of our approach. Simulation analysis validates the effectiveness of our model in improving energy efficiency for telehealth IoT systems, particularly when integrated with localized fog nodes and both private and public cloud infrastructures. Subsequent research endeavors will concentrate on refining the energy-saving model, exploring additional functional enhancements, and assessing its broader applicability across various healthcare and industry sectors.
Keywords: Energy-efficient, fog computing, IoT, telehealth.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 116424 Social Software Approach to E-Learning 3.0
Authors: Anna Nedyalkova, KrassimirNedyalkov, TeodoraBakardjieva
Abstract:
In the present paper, we-ll explore how social media tools provide an opportunity for new developments of the e-Learning in the context of managing personal knowledge. There will be a discussion how social media tools provide a possibility for helping knowledge workersand students to gather, organize and manage their personal information as a part of the e-learning process. At the centre of this social software driven approach to e-learning environments are the challenges of personalization and collaboration. We-ll share concepts of how organizations are using social media for e-Learning and believe that integration of these tools into traditional e-Learning is probably not a choice, but inevitability. Students- Survey of use of web technologies and social networking tools is presented. Newly developed framework for semantic blogging capable of organizing results relevant to user requirements is implemented at Varna Free University (VFU) to provide more effective navigation and search.
Keywords: Semantic blogging, social media tools, e-Learning, web 2.0, web 3.0.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1824423 A Proposed Information Extraction Technique in Engineering Drawing for Reuse Design
Authors: Mohd Fahmi Mohamad Amran, Riza Sulaiman, Saliyah Kahar, Suziyanti Marjudi, Muhammad FairuzAbd Rauf
Abstract:
The extensive number of engineering drawing will be referred for planning process and the changes will produce a good engineering design to meet the demand in producing a new model. The advantage in reuse of engineering designs is to allow continuous product development to further improve the quality of product development, thus reduce the development costs. However, to retrieve the existing engineering drawing, it is time consuming, a complex process and are expose to errors. Engineering drawing file searching system will be proposed to solve this problem. It is essential for engineer and designer to have some sort of medium to enable them to search for drawing in the most effective way. This paper lays out the proposed research project under the area of information extraction in engineering drawing.
Keywords: Computer aided design, information extraction, engineering drawing, reuse design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2314422 Management Pattern for Lodging Business in Bang Khonthi Samut Songkram with Sufficient Economy Approach
Authors: Krisada Sungkhamanee
Abstract:
The objectives of this research are to search the management pattern of Bang Khonthi lodging entrepreneurs for sufficient economy ways, to know the threat that affects this sector and design fit arrangement model to sustain their business with Samut Songkram style. What will happen if they do not use this approach? Will they have a financial crisis? The data and information are collected by informal discussions with 8 managers and 400 questionnaires. A mixed methods of both qualitative research and quantitative research are used. Bent Flyvbjerg-s phronesis is utilized for this analysis. Our research will prove that sufficient economy can help small business firms to solve their problems. We think that the results of our research will be a financial model to solve many problems of the entrepreneurs and this way will can be a model for other provinces of Thailand.Keywords: Bang Khonthi, Lodging Business, Sufficient Economy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3734421 Efficient Implementation of Serial and Parallel Support Vector Machine Training with a Multi-Parameter Kernel for Large-Scale Data Mining
Authors: Tatjana Eitrich, Bruno Lang
Abstract:
This work deals with aspects of support vector learning for large-scale data mining tasks. Based on a decomposition algorithm that can be run in serial and parallel mode we introduce a data transformation that allows for the usage of an expensive generalized kernel without additional costs. In order to speed up the decomposition algorithm we analyze the problem of working set selection for large data sets and analyze the influence of the working set sizes onto the scalability of the parallel decomposition scheme. Our modifications and settings lead to improvement of support vector learning performance and thus allow using extensive parameter search methods to optimize classification accuracy.
