Search results for: Game based learning system
16021 Effective Software-Based Solution for Processing Mass Downstream Data in Interactive Push VOD System
Authors: Ni Hong, Wu Guobin, Wu Gang, Pan Liang
Abstract:
Interactive push VOD system is a new kind of system that incorporates push technology and interactive technique. It can push movies to users at high speeds at off-peak hours for optimal network usage so as to save bandwidth. This paper presents effective software-based solution for processing mass downstream data at terminals of interactive push VOD system, where the service can download movie according to a viewer-s selection. The downstream data is divided into two catalogs: (1) the carousel data delivered according to DSM-CC protocol; (2) IP data delivered according to Euro-DOCSIS protocol. In order to accelerate download speed and reduce data loss rate at terminals, this software strategy introduces caching, multi-thread and resuming mechanisms. The experiments demonstrate advantages of the software-based solution.Keywords: DSM-CC, data carousel, Euro-DOCSIS, push VOD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 148916020 Design of Cloud Service Brokerage System Intermediating Integrated Services in Multiple Cloud Environment
Authors: Dongjae Kang, Sokho Son, Jinmee Kim
Abstract:
Cloud service brokering is a new service paradigm that provides interoperability and portability of application across multiple Cloud providers. In this paper, we designed Cloud service brokerage system, anyBroker, supporting integrated service provisioning and SLA based service lifecycle management. For the system design, we introduce the system concept and whole architecture, details of main components and use cases of primary operations in the system. These features ease the Cloud service provider and customer’s concern and support new Cloud service open market to increase Cloud service profit and prompt Cloud service echo system in Cloud computing related area.
Keywords: Cloud service brokerage, multiple Clouds, Integrated service provisioning, SLA, network service.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 264816019 Social, Group and Individual Mind extracted from Rule Bases of Multiple Agents
Authors: P. Cermak
Abstract:
This paper shows possibility of extraction Social, Group and Individual Mind from Multiple Agents Rule Bases. Types those Rule bases are selected as two fuzzy systems, namely Mambdani and Takagi-Sugeno fuzzy system. Their rule bases are describing (modeling) agent behavior. Modifying of agent behavior in the time varying environment will be provided by learning fuzzyneural networks and optimization of their parameters with using genetic algorithms in development system FUZNET. Finally, extraction Social, Group and Individual Mind from Multiple Agents Rule Bases are provided by Cognitive analysis and Matching criterion.Keywords: Mind, Multi-agent system, Cognitive analysis, Fuzzy system, Neural network, Genetic algorithm, Rule base.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 125316018 Intelligent Home: SMS Based Home Security System with Immediate Feedback
Authors: Sheikh I. Azid, Bibhya Sharma
Abstract:
A low cost Short Message System (SMS) based Home security system equipped with motion, smoke, temperature, humidity and light sensors has been studied and tested. The sensors are controlled by a microprocessor PIC 18F4520 through the SMS having password protection code for the secure operation. The user is able to switch light and the appliances and get instant feedback. Also in cases of emergencies such as fire or robbery the system will send alert message to occupant and relevant civil authorities. The operation of the home security has been tested on Vodafone- Fiji network and Digicel Fiji Network for emergency and feedback responses for 25 samples. The experiment showed that it takes about 8-10s for the security system to respond in case of emergency. It takes about 18-22s for the occupant to switch and monitor lights and appliances and then get feedback depending upon the network traffic.
Keywords: Smart Home, SMS, Sensors, Microprocessor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 195216017 IoT Device Cost Effective Storage Architecture and Real-Time Data Analysis/Data Privacy Framework
Authors: Femi Elegbeleye, Seani Rananga
Abstract:
This paper focused on cost effective storage architecture using fog and cloud data storage gateway, and presented the design of the framework for the data privacy model and data analytics framework on a real-time analysis when using machine learning method. The paper began with the system analysis, system architecture and its component design, as well as the overall system operations. Several results obtained from this study on data privacy models show that when two or more data privacy models are integrated via a fog storage gateway, we often have more secure data. Our main focus in the study is to design a framework for the data privacy model, data storage, and real-time analytics. This paper also shows the major system components and their framework specification. And lastly, the overall research system architecture was shown, including its structure, and its interrelationships.
