Search results for: normalized normal constraint method
7913 On Symmetry Analysis and Exact Wave Solutions of New Modified Novikov Equation
Authors: Anupma Bansal, R. K. Gupta
Abstract:
In this paper, we study a new modified Novikov equation for its classical and nonclassical symmetries and use the symmetries to reduce it to a nonlinear ordinary differential equation (ODE). With the aid of solutions of the nonlinear ODE by using the modified (G/G)-expansion method proposed recently, multiple exact traveling wave solutions are obtained and the traveling wave solutions are expressed by the hyperbolic functions, trigonometric functions and rational functions.
Keywords: New Modified Novikov Equation, Lie Classical Method, Nonclassical Method, Modified (G'/G)-Expansion Method, Traveling Wave Solutions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16257912 A New Weighted LDA Method in Comparison to Some Versions of LDA
Authors: Delaram Jarchi, Reza Boostani
Abstract:
Linear Discrimination Analysis (LDA) is a linear solution for classification of two classes. In this paper, we propose a variant LDA method for multi-class problem which redefines the between class and within class scatter matrices by incorporating a weight function into each of them. The aim is to separate classes as much as possible in a situation that one class is well separated from other classes, incidentally, that class must have a little influence on classification. It has been suggested to alleviate influence of classes that are well separated by adding a weight into between class scatter matrix and within class scatter matrix. To obtain a simple and effective weight function, ordinary LDA between every two classes has been used in order to find Fisher discrimination value and passed it as an input into two weight functions and redefined between class and within class scatter matrices. Experimental results showed that our new LDA method improved classification rate, on glass, iris and wine datasets, in comparison to different versions of LDA.Keywords: Discriminant vectors, weighted LDA, uncorrelation, principle components, Fisher-face method, Bootstarp method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15237911 Effects of Sodium Bicarbonate Content and Vulcanization Method on Properties of NBR/PVC Thermal Insulator Foam
Authors: P. Suriyachai, N. Thavarungkul, P. Sae-oui
Abstract:
In this research sodium bicarbonate (NaHCO3) was introduced to generate carbon dioxide gas (CO2) to the existing nitrogen gas (N2) of elastomeric foam, to lower thermal conductivity (K). Various loadings of NaHCO3 (0 to 60 phr) were added into the azodicarbonamide (AZC)-containing compound and its properties were then determined. Two vulcanization methods, i.e., hot air and infrared (IR), were employed and compared in this study. Results revealed that compound viscosity tended to increase slightly with increasing NaHCO3 content but cure time was delayed. The effect of NaHCO3 content on thermal conductivity depended on the vulcanization method. For hot air method, the thermal conductivity was insignificantly changed with increasing NaHCO3 up to 40 phr whereas it tended to decrease gradually for IR method. At higher NaHCO3 content (60 phr), unexpected increase of thermal conductivity was observed. The water absorption was also determined and foam structures were then used to explain the results.
Keywords: sodium bicarbonate, thermal conductivity, hot airmethod, infrared method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37627910 Deep Learning Based 6D Pose Estimation for Bin-Picking Using 3D Point Clouds
Authors: Hesheng Wang, Haoyu Wang, Chungang Zhuang
Abstract:
Estimating the 6D pose of objects is a core step for robot bin-picking tasks. The problem is that various objects are usually randomly stacked with heavy occlusion in real applications. In this work, we propose a method to regress 6D poses by predicting three points for each object in the 3D point cloud through deep learning. To solve the ambiguity of symmetric pose, we propose a labeling method to help the network converge better. Based on the predicted pose, an iterative method is employed for pose optimization. In real-world experiments, our method outperforms the classical approach in both precision and recall.