Keywords: Support Vector Machines, Shared Memory Parallel Computing, Large Data
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1583420 A New Approach to Polynomial Neural Networks based on Genetic Algorithm
Authors: S. Farzi
Abstract:
Recently, a lot of attention has been devoted to advanced techniques of system modeling. PNN(polynomial neural network) is a GMDH-type algorithm (Group Method of Data Handling) which is one of the useful method for modeling nonlinear systems but PNN performance depends strongly on the number of input variables and the order of polynomial which are determined by trial and error. In this paper, we introduce GPNN (genetic polynomial neural network) to improve the performance of PNN. GPNN determines the number of input variables and the order of all neurons with GA (genetic algorithm). We use GA to search between all possible values for the number of input variables and the order of polynomial. GPNN performance is obtained by two nonlinear systems. the quadratic equation and the time series Dow Jones stock index are two case studies for obtaining the GPNN performance.Keywords: GMDH, GPNN, GA, PNN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2102419 Multiuser Detection in CDMA Fast Fading Multipath Channel using Heuristic Genetic Algorithms
Authors: Muhammad Naeem, Syed Ismail Shah, Habibullah Jamal
Abstract:
In this paper, a simple heuristic genetic algorithm is used for Multistage Multiuser detection in fast fading environments. Multipath channels, multiple access interference (MAI) and near far effect cause the performance of the conventional detector to degrade. Heuristic Genetic algorithms, a rapidly growing area of artificial intelligence, uses evolutionary programming for initial search, which not only helps to converge the solution towards near optimal performance efficiently but also at a very low complexity as compared with optimal detector. This holds true for Additive White Gaussian Noise (AWGN) and multipath fading channels. Experimental results are presented to show the superior performance of the proposed techque over the existing methods.Keywords: Genetic Algorithm (GA), Multiple AccessInterference (MAI), Multistage Detectors (MSD), SuccessiveInterference Cancellation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2056418 Enhanced Conference Organization Based On Correlation of Web Information and Ontology Based Expertise Search
Authors: Hassan Noureddine, Maria Sokhn, Iman Jarkass, Elena Mugellini, Omar Abou Khaled
Abstract:
From the importance of the conference and its constructive role in the studies discussion, there must be a strong organization that allows the exploitation of the discussions in opening new horizons. The vast amount of information scattered across the web, make it difficult to find experts, who can play a prominent role in organizing conferences. In this paper we proposed a new approach of extracting researchers- information from various Web resources and correlating them in order to confirm their correctness. As a validator of this approach, we propose a service that will be useful to set up a conference. Its main objective is to find appropriate experts, as well as the social events for a conference. For this application we us Semantic Web technologies like RDF and ontology to represent the confirmed information, which are linked to another ontology (skills ontology) that are used to present and compute the expertise.Keywords: Expert finding, Information extraction, Ontologies, Semantic web, Social events.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1636417 Improved Network Construction Methods Based on Virtual Rails for Mobile Sensor Network
Authors: Noritaka Shigei, Kazuto Matsumoto, Yoshiki Nakashima, Hiromi Miyajima
Abstract:
Although Mobile Wireless Sensor Networks (MWSNs), which consist of mobile sensor nodes (MSNs), can cover a wide range of observation region by using a small number of sensor nodes, they need to construct a network to collect the sensing data on the base station by moving the MSNs. As an effective method, the network construction method based on Virtual Rails (VRs), which is referred to as VR method, has been proposed. In this paper, we propose two types of effective techniques for the VR method. They can prolong the operation time of the network, which is limited by the battery capabilities of MSNs and the energy consumption of MSNs. The first technique, an effective arrangement of VRs, almost equalizes the number of MSNs belonging to each VR. The second technique, an adaptive movement method of MSNs, takes into account the residual energy of battery. In the simulation, we demonstrate that each technique can improve the network lifetime and the combination of both techniques is the most effective.