Keywords: IoT, fog storage, cloud storage, data analysis, data privacy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24416016 A VR Cybersecurity Training Knowledge-Based Ontology
Authors: Shaila Rana, Wasim Alhamdani
Abstract:
Effective cybersecurity learning relies on an engaging, interactive, and entertaining activity that fosters positive learning outcomes. VR cybersecurity training may provide a training format that is engaging, interactive, and entertaining. A methodological approach and framework are needed to allow trainers and educators to employ VR cybersecurity training methods to promote positive learning outcomes. Thus, this paper aims to create an approach that cybersecurity trainers can follow to create a VR cybersecurity training module. This methodology utilizes concepts from other cybersecurity training frameworks, such as NICE and CyTrONE. Other cybersecurity training frameworks do not incorporate the use of VR. VR training proposes unique challenges that cannot be addressed in current cybersecurity training frameworks. Subsequently, this ontology utilizes concepts to develop VR training to create a relevant methodology for creating VR cybersecurity training modules.
Keywords: Virtual reality cybersecurity training, VR cybersecurity training, traditional cybersecurity training, ontology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 58516015 Fuzzy Logic Control of Static Var Compensator for Power System Damping
Authors: N.Karpagam, D.Devaraj
Abstract:
Static Var Compensator (SVC) is a shunt type FACTS device which is used in power system primarily for the purpose of voltage and reactive power control. In this paper, a fuzzy logic based supplementary controller for Static Var Compensator (SVC) is developed which is used for damping the rotor angle oscillations and to improve the transient stability of the power system. Generator speed and the electrical power are chosen as input signals for the Fuzzy Logic Controller (FLC). The effectiveness and feasibility of the proposed control is demonstrated with Single Machine Infinite Bus (SMIB) system and multimachine system (WSCC System) which show improvement over the use of a fixed parameter controller.Keywords: FLC, SVC, Transient stability, SMIB, PIDcontroller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 344616014 Nonlinear Dynamic Modeling and Active Vibration Control of a System with Fuel Sloshing
Authors: A. A. Jafari, A. M. Khoshnood, J. Roshanian
Abstract:
Attitude control of aerospace system with liquid containers may face to a problem associate with fuel sloshing. The sloshing phenomena can degrade the stability of control system and in the worst case, interaction between the attitude control system and fuel vibration leading to resonance. In this paper, a full process of nonlinear dynamic modeling of an aerospace launch vehicle with fuel sloshing is given. Then, a new control system based on model reference adaptive filter is proposed and its algorithm is extracted. This controller implemented on the main attitude control system. Finally, numerical simulation of nonlinear model and control system is carried out to examine the performance of the new controller. Results of simulations show that the inconvenient effects of the fuel sloshing by augmenting this control system are reduced and attitude control system performs, satisfactorily.