Keywords: Pose estimation, deep learning, point cloud, bin-picking, 3D computer vision.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18257909 Isolation and Classification of Red Blood Cells in Anemic Microscopic Images
Authors: Jameela Ali Alkrimi, Loay E. George, Azizah Suliman, Abdul Rahim Ahmad, Karim Al-Jashamy
Abstract:
Red blood cells (RBCs) are among the most commonly and intensively studied type of blood cells in cell biology. Anemia is a lack of RBCs is characterized by its level compared to the normal hemoglobin level. In this study, a system based image processing methodology was developed to localize and extract RBCs from microscopic images. Also, the machine learning approach is adopted to classify the localized anemic RBCs images. Several textural and geometrical features are calculated for each extracted RBCs. The training set of features was analyzed using principal component analysis (PCA). With the proposed method, RBCs were isolated in 4.3secondsfrom an image containing 18 to 27 cells. The reasons behind using PCA are its low computation complexity and suitability to find the most discriminating features which can lead to accurate classification decisions. Our classifier algorithm yielded accuracy rates of 100%, 99.99%, and 96.50% for K-nearest neighbor (K-NN) algorithm, support vector machine (SVM), and neural network RBFNN, respectively. Classification was evaluated in highly sensitivity, specificity, and kappa statistical parameters. In conclusion, the classification results were obtained within short time period, and the results became better when PCA was used.
Keywords: Red blood cells, pre-processing image algorithms, classification algorithms, principal component analysis PCA, confusion matrix, kappa statistical parameters, ROC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31997908 Statistical Evaluation of Nonlinear Distortion using the Multi-Canonical Monte Carlo Method and the Split Step Fourier Method
Authors: Ioannis Neokosmidis, Nikos Gkekas, Thomas Kamalakis, Thomas Sphicopoulos
Abstract:
In high powered dense wavelength division multiplexed (WDM) systems with low chromatic dispersion, four-wave mixing (FWM) can prove to be a major source of noise. The MultiCanonical Monte Carlo Method (MCMC) and the Split Step Fourier Method (SSFM) are combined to accurately evaluate the probability density function of the decision variable of a receiver, limited by FWM. The combination of the two methods leads to more accurate results, and offers the possibility of adding other optical noises such as the Amplified Spontaneous Emission (ASE) noise.Keywords: Monte Carlo, Nonlinear optics, optical crosstalk, Wavelength-division Multiplexing (WDM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16927907 Method for Assessing Potential in Distribution Logistics
Authors: B. Groß, P. Fronia, P. Nyhuis
Abstract:
In addition to the production, which is already frequently optimized, improving the distribution logistics also opens up tremendous potential for increasing an enterprise’s competitiveness. Here too though, numerous interactions need to be taken into account, enterprises thus need to be able to identify and weigh between different potentials for economically efficient optimizations. In order to be able to assess potentials, enterprises require a suitable method. This paper first briefly presents the need for this research before introducing the procedure that will be used to develop an appropriate method that not only considers interactions but is also quickly and easily implemented.
Keywords: Distribution Logistics, Evaluation of Potential, Methods, Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15927906 Automatic Visualization Pipeline Formation for Medical Datasets on Grid Computing Environment
Authors: Aboamama Atahar Ahmed, Muhammad Shafie Abd Latiff, Kamalrulnizam Abu Bakar, Zainul AhmadRajion
Abstract:
Distance visualization of large datasets often takes the direction of remote viewing and zooming techniques of stored static images. However, the continuous increase in the size of datasets and visualization operation causes insufficient performance with traditional desktop computers. Additionally, the visualization techniques such as Isosurface depend on the available resources of the running machine and the size of datasets. Moreover, the continuous demand for powerful computing powers and continuous increase in the size of datasets results an urgent need for a grid computing infrastructure. However, some issues arise in current grid such as resources availability at the client machines which are not sufficient enough to process large datasets. On top of that, different output devices and different network bandwidth between the visualization pipeline components often result output suitable for one machine and not suitable for another. In this paper we investigate how the grid services could be used to support remote visualization of large datasets and to break the constraint of physical co-location of the resources by applying the grid computing technologies. We show our grid enabled architecture to visualize large medical datasets (circa 5 million polygons) for remote interactive visualization on modest resources clients.