Keywords: Wireless sensor network, mobile sensor node, relay of sensing data, virtual rail, residual energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1758416 Robust Statistics Based Algorithm to Remove Salt and Pepper Noise in Images
Authors: V.R.Vijaykumar, P.T.Vanathi, P.Kanagasabapathy, D.Ebenezer
Abstract:
In this paper, a robust statistics based filter to remove salt and pepper noise in digital images is presented. The function of the algorithm is to detect the corrupted pixels first since the impulse noise only affect certain pixels in the image and the remaining pixels are uncorrupted. The corrupted pixels are replaced by an estimated value using the proposed robust statistics based filter. The proposed method perform well in removing low to medium density impulse noise with detail preservation upto a noise density of 70% compared to standard median filter, weighted median filter, recursive weighted median filter, progressive switching median filter, signal dependent rank ordered mean filter, adaptive median filter and recently proposed decision based algorithm. The visual and quantitative results show the proposed algorithm outperforms in restoring the original image with superior preservation of edges and better suppression of impulse noise
Keywords: Image denoising, Nonlinear filter, Robust Statistics, and Salt and Pepper Noise.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2210415 A Study on the Design Elements of Sidewalk in Urban Commercial District
Authors: Ji Hyun Kang, Hwan Su Seo, Hong-Kyu Kim, Hong Sok Kim
Abstract:
This study was to search for the desirable direction of the sidewalk planning in Korea by establishing the concepts of walking and pedestrian space, and analyzing the advanced precedents in and out of country. Also, based on the precedent studies and relevant laws, regulations, and systems, it aimed for the following sequential process: firstly, to derive design elements from the functions and characteristics of sidewalk and cluster the similar elements by each characteristics, sampling representative characteristics and making them hierarchical; then, to analyze their significances via the first questionnaire survey, and the relative weights and priorities of each elements via the Analytic Hierarchy Process(AHP); finally, based on the analysis result, to establish the frame of suggesting the direction of policy to improve the pedestrian environment of sidewalk in urban commercial district for the future planning and design of pedestrian space.Keywords: Sidewalk, Pedestrian, AHP, Indicator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1807414 From the Fields to the Concrete: Urban Development of Campo Mourão
Authors: Caio Fialho
Abstract:
The automobile incentive policy in Brazil since the 1950s creates several problems in its cities, more visible in large centers such as São Paulo or Rio de Janeiro, but also strongly present in smaller cities, resulting in an increase in social and spatial inequality, together with a drop in the quality of life. The analyzed city, Campo Mourão, reflects these policies, a city that is initially planned to be compact and walkable, took other directions and currently suffers from urban mobility and social inequality in this urban environment, despite being a medium-sized city in Brazil. The research aims to understand and diagnose how these policies shaped the city and what are the results in Brazilian`s inland cities. Based on historical, bibliographical and field research in the city, the result is a diagnosis of the problem faced and how it can be reversed, in search of social equality and better quality of life.
Keywords: Urban mobility, quality of life, social equality, substantiable.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 585413 Performance Comparison of Particle Swarm Optimization with Traditional Clustering Algorithms used in Self-Organizing Map
Authors: Anurag Sharma, Christian W. Omlin
Abstract:
Self-organizing map (SOM) is a well known data reduction technique used in data mining. It can reveal structure in data sets through data visualization that is otherwise hard to detect from raw data alone. However, interpretation through visual inspection is prone to errors and can be very tedious. There are several techniques for the automatic detection of clusters of code vectors found by SOM, but they generally do not take into account the distribution of code vectors; this may lead to unsatisfactory clustering and poor definition of cluster boundaries, particularly where the density of data points is low. In this paper, we propose the use of an adaptive heuristic particle swarm optimization (PSO) algorithm for finding cluster boundaries directly from the code vectors obtained from SOM. The application of our method to several standard data sets demonstrates its feasibility. PSO algorithm utilizes a so-called U-matrix of SOM to determine cluster boundaries; the results of this novel automatic method compare very favorably to boundary detection through traditional algorithms namely k-means and hierarchical based approach which are normally used to interpret the output of SOM.Keywords: cluster boundaries, clustering, code vectors, data mining, particle swarm optimization, self-organizing maps, U-matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1919412 A Comparison of First and Second Order Training Algorithms for Artificial Neural Networks
Authors: Syed Muhammad Aqil Burney, Tahseen Ahmed Jilani, C. Ardil
Abstract:
Minimization methods for training feed-forward networks with Backpropagation are compared. Feedforward network training is a special case of functional minimization, where no explicit model of the data is assumed. Therefore due to the high dimensionality of the data, linearization of the training problem through use of orthogonal basis functions is not desirable. The focus is functional minimization on any basis. A number of methods based on local gradient and Hessian matrices are discussed. Modifications of many methods of first and second order training methods are considered. Using share rates data, experimentally it is proved that Conjugate gradient and Quasi Newton?s methods outperformed the Gradient Descent methods. In case of the Levenberg-Marquardt algorithm is of special interest in financial forecasting.Keywords: Backpropagation algorithm, conjugacy condition, line search, matrix perturbation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3649411 General Purpose Graphic Processing Units Based Real Time Video Tracking System
Authors: Mallikarjuna Rao Gundavarapu, Ch. Mallikarjuna Rao, K. Anuradha Bai
Abstract:
Real Time Video Tracking is a challenging task for computing professionals. The performance of video tracking techniques is greatly affected by background detection and elimination process. Local regions of the image frame contain vital information of background and foreground. However, pixel-level processing of local regions consumes a good amount of computational time and memory space by traditional approaches. In our approach we have explored the concurrent computational ability of General Purpose Graphic Processing Units (GPGPU) to address this problem. The Gaussian Mixture Model (GMM) with adaptive weighted kernels is used for detecting the background. The weights of the kernel are influenced by local regions and are updated by inter-frame variations of these corresponding regions. The proposed system has been tested with GPU devices such as GeForce GTX 280, GeForce GTX 280 and Quadro K2000. The results are encouraging with maximum speed up 10X compared to sequential approach.