Keywords: nonlinear dynamic modeling, fuel sloshing, vibration control, model reference, adaptive filter
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 229816013 NANCY: Combining Adversarial Networks with Cycle-Consistency for Robust Multi-Modal Image Registration
Authors: Mirjana Ruppel, Rajendra Persad, Amit Bahl, Sanja Dogramadzi, Chris Melhuish, Lyndon Smith
Abstract:
Multimodal image registration is a profoundly complex task which is why deep learning has been used widely to address it in recent years. However, two main challenges remain: Firstly, the lack of ground truth data calls for an unsupervised learning approach, which leads to the second challenge of defining a feasible loss function that can compare two images of different modalities to judge their level of alignment. To avoid this issue altogether we implement a generative adversarial network consisting of two registration networks GAB, GBA and two discrimination networks DA, DB connected by spatial transformation layers. GAB learns to generate a deformation field which registers an image of the modality B to an image of the modality A. To do that, it uses the feedback of the discriminator DB which is learning to judge the quality of alignment of the registered image B. GBA and DA learn a mapping from modality A to modality B. Additionally, a cycle-consistency loss is implemented. For this, both registration networks are employed twice, therefore resulting in images ˆA, ˆB which were registered to ˜B, ˜A which were registered to the initial image pair A, B. Thus the resulting and initial images of the same modality can be easily compared. A dataset of liver CT and MRI was used to evaluate the quality of our approach and to compare it against learning and non-learning based registration algorithms. Our approach leads to dice scores of up to 0.80 ± 0.01 and is therefore comparable to and slightly more successful than algorithms like SimpleElastix and VoxelMorph.Keywords: Multimodal image registration, GAN, cycle consistency, deep learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 81016012 Machine Learning Based Approach for Measuring Promotion Effectiveness in Multiple Parallel Promotions’ Scenarios
Authors: Revoti Prasad Bora, Nikita Katyal
Abstract:
Promotion is a key element in the retail business. Thus, analysis of promotions to quantify their effectiveness in terms of Revenue and/or Margin is an essential activity in the retail industry. However, measuring the sales/revenue uplift is based on estimations, as the actual sales/revenue without the promotion is not present. Further, the presence of Halo and Cannibalization in a multiple parallel promotions’ scenario complicates the problem. Calculating Baseline by considering inter-brand/competitor items or using Halo and Cannibalization's impact on Revenue calculations by considering Baseline as an interpretation of items’ unit sales in neighboring nonpromotional weeks individually may not capture the overall Revenue uplift in the case of multiple parallel promotions. Hence, this paper proposes a Machine Learning based method for calculating the Revenue uplift by considering the Halo and Cannibalization impact on the Baseline and the Revenue. In the first section of the proposed methodology, Baseline of an item is calculated by incorporating the impact of the promotions on its related items. In the later section, the Revenue of an item is calculated by considering both Halo and Cannibalization impacts. Hence, this methodology enables correct calculation of the overall Revenue uplift due a given promotion.
Keywords: Halo, cannibalization, promotion, baseline, temporary price reduction, retail, elasticity, cross price elasticity, machine learning, random forest, linear regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 132416011 Satellite Beam Handoff Detection Algorithm Based On RCST Mobility Information
Authors: Ji Nyong Jang, Min Woo Lee, Eun Kyung Kim, Ki Keun Kim, Jae Sung Lim
Abstract:
Since DVB-RCS has been successively implemented, the mobile communication on the multi-beam satellite communication is attractive attention. And the DVB-RCS standard sets up to support mobility of a RCST. In the case of the spot-beam satellite system, the received signal strength does not differ largely between the center and the boundary of the beam. Thus, the RSS based handoff detection algorithm is not benefit to the satellite system as a terrestrial system. Therefore we propose an Adaptive handoff detection algorithm based on RCST mobility information. Our handoff detection algorithm not only can be used as centralized handoff detection algorithm but also removes uncertainties of handoff due to the variation of RSS. Performances were compared with RSS based handoff algorithm. Simulation results show that the proposed handoff detection algorithm not only achieved better handoff and link degradation rate, but also achieved better forward link spectral efficiency.