Keywords: Visualization, Grid computing, Medical datasets, visualization techniques, thin clients, Globus toolkit, VTK.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17517905 Evaluation of Coastal Erosion in the Jurisdiction of the Municipalities of Puerto Colombia and Tubará, Atlántico, Colombia in Google Earth Engine with Landsat and Sentinel 2 Images
Authors: Francisco Javier Reyes Salazar, Héctor Mauricio Ramírez
Abstract:
The coastal zones are home to mangrove swamps, coral reefs, and seagrass ecosystems, which are the most biodiverse and fragile on the planet. These areas support a great diversity of marine life; they are also extraordinarily important for humans in the provision of food, water, wood, and other associated goods and services; they also contribute to climate regulation. The lack of an automated model that generates information on the dynamics of changes in coastlines and coastal erosion is identified as a central problem. In this paper, coastlines were determined from 1984 to 2020 on the Google Earth Engine platform from Landsat and Sentinel images. Then, we determined the Modified Normalized Difference Water Index (MNDWI) and used Digital Shoreline Analysis System (DSAS) v5.0. Starting from the 2020 coastline; the 10-year prediction (Year 2031) was determined with the erosion of 238.32 hectares and an accretion of 181.96 hectares. For the 20-year prediction (Year 2041) will be presented an erosion of 544.04 hectares and an accretion of 133.94 hectares. The erosion and accretion of Playa Muelle in the municipality of Puerto Colombia were established, which will register the highest value of erosion. The coverage that presented the greatest change was that of artificialized territories.
Keywords: Coastline, coastal erosion, MNDWI, Google Earth Engine, Colombia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1977904 Analyzing The Effect of Variable Round Time for Clustering Approach in Wireless Sensor Networks
Authors: Vipin Pal, Girdhari Singh, R P Yadav
Abstract:
As wireless sensor networks are energy constraint networks so energy efficiency of sensor nodes is the main design issue. Clustering of nodes is an energy efficient approach. It prolongs the lifetime of wireless sensor networks by avoiding long distance communication. Clustering algorithms operate in rounds. Performance of clustering algorithm depends upon the round time. A large round time consumes more energy of cluster heads while a small round time causes frequent re-clustering. So existing clustering algorithms apply a trade off to round time and calculate it from the initial parameters of networks. But it is not appropriate to use initial parameters based round time value throughout the network lifetime because wireless sensor networks are dynamic in nature (nodes can be added to the network or some nodes go out of energy). In this paper a variable round time approach is proposed that calculates round time depending upon the number of active nodes remaining in the field. The proposed approach makes the clustering algorithm adaptive to network dynamics. For simulation the approach is implemented with LEACH in NS-2 and the results show that there is 6% increase in network lifetime, 7% increase in 50% node death time and 5% improvement over the data units gathered at the base station.Keywords: Wireless Sensor Network, Clustering, Energy Efficiency, Round Time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17877903 Transmission Loss Allocation via Loss Function Decomposition and Current Projection Concept
Authors: M.R. Ebrahimi, Z. Ghofrani, M. Ehsan
Abstract:
One of the major problems in liberalized power markets is loss allocation. In this paper, a different method for allocating transmission losses to pool market participants is proposed. The proposed method is fundamentally based on decomposition of loss function and current projection concept. The method has been implemented and tested on several networks and one sample summarized in the paper. The results show that the method is comprehensive and fair to allocating the energy losses of a power market to its participants.Keywords: Transmission loss, loss allocation, current projectionconcept, loss function decomposition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17457902 A Relationship Extraction Method from Literary Fiction Considering Korean Linguistic Features
Authors: Hee-Jeong Ahn, Kee-Won Kim, Seung-Hoon Kim
Abstract:
The knowledge of the relationship between characters can help readers to understand the overall story or plot of the literary fiction. In this paper, we present a method for extracting the specific relationship between characters from a Korean literary fiction. Generally, methods for extracting relationships between characters in text are statistical or computational methods based on the sentence distance between characters without considering Korean linguistic features. Furthermore, it is difficult to extract the relationship with direction from text, such as one-sided love, because they consider only the weight of relationship, without considering the direction of the relationship. Therefore, in order to identify specific relationships between characters, we propose a statistical method considering linguistic features, such as syntactic patterns and speech verbs in Korean. The result of our method is represented by a weighted directed graph of the relationship between the characters. Furthermore, we expect that proposed method could be applied to the relationship analysis between characters of other content like movie or TV drama.