Keywords: Connected components, Embrace threads, Local weighted kernel, Structuring element.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1178410 Feature Selection for Web Page Classification Using Swarm Optimization
Authors: B. Leela Devi, A. Sankar
Abstract:
The web’s increased popularity has included a huge amount of information, due to which automated web page classification systems are essential to improve search engines’ performance. Web pages have many features like HTML or XML tags, hyperlinks, URLs and text contents which can be considered during an automated classification process. It is known that Webpage classification is enhanced by hyperlinks as it reflects Web page linkages. The aim of this study is to reduce the number of features to be used to improve the accuracy of the classification of web pages. In this paper, a novel feature selection method using an improved Particle Swarm Optimization (PSO) using principle of evolution is proposed. The extracted features were tested on the WebKB dataset using a parallel Neural Network to reduce the computational cost.
Keywords: Web page classification, WebKB Dataset, Term Frequency-Inverse Document Frequency (TF-IDF), Particle Swarm Optimization (PSO).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3269409 Application of l1-Norm Minimization Technique to Image Retrieval
Authors: C. S. Sastry, Saurabh Jain, Ashish Mishra
Abstract:
Image retrieval is a topic where scientific interest is currently high. The important steps associated with image retrieval system are the extraction of discriminative features and a feasible similarity metric for retrieving the database images that are similar in content with the search image. Gabor filtering is a widely adopted technique for feature extraction from the texture images. The recently proposed sparsity promoting l1-norm minimization technique finds the sparsest solution of an under-determined system of linear equations. In the present paper, the l1-norm minimization technique as a similarity metric is used in image retrieval. It is demonstrated through simulation results that the l1-norm minimization technique provides a promising alternative to existing similarity metrics. In particular, the cases where the l1-norm minimization technique works better than the Euclidean distance metric are singled out.
Keywords: l1-norm minimization, content based retrieval, modified Gabor function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3440408 Oncogene Identification using Filter based Approaches between Various Cancer Types in Lung
Authors: Michael Netzer, Michael Seger, Mahesh Visvanathan, Bernhard Pfeifer, Gerald H. Lushington, Christian Baumgartner
Abstract:
Lung cancer accounts for the most cancer related deaths for men as well as for women. The identification of cancer associated genes and the related pathways are essential to provide an important possibility in the prevention of many types of cancer. In this work two filter approaches, namely the information gain and the biomarker identifier (BMI) are used for the identification of different types of small-cell and non-small-cell lung cancer. A new method to determine the BMI thresholds is proposed to prioritize genes (i.e., primary, secondary and tertiary) using a k-means clustering approach. Sets of key genes were identified that can be found in several pathways. It turned out that the modified BMI is well suited for microarray data and therefore BMI is proposed as a powerful tool for the search for new and so far undiscovered genes related to cancer.