Keywords: DVB-RCS, satellite multi-beam handoff, mobility information, handover.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 171216010 Sparsity-Aware Affine Projection Algorithm for System Identification
Authors: Young-Seok Choi
Abstract:
This work presents a new type of the affine projection (AP) algorithms which incorporate the sparsity condition of a system. To exploit the sparsity of the system, a weighted l1-norm regularization is imposed on the cost function of the AP algorithm. Minimizing the cost function with a subgradient calculus and choosing two distinct weighting for l1-norm, two stochastic gradient based sparsity regularized AP (SR-AP) algorithms are developed. Experimental results exhibit that the SR-AP algorithms outperform the typical AP counterparts for identifying sparse systems.Keywords: System identification, adaptive filter, affine projection, sparsity, sparse system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 155516009 Labview-Based System for Fiber Links Events Detection
Authors: Bo Liu, Qingshan Kong, Weiqing Huang
Abstract:
With the rapid development of modern communication, diagnosing the fiber-optic quality and faults in real-time is widely focused. In this paper, a Labview-based system is proposed for fiber-optic faults detection. The wavelet threshold denoising method combined with Empirical Mode Decomposition (EMD) is applied to denoise the optical time domain reflectometer (OTDR) signal. Then the method based on Gabor representation is used to detect events. Experimental measurements show that signal to noise ratio (SNR) of the OTDR signal is improved by 1.34dB on average, compared with using the wavelet threshold denosing method. The proposed system has a high score in event detection capability and accuracy. The maximum detectable fiber length of the proposed Labview-based system can be 65km.
Keywords: Empirical mode decomposition (EMD), events detection, Gabor transform, optical time domain reflectometer (OTDR), wavelet threshold denoising.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 80316008 Kernel’s Parameter Selection for Support Vector Domain Description
Authors: Mohamed EL Boujnouni, Mohamed Jedra, Noureddine Zahid
Abstract:
Support Vector Domain Description (SVDD) is one of the best-known one-class support vector learning methods, in which one tries the strategy of using balls defined on the feature space in order to distinguish a set of normal data from all other possible abnormal objects. As all kernel-based learning algorithms its performance depends heavily on the proper choice of the kernel parameter. This paper proposes a new approach to select kernel's parameter based on maximizing the distance between both gravity centers of normal and abnormal classes, and at the same time minimizing the variance within each class. The performance of the proposed algorithm is evaluated on several benchmarks. The experimental results demonstrate the feasibility and the effectiveness of the presented method.
Keywords: Gravity centers, Kernel’s parameter, Support Vector Domain Description, Variance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 183116007 Solar Energy Generation Based Urban Development: A Case of Jodhpur City
Authors: A. Kumar, V. Devadas
Abstract:
India has the most year-round favorable sunny conditions along with the second-highest solar irradiation in the world, the country holds the potential to become the global solar hub. The solar and wind-based generation capacity has skyrocketed in India with the successful effort of the Ministry of Renewable Energy, whereas the potential of rooftop based solar power generation has yet to be explored for proposed solar cities in India. The research aims to analyze the gap in the energy scenario in Jodhpur City and proposes interventions of solar energy generation systems as a catalyst for urban development. The research is based on the system concept which deals with simulation between the city system as a whole and its interactions between different subsystems. A system-dynamics based mathematical model is developed by identifying the control parameters using regression and correlation analysis to assess the gap in energy sector. The base model validation is done using the past 10 years timeline data collected from secondary sources. Further, energy consumption and solar energy generation-based projection are made for testing different scenarios to conclude the feasibility for maintaining the city level energy independence till 2031.
Keywords: City, consumption, energy, generation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 56316006 Normal and Peaberry Coffee Beans Classification from Green Coffee Bean Images Using Convolutional Neural Networks and Support Vector Machine
Authors: Hira Lal Gope, Hidekazu Fukai
Abstract:
The aim of this study is to develop a system which can identify and sort peaberries automatically at low cost for coffee producers in developing countries. In this paper, the focus is on the classification of peaberries and normal coffee beans using image processing and machine learning techniques. The peaberry is not bad and not a normal bean. The peaberry is born in an only single seed, relatively round seed from a coffee cherry instead of the usual flat-sided pair of beans. It has another value and flavor. To make the taste of the coffee better, it is necessary to separate the peaberry and normal bean before green coffee beans roasting. Otherwise, the taste of total beans will be mixed, and it will be bad. In roaster procedure time, all the beans shape, size, and weight must be unique; otherwise, the larger bean will take more time for roasting inside. The peaberry has a different size and different shape even though they have the same weight as normal beans. The peaberry roasts slower than other normal beans. Therefore, neither technique provides a good option to select the peaberries. Defect beans, e.g., sour, broken, black, and fade bean, are easy to check and pick up manually by hand. On the other hand, the peaberry pick up is very difficult even for trained specialists because the shape and color of the peaberry are similar to normal beans. In this study, we use image processing and machine learning techniques to discriminate the normal and peaberry bean as a part of the sorting system. As the first step, we applied Deep Convolutional Neural Networks (CNN) and Support Vector Machine (SVM) as machine learning techniques to discriminate the peaberry and normal bean. As a result, better performance was obtained with CNN than with SVM for the discrimination of the peaberry. The trained artificial neural network with high performance CPU and GPU in this work will be simply installed into the inexpensive and low in calculation Raspberry Pi system. We assume that this system will be used in under developed countries. The study evaluates and compares the feasibility of the methods in terms of accuracy of classification and processing speed.