Keywords: Data mining, Korean linguistic feature, literary fiction, relationship extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17957901 On the Prediction of Transmembrane Helical Segments in Membrane Proteins
Abstract:
The prediction of transmembrane helical segments (TMHs) in membrane proteins is an important field in the bioinformatics research. In this paper, a method based on discrete wavelet transform (DWT) has been developed to predict the number and location of TMHs in membrane proteins. PDB coded as 1F88 was chosen as an example to describe the prediction of the number and location of TMHs in membrane proteins by using this method. One group of test data sets that contain total 19 protein sequences was utilized to access the effect of this method. Compared with the prediction results of DAS, PRED-TMR2, SOSUI, HMMTOP2.0 and TMHMM2.0, the obtained results indicate that the presented method has higher prediction accuracy.Keywords: hydrophobicity, membrane protein, transmembranehelical segments, wavelet transform
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15827900 Building and Tree Detection Using Multiscale Matched Filtering
Authors: Abdullah H. Özcan, Dilara Hisar, Yetkin Sayar, Cem Ünsalan
Abstract:
In this study, an automated building and tree detection method is proposed using DSM data and true orthophoto image. A multiscale matched filtering is used on DSM data. Therefore, first watershed transform is applied. Then, Otsu’s thresholding method is used as an adaptive threshold to segment each watershed region. Detected objects are masked with NDVI to separate buildings and trees. The proposed method is able to detect buildings and trees without entering any elevation threshold. We tested our method on ISPRS semantic labeling dataset and obtained promising results.Keywords: Building detection, tree detection, matched filtering, multiscale, local maximum filtering, watershed segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5497899 CFD Modeling of Boiling in a Microchannel Based On Phase-Field Method
Authors: Rahim Jafari, Tuba Okutucu-Özyurt
Abstract:
The hydrodynamics and heat transfer characteristics of a vaporized elongated bubble in a rectangular microchannel have been simulated based on Cahn-Hilliard phase-field method. In the simulations, the initially nucleated bubble starts growing as it comes in contact with superheated water. The growing shape of the bubble compared well with the available experimental data in the literature.
Keywords: Microchannel, boiling, Cahn-Hilliard method, Two-phase flow, Simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38477898 An Empirical Mode Decomposition Based Method for Action Potential Detection in Neural Raw Data
Authors: Sajjad Farashi, Mohammadjavad Abolhassani, Mostafa Taghavi Kani
Abstract:
Information in the nervous system is coded as firing patterns of electrical signals called action potential or spike so an essential step in analysis of neural mechanism is detection of action potentials embedded in the neural data. There are several methods proposed in the literature for such a purpose. In this paper a novel method based on empirical mode decomposition (EMD) has been developed. EMD is a decomposition method that extracts oscillations with different frequency range in a waveform. The method is adaptive and no a-priori knowledge about data or parameter adjusting is needed in it. The results for simulated data indicate that proposed method is comparable with wavelet based methods for spike detection. For neural signals with signal-to-noise ratio near 3 proposed methods is capable to detect more than 95% of action potentials accurately.