Keywords: lung cancer, micro arrays, data mining, feature selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1760407 Critical Analysis of Decision Making Experience with a Machine Learning Approach in Playing Ayo Game
Authors: Ibidapo O. Akinyemi, Ezekiel F. Adebiyi, Harrison O. D. Longe
Abstract:
The major goal in defining and examining game scenarios is to find good strategies as solutions to the game. A plausible solution is a recommendation to the players on how to play the game, which is represented as strategies guided by the various choices available to the players. These choices invariably compel the players (decision makers) to execute an action following some conscious tactics. In this paper, we proposed a refinement-based heuristic as a machine learning technique for human-like decision making in playing Ayo game. The result showed that our machine learning technique is more adaptable and more responsive in making decision than human intelligence. The technique has the advantage that a search is astutely conducted in a shallow horizon game tree. Our simulation was tested against Awale shareware and an appealing result was obtained.Keywords: Decision making, Machine learning, Strategy, Ayo game.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1300406 Sweethearting: The Complicity Relatives Theft CRT in Saudi Arabia
Authors: Saleh Dabil
Abstract:
The study will search the level of existence of the sweethearting in Saudi Arabia's Supermarkets in Riyadh. Sweethearting occurs when frontline workers give unauthorized free or uncounted goods and services to customer-s conspirators. The store managers and /or security managers were asked about the sweethearting that occurs in the supermarkets. The characteristics of sweethearting in Riyadh stores were investigated. Two independent variables were related to the report of sweethearting. These independent variables are: The effect of store environment on sweethearting and the security techniques and loss prevention electronics techniques used. This study expected to shed the light about the level of sweethearting in Saudi Arabia and the factors behind it. This study will serve as an exploratory study for such phenomenon in Saudi Arabia as well as both descriptive for the characteristics of sweethearting and explanatory study to link between the environmental and security systems factors to sweethearting.Keywords: supermarket, stealing, sweethearting, theft.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1886405 A Normalization-based Robust Image Watermarking Scheme Using SVD and DCT
Authors: Say Wei Foo, Qi Dong
Abstract:
Digital watermarking is one of the techniques for copyright protection. In this paper, a normalization-based robust image watermarking scheme which encompasses singular value decomposition (SVD) and discrete cosine transform (DCT) techniques is proposed. For the proposed scheme, the host image is first normalized to a standard form and divided into non-overlapping image blocks. SVD is applied to each block. By concatenating the first singular values (SV) of adjacent blocks of the normalized image, a SV block is obtained. DCT is then carried out on the SV blocks to produce SVD-DCT blocks. A watermark bit is embedded in the highfrequency band of a SVD-DCT block by imposing a particular relationship between two pseudo-randomly selected DCT coefficients. An adaptive frequency mask is used to adjust local watermark embedding strength. Watermark extraction involves mainly the inverse process. The watermark extracting method is blind and efficient. Experimental results show that the quality degradation of watermarked image caused by the embedded watermark is visually transparent. Results also show that the proposed scheme is robust against various image processing operations and geometric attacks.Keywords: Image watermarking, Image normalization, Singularvalue decomposition, Discrete cosine transform, Robustness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2100404 Flight Control of a Trirotor Mini-UAV for Enhanced Situational Awareness
Authors: Igor Astrov, Andrus Pedai
Abstract:
This paper focuses on a critical component of the situational awareness (SA), the control of autonomous vertical flight for an unmanned aerial vehicle (UAV). Autonomous vertical flight is a challenging but important task for tactical UAVs to achieve high level of autonomy under adverse conditions. With the SA strategy, we proposed a two stage flight control procedure using two autonomous control subsystems to address the dynamics variation and performance requirement difference in initial and final stages of flight trajectory for a nontrivial nonlinear trirotor mini-UAV model. This control strategy for chosen mini-UAV model has been verified by simulation of hovering maneuvers using software package Simulink and demonstrated good performance for fast SA in realtime search-and-rescue operations.
Keywords: Flight control, trirotor aircraft, situational awareness, unmanned aerial vehicle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2170403 EML-Estimation of Multivariate t Copulas with Heuristic Optimization
Authors: Jin Zhang, Wing Lon Ng
Abstract:
In recent years, copulas have become very popular in financial research and actuarial science as they are more flexible in modelling the co-movements and relationships of risk factors as compared to the conventional linear correlation coefficient by Pearson. However, a precise estimation of the copula parameters is vital in order to correctly capture the (possibly nonlinear) dependence structure and joint tail events. In this study, we employ two optimization heuristics, namely Differential Evolution and Threshold Accepting to tackle the parameter estimation of multivariate t distribution models in the EML approach. Since the evolutionary optimizer does not rely on gradient search, the EML approach can be applied to estimation of more complicated copula models such as high-dimensional copulas. Our experimental study shows that the proposed method provides more robust and more accurate estimates as compared to the IFM approach.Keywords: Copula Models, Student t Copula, Parameter Inference, Differential Evolution, Threshold Accepting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1564