Keywords: Convolutional neural networks, coffee bean, peaberry, sorting, support vector machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 155316005 A Multi-Agent Intelligent System for Monitoring Health Conditions of Elderly People
Authors: Ayman M. Mansour
Abstract:
In this paper, we propose a multi-agent intelligent system that is used for monitoring the health conditions of elderly people. Monitoring the health condition of elderly people is a complex problem that involves different medical units and requires continuous monitoring. Such expert system is highly needed in rural areas because of inadequate number of available specialized physicians or nurses. Such monitoring must have autonomous interactions between these medical units in order to be effective. A multi-agent system is formed by a community of agents that exchange information and proactively help one another to achieve the goal of elderly monitoring. The agents in the developed system are equipped with intelligent decision maker that arms them with the rule-based reasoning capability that can assist the physicians in making decisions regarding the medical condition of elderly people.
Keywords: Fuzzy Logic, Inference system, Monitoring system, Multi-agent system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 228216004 English Language Learning Strategies Used by University Students: A Case Study of English and Business English Major at Suan Sunandha Rajabhat in Bangkok
Authors: Pranee Pathomchaiwat
Abstract:
The purposes of this research are 1) to study English language learning strategies used by the fourth-year students majoring in English and Business English, 2) to study the English language learning strategies which have an affect on English learning achievement, and 3) to compare the English language learning strategies used by the students majoring in English and Business English. The population and sampling comprise of 139 university students of the Suan Sunandha Rajabhat University. Research instruments are language learning strategies questionnaire which was constructed by the researcher and improved on by three experts and the transcripts that show the results of English learning achievement. The questionnaire includes 1) Language Practice Strategy 2)Memory Strategy 3) Communication Strategy 4)Making an Intelligent Guess or Compensation Strategy 5) Self-discipline in Learning Management Strategy 6) Affective Strategy 7)Self-Monitoring Strategy 8) Self-studySkill Strategy. Statistics used in the study are mean, standard deviation, T-test and One Way ANOVA, Pearson product moment correlation coefficient and Regression Analysis. The results of the findings reveal that the English language learning strategies most frequently used by the students are affective strategy, making an intelligent guess or compensation strategy, self-studyskill strategy and self-monitoring strategy respectively. The aspect of making an intelligent guess or compensation strategy had the most significant affect on English learning achievement. It is found that the English language learning strategies mostly used by the Business English major students and moderately used by the English major students. Their language practice strategies uses were significantly different at the 0.05 level and their communication strategies uses were significantly different at the 0.01 level. In addition, it is found that the poor students and the fair ones most frequently used affective strategy while the good ones most frequently used making an intelligent guess or compensation strategy. KeywordsEnglish language, language learning strategies, English learning achievement, and students majoring in English, Business English. Pranee Pathomchaiwat is an Assistant Professor in Business English Program, Suan Sunandha Rajabhat University, Bangkok, Thailand (e-mail: [email protected]).Keywords: English language, language learning strategies, English learning achievement, students majoring in English, Business English
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 382116003 Robust FACTS Controller Design Employing Modern Heuristic Optimization Techniques
Authors: A.K.Balirsingh, S.C.Swain, S. Panda
Abstract:
Recently, Genetic Algorithms (GA) and Differential Evolution (DE) algorithm technique have attracted considerable attention among various modern heuristic optimization techniques. Since the two approaches are supposed to find a solution to a given objective function but employ different strategies and computational effort, it is appropriate to compare their performance. This paper presents the application and performance comparison of DE and GA optimization techniques, for flexible ac transmission system (FACTS)-based controller design. The design objective is to enhance the power system stability. The design problem of the FACTS-based controller is formulated as an optimization problem and both the PSO and GA optimization techniques are employed to search for optimal controller parameters. The performance of both optimization techniques has been compared. Further, the optimized controllers are tested on a weekly connected power system subjected to different disturbances, and their performance is compared with the conventional power system stabilizer (CPSS). The eigenvalue analysis and non-linear simulation results are presented and compared to show the effectiveness of both the techniques in designing a FACTS-based controller, to enhance power system stability.Keywords: Differential Evolution, Flexible AC TransmissionSystems (FACTS), Genetic Algorithm, Low Frequency Oscillations, Single-machine Infinite Bus Power System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 179016002 A Kernel Based Rejection Method for Supervised Classification
Authors: Abdenour Bounsiar, Edith Grall, Pierre Beauseroy
Abstract:
In this paper we are interested in classification problems with a performance constraint on error probability. In such problems if the constraint cannot be satisfied, then a rejection option is introduced. For binary labelled classification, a number of SVM based methods with rejection option have been proposed over the past few years. All of these methods use two thresholds on the SVM output. However, in previous works, we have shown on synthetic data that using thresholds on the output of the optimal SVM may lead to poor results for classification tasks with performance constraint. In this paper a new method for supervised classification with rejection option is proposed. It consists in two different classifiers jointly optimized to minimize the rejection probability subject to a given constraint on error rate. This method uses a new kernel based linear learning machine that we have recently presented. This learning machine is characterized by its simplicity and high training speed which makes the simultaneous optimization of the two classifiers computationally reasonable. The proposed classification method with rejection option is compared to a SVM based rejection method proposed in recent literature. Experiments show the superiority of the proposed method.Keywords: rejection, Chow's rule, error-reject tradeoff, SupportVector Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 144516001 Scenario Recognition in Modern Building Automation
Authors: Roland Lang, Dietmar Bruckner, Rosemarie Velik, Tobias Deutsch
Abstract:
Modern building automation needs to deal with very different types of demands, depending on the use of a building and the persons acting in it. To meet the requirements of situation awareness in modern building automation, scenario recognition becomes more and more important in order to detect sequences of events and to react to them properly. We present two concepts of scenario recognition and their implementation, one based on predefined templates and the other applying an unsupervised learning algorithm using statistical methods. Implemented applications will be described and their advantages and disadvantages will be outlined.Keywords: Building automation, ubiquitous computing, scenariorecognition, surveillance system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 164416000 An Advanced Approach Based on Artificial Neural Networks to Identify Environmental Bacteria
Authors: Mauro Giacomini, Stefania Bertone, Federico Caneva Soumetz, Carmelina Ruggiero
Abstract:
Environmental micro-organisms include a large number of taxa and some species that are generally considered nonpathogenic, but can represent a risk in certain conditions, especially for elderly people and immunocompromised individuals. Chemotaxonomic identification techniques are powerful tools for environmental micro-organisms, and cellular fatty acid methyl esters (FAME) content is a powerful fingerprinting identification technique. A system based on an unsupervised artificial neural network (ANN) was set up using the fatty acid profiles of standard bacterial strains, obtained by gas-chromatography, used as learning data. We analysed 45 certified strains belonging to Acinetobacter, Aeromonas, Alcaligenes, Aquaspirillum, Arthrobacter, Bacillus, Brevundimonas, Enterobacter, Flavobacterium, Micrococcus, Pseudomonas, Serratia, Shewanella and Vibrio genera. A set of 79 bacteria isolated from a drinking water line (AMGA, the major water supply system in Genoa) were used as an example for identification compared to standard MIDI method. The resulting ANN output map was found to be a very powerful tool to identify these fresh isolates.