Keywords: EMD, neural data processing, spike detection, wavelet decomposition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23747897 Distributed Generator Placement for Loss Reduction and Improvement in Reliability
Authors: Priyanka Paliwal, N.P. Patidar
Abstract:
Distributed Power generation has gained a lot of attention in recent times due to constraints associated with conventional power generation and new advancements in DG technologies .The need to operate the power system economically and with optimum levels of reliability has further led to an increase in interest in Distributed Generation. However it is important to place Distributed Generator on an optimum location so that the purpose of loss minimization and voltage regulation is dully served on the feeder. This paper investigates the impact of DG units installation on electric losses, reliability and voltage profile of distribution networks. In this paper, our aim would be to find optimal distributed generation allocation for loss reduction subjected to constraint of voltage regulation in distribution network. The system is further analyzed for increased levels of Reliability. Distributed Generator offers the additional advantage of increase in reliability levels as suggested by the improvements in various reliability indices such as SAIDI, CAIDI and AENS. Comparative studies are performed and related results are addressed. An analytical technique is used in order to find the optimal location of Distributed Generator. The suggested technique is programmed under MATLAB software. The results clearly indicate that DG can reduce the electrical line loss while simultaneously improving the reliability of the system.Keywords: AENS, CAIDI, Distributed Generation, lossreduction, Reliability, SAIDI
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31027896 Inexact Alternating Direction Method for Variational Inequality Problems with Linear Equality Constraints
Abstract:
In this article, a new inexact alternating direction method(ADM) is proposed for solving a class of variational inequality problems. At each iteration, the new method firstly solves the resulting subproblems of ADM approximately to generate an temporal point ˜xk, and then the multiplier yk is updated to get the new iterate yk+1. In order to get xk+1, we adopt a new descent direction which is simple compared with the existing prediction-correction type ADMs. For the inexact ADM, the resulting proximal subproblem has closedform solution when the proximal parameter and inexact term are chosen appropriately. We show the efficiency of the inexact ADM numerically by some preliminary numerical experiments.
Keywords: variational inequality problems, alternating direction method, global convergence
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14997895 DIFFER: A Propositionalization approach for Learning from Structured Data
Authors: Thashmee Karunaratne, Henrik Böstrom
Abstract:
Logic based methods for learning from structured data is limited w.r.t. handling large search spaces, preventing large-sized substructures from being considered by the resulting classifiers. A novel approach to learning from structured data is introduced that employs a structure transformation method, called finger printing, for addressing these limitations. The method, which generates features corresponding to arbitrarily complex substructures, is implemented in a system, called DIFFER. The method is demonstrated to perform comparably to an existing state-of-art method on some benchmark data sets without requiring restrictions on the search space. Furthermore, learning from the union of features generated by finger printing and the previous method outperforms learning from each individual set of features on all benchmark data sets, demonstrating the benefit of developing complementary, rather than competing, methods for structure classification.Keywords: Machine learning, Structure classification, Propositionalization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12237894 Static and Dynamic Three-Dimensional Finite Element Analysis of Pelvic Bone
Authors: M. S. El-Asfoury, M. A. El-Hadek
Abstract:
The complex shape of the human pelvic bone was successfully imaged and modeled using finite element FE processing. The bone was subjected to quasi-static and dynamic loading conditions simulating the effect of both weight gain and impact. Loads varying between 500 – 2500 N (~50 – 250 Kg of weight) was used to simulate 3D quasi-static weight gain. Two different 3D dynamic analyses, body free fall at two different heights (1 and 2 m) and forced side impact at two different velocities (20 and 40 Km/hr) were also studied. The computed resulted stresses were compared for the four loading cases, where Von Misses stresses increases linearly with the weight gain increase under quasi-static loading. For the dynamic models, the Von Misses stress history behaviors were studied for the affected area and effected load with respect to time. The normalization Von Misses stresses with respect to the applied load were used for comparing the free fall and the forced impact load results. It was found that under the forced impact loading condition an over lapping behavior was noticed, where as for the free fall the normalized Von Misses stresses behavior was found to nonlinearly different. This phenomenon was explained through the energy dissipation concept. This study will help designers in different specialization in defining the weakest spots for designing different supporting systems.Keywords: Pelvic Bone, Static and Dynamic Analysis, Three- Dimensional Finite Element Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21417893 The Impact of Training Method on Programming Learning Performance
Authors: Chechen Liao, Chin Yi Yang
Abstract:
Although several factors that affect learning to program have been identified over the years, there continues to be no indication of any consensus in understanding why some students learn to program easily and quickly while others have difficulty. Seldom have researchers considered the problem of how to help the students enhance the programming learning outcome. The research had been conducted at a high school in Taiwan. Students participating in the study consist of 330 tenth grade students enrolled in the Basic Computer Concepts course with the same instructor. Two types of training methods-instruction-oriented and exploration-oriented were conducted. The result of this research shows that the instruction-oriented training method has better learning performance than exploration-oriented training method.