Keywords: Cellular fatty acid methyl esters, environmental bacteria, gas-chromatography, unsupervised ANN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 184015999 Meditation Based Brain Painting Promoting Foreign Language Memory through Establishing a Brain-Computer Interface
Authors: Zhepeng Rui, Zhenyu Gu, Caitilin de Bérigny
Abstract:
In the current study, we designed an interactive meditation and brain painting application to cultivate users’ creativity, promote meditation, reduce stress, and improve cognition while attempting to learn a foreign language. User tests and data analyses were conducted on 42 male and 42 female participants to better understand sex-associated psychological and aesthetic differences. Our method utilized brain-computer interfaces to import meditation and attention data to create artwork in meditation-based applications. Female participants showed statistically significantly different language learning outcomes following three meditation paradigms. The art style of brain painting helped females with language memory. Our results suggest that the most ideal methods for promoting memory attention were meditation methods and brain painting exercises contributing to language learning, memory concentration promotion, and foreign word memorization. We conclude that a short period of meditation practice can help in learning a foreign language. These findings provide insights into meditation, creative language education, brain-computer interface, and human-computer interactions.
Keywords: Brain-computer interface, creative thinking, meditation, mental health.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 58615998 Robust Coordinated Design of Multiple Power System Stabilizers Using Particle Swarm Optimization Technique
Authors: Sidhartha Panda, C. Ardil
Abstract:
Power system stabilizers (PSS) are now routinely used in the industry to damp out power system oscillations. In this paper, particle swarm optimization (PSO) technique is applied to coordinately design multiple power system stabilizers (PSS) in a multi-machine power system. The design problem of the proposed controllers is formulated as an optimization problem and PSO is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor speed of the generator is involved; stability performance of the system is improved. The non-linear simulation results are presented for various severe disturbances and small disturbance at different locations as well as for various fault clearing sequences to show the effectiveness and robustness of the proposed controller and their ability to provide efficient damping of low frequency oscillations.Keywords: Low frequency oscillations, Particle swarm optimization, power system stability, power system stabilizer, multimachine power system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 86815997 Finding Equilibrium in Transport Networks by Simulation and Investigation of Behaviors
Authors: Gábor Szűcs, Gyula Sallai
Abstract:
The goal of this paper is to find Wardrop equilibrium in transport networks at case of uncertainty situations, where the uncertainty comes from lack of information. We use simulation tool to find the equilibrium, which gives only approximate solution, but this is sufficient for large networks as well. In order to take the uncertainty into account we have developed an interval-based procedure for finding the paths with minimal cost using the Dempster-Shafer theory. Furthermore we have investigated the users- behaviors using game theory approach, because their path choices influence the costs of the other users- paths.Keywords: Dempster-Shafer theory, S-O and U-Otransportation network, uncertainty of information, Wardropequilibrium.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 153015996 The Optimization of an Intelligent Traffic Congestion Level Classification from Motorists- Judgments on Vehicle's Moving Patterns
Authors: Thammasak Thianniwet, Satidchoke Phosaard, Wasan Pattara-Atikom
Abstract:
We proposed a technique to identify road traffic congestion levels from velocity of mobile sensors with high accuracy and consistent with motorists- judgments. The data collection utilized a GPS device, a webcam, and an opinion survey. Human perceptions were used to rate the traffic congestion levels into three levels: light, heavy, and jam. Then the ratings and velocity were fed into a decision tree learning model (J48). We successfully extracted vehicle movement patterns to feed into the learning model using a sliding windows technique. The parameters capturing the vehicle moving patterns and the windows size were heuristically optimized. The model achieved accuracy as high as 99.68%. By implementing the model on the existing traffic report systems, the reports will cover comprehensive areas. The proposed method can be applied to any parts of the world.Keywords: intelligent transportation system (ITS), traffic congestion level, human judgment, decision tree (J48), geographic positioning system (GPS).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 182115995 Palmprint based Cancelable Biometric Authentication System
Authors: Ying-Han Pang, Andrew Teoh Beng Jin, David Ngo Chek Ling
Abstract:
A cancelable palmprint authentication system proposed in this paper is specifically designed to overcome the limitations of the contemporary biometric authentication system. In this proposed system, Geometric and pseudo Zernike moments are employed as feature extractors to transform palmprint image into a lower dimensional compact feature representation. Before moment computation, wavelet transform is adopted to decompose palmprint image into lower resolution and dimensional frequency subbands. This reduces the computational load of moment calculation drastically. The generated wavelet-moment based feature representation is used to generate cancelable verification key with a set of random data. This private binary key can be canceled and replaced. Besides that, this key also possesses high data capture offset tolerance, with highly correlated bit strings for intra-class population. This property allows a clear separation of the genuine and imposter populations, as well as zero Equal Error Rate achievement, which is hardly gained in the conventional biometric based authentication system.Keywords: Cancelable biometric authenticator, Discrete- Hashing, Moments, Palmprint.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 156515994 Collaborative Education Practice in a Data Structure E-Learning Course
Authors: Gang Chen, Ruimin Shen
Abstract:
This paper presented a collaborative education model, which consists four parts: collaborative teaching, collaborative working, collaborative training and interaction. Supported by an e-learning platform, collaborative education was practiced in a data structure e-learning course. Data collected shows that most of students accept collaborative education. This paper goes one step attempting to determine which aspects appear to be most important or helpful in collaborative education.Keywords: Collaborative work, education, data structures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 169015993 Deep Reinforcement Learning for Optimal Decision-making in Supply Chains
Authors: Nitin Singh, Meng Ling, Talha Ahmed, Tianxia Zhao, Reinier van de Pol
Abstract:
We propose the use of Reinforcement Learning (RL) as a viable alternative for optimizing supply chain management, particularly in scenarios with stochasticity in product demands. RL’s adaptability to changing conditions and its demonstrated success in diverse fields of sequential decision-making make it a promising candidate for addressing supply chain problems. We investigate the impact of demand fluctuations in a multi-product supply chain system and develop RL agents with learned generalizable policies. We provide experimentation details for training RL agents and a statistical analysis of the results. We study generalization ability of RL agents for different demand uncertainty scenarios and observe superior performance compared to the agents trained with fixed demand curves. The proposed methodology has the potential to lead to cost reduction and increased profit for companies dealing with frequent inventory movement between supply and demand nodes.
Keywords: Inventory Management, Reinforcement Learning, Supply Chain Optimization, Uncertainty.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38315992 A Weighted Approach to Unconstrained Iris Recognition
Authors: Yao-Hong Tsai
Abstract:
This paper presents a weighted approach to unconstrained iris recognition. In nowadays, commercial systems are usually characterized by strong acquisition constraints based on the subject’s cooperation. However, it is not always achievable for real scenarios in our daily life. Researchers have been focused on reducing these constraints and maintaining the performance of the system by new techniques at the same time. With large variation in the environment, there are two main improvements to develop the proposed iris recognition system. For solving extremely uneven lighting condition, statistic based illumination normalization is first used on eye region to increase the accuracy of iris feature. The detection of the iris image is based on Adaboost algorithm. Secondly, the weighted approach is designed by Gaussian functions according to the distance to the center of the iris. Furthermore, local binary pattern (LBP) histogram is then applied to texture classification with the weight. Experiment showed that the proposed system provided users a more flexible and feasible way to interact with the verification system through iris recognition.
Keywords: Authentication, iris recognition, Adaboost, local binary pattern.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1937