Keywords: Learning performance, programming learning, TDD, training method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19577892 Effect of Wood Vinegar for Controlling on Housefly (Musca domestica L.)
Authors: U. Pangnakorn, S. Kanlaya, C. Kuntha
Abstract:
Raw wood vinegar was purified by both standing and filtering methods. Toxicity tests were conducted under laboratory conditions by the topical application method (contact poison) and feeding method (stomach poison). Larvicidal activities of wood vinegar at four different concentrations (10, 15, 20, 25 and 30 %) were studied against second instar larvae of housefly (Musca domestica L.). Four replicates were maintained for all treatments and controls. Larval mortality was recorded up to 96 hours and compared with the larval survivability by two methods of larvicidal bioassay. Percent pupation and percent adult emergence were observed in treated M. domestica. The study revealed that the feeding method gave higher efficiency compared with the topical application method. Larval mortality increased with increasing concentration of wood vinegar and the duration of exposure. No mortality was found in treated M. domestica larvae at minimum 10% concentration of wood vinegar through the experiments. The treated larvae were maintained up to pupa and adult emergence. At 30% maximum concentration larval duration was extended to 11 days in M. domestica for topical application method and 9 days for feeding method. Similarly the pupal durations were also increased with increased concentrations (16 and 24 days for topical application method and feeding method respectively at 30% concentration) of the treatments.Keywords: Housefly (Musca domestica L.), wood vinegar, mortality, topical application, feeding
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31567891 Moment Estimators of the Parameters of Zero-One Inflated Negative Binomial Distribution
Authors: Rafid Saeed Abdulrazak Alshkaki
Abstract:
In this paper, zero-one inflated negative binomial distribution is considered, along with some of its structural properties, then its parameters were estimated using the method of moments. It is found that the method of moments to estimate the parameters of the zero-one inflated negative binomial models is not a proper method and may give incorrect conclusions.Keywords: Zero one inflated models, negative binomial distribution, moments estimator, non-negative integer sampling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10977890 Simulation of Sloshing behavior using Moving Grid and Body Force Methods
Authors: Tadashi Watanabe
Abstract:
The flow field and the motion of the free surface in an oscillating container are simulated numerically to assess the numerical approach for studying two-phase flows under oscillating conditions. Two numerical methods are compared: one is to model the oscillating container directly using the moving grid of the ALE method, and the other is to simulate the effect of container motion using the oscillating body force acting on the fluid in the stationary container. The two-phase flow field in the container is simulated using the level set method in both cases. It is found that the calculated results by the body force method coinsides with those by the moving grid method and the sloshing behavior is predicted well by both the methods. Theoretical back ground and limitation of the body force method are discussed, and the effects of oscillation amplitude and frequency are shown.Keywords: Two-phase flow, simulation, oscillation, moving grid, body force
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16417889 Effect of Clustering on Energy Efficiency and Network Lifetime in Wireless Sensor Networks
Authors: Prakash G L, Chaitra K Meti, Poojitha K, Divya R.K.
Abstract:
Wireless Sensor Network is Multi hop Self-configuring Wireless Network consisting of sensor nodes. The deployment of wireless sensor networks in many application areas, e.g., aggregation services, requires self-organization of the network nodes into clusters. Efficient way to enhance the lifetime of the system is to partition the network into distinct clusters with a high energy node as cluster head. The different methods of node clustering techniques have appeared in the literature, and roughly fall into two families; those based on the construction of a dominating set and those which are based solely on energy considerations. Energy optimized cluster formation for a set of randomly scattered wireless sensors is presented. Sensors within a cluster are expected to be communicating with cluster head only. The energy constraint and limited computing resources of the sensor nodes present the major challenges in gathering the data. In this paper we propose a framework to study how partially correlated data affect the performance of clustering algorithms. The total energy consumption and network lifetime can be analyzed by combining random geometry techniques and rate distortion theory. We also present the relation between compression distortion and data correlation.Keywords: Clusters, multi hop, random geometry, rate distortion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16377888 Performance Analysis of the Subgroup Method for Collective I/O
Authors: Kwangho Cha, Hyeyoung Cho, Sungho Kim
Abstract:
As many scientific applications require large data processing, the importance of parallel I/O has been increasingly recognized. Collective I/O is one of the considerable features of parallel I/O and enables application programmers to easily handle their large data volume. In this paper we measured and analyzed the performance of original collective I/O and the subgroup method, the way of using collective I/O of MPI effectively. From the experimental results, we found that the subgroup method showed good performance with small data size.
Keywords: Collective I/O, MPI, parallel file system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15757887 Optimization Parameters of Rotary Positioner Controller using CDM
Authors: Meemongkol A., Tipsuwanporn V., Numsomran A.
Abstract:
The authors present optimization parameters of rotary positioner controller in hard disk drive servo track writing process using coefficient diagram method; CDM. Due to estimation parameters in PI Positioning Control System by expected ratio method cannot meet the required specification of response effectively, we suggest coefficient diagram method for defining controller parameters under the requirement of the system. Finally, the simulation results show that our proposed method can improve the problem in tuning parameter of rotary positioner controller. It is satisfied specification of performance of control system. Furthermore, it is very convenient as a fast adjustment damping ratio as well as a high speed response.Keywords: Optimization Parameters, Rotary Positioner, CDM
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15487886 On Constructing a Cubically Convergent Numerical Method for Multiple Roots
Authors: Young Hee Geum
Abstract:
We propose the numerical method defined by
xn+1 = xn − λ[f(xn − μh(xn))/]f'(xn) , n ∈ N,
and determine the control parameter λ and μ to converge cubically. In addition, we derive the asymptotic error constant. Applying this proposed scheme to various test functions, numerical results show a good agreement with the theory analyzed in this paper and are proven using Mathematica with its high-precision computability.
Keywords: Asymptotic error constant, iterative method , multiple root, root-finding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15087885 A New Damage Identification Strategy for SHM Based On FBGs and Bayesian Model Updating Method
Authors: Yanhui Zhang, Wenyu Yang
Abstract:
One of the difficulties of the vibration-based damage identification methods is the nonuniqueness of the results of damage identification. The different damage locations and severity may cause the identical response signal, which is even more severe for detection of the multiple damage. This paper proposes a new strategy for damage detection to avoid this nonuniqueness. This strategy firstly determines the approximates damage area based on the statistical pattern recognition method using the dynamic strain signal measured by the distributed fiber Bragg grating, and then accurately evaluates the damage information based on the Bayesian model updating method using the experimental modal data. The stochastic simulation method is then used to compute the high-dimensional integral in the Bayesian problem. Finally, an experiment of the plate structure, simulating one part of mechanical structure, is used to verify the effectiveness of this approach.
Keywords: Bayesian method, damage detection, fiber Bragg grating, structural health monitoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19077884 Oncological Management of Medulloblastoma and New Viral Therapeutic Targets
Authors: A. Taqaddas
Abstract:
Medulloblastoma (MB) is one of the most prevalent brain tumours among paediatrics. Although its management has evolved over time still there is need to find new therapeutic targets for MB that can result in less normal tissue toxicity while improving survival and reducing recurrence. This literature review is aimed at finding new potential therapeutic targets for MB focusing on viruses that can be used as potential targets for MB. The review also gives an over-view of management of paediatric Medulloblastoma focusing on Radiotherapy management.
Keywords: Cytomegalovirus, Measles Virus, Medulloblastoma, Radiotherapy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2325