Search results for: statistical model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8255

Search results for: statistical model

7265 Involving Action Potential Morphology on a New Cellular Automata Model of Cardiac Action Potential Propagation

Authors: F. Pourhasanzade, S. H. Sabzpoushan

Abstract:

Computer modeling has played a unique role in understanding electrocardiography. Modeling and simulating cardiac action potential propagation is suitable for studying normal and pathological cardiac activation. This paper presents a 2-D Cellular Automata model for simulating action potential propagation in cardiac tissue. We demonstrate a novel algorithm in order to use minimum neighbors. This algorithm uses the summation of the excitability attributes of excited neighboring cells. We try to eliminate flat edges in the result patterns by inserting probability to the model. We also preserve the real shape of action potential by using linear curve fitting of one well known electrophysiological model.

Keywords: Cellular Automata, Action Potential Propagation, cardiac tissue, Isotropic Pattern, accurate shape of cardiac actionpotential.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1328
7264 Operational Risk – Scenario Analysis

Authors: Milan Rippel, Petr Teply

Abstract:

This paper focuses on operational risk measurement techniques and on economic capital estimation methods. A data sample of operational losses provided by an anonymous Central European bank is analyzed using several approaches. Loss Distribution Approach and scenario analysis method are considered. Custom plausible loss events defined in a particular scenario are merged with the original data sample and their impact on capital estimates and on the financial institution is evaluated. Two main questions are assessed – What is the most appropriate statistical method to measure and model operational loss data distribution? and What is the impact of hypothetical plausible events on the financial institution? The g&h distribution was evaluated to be the most suitable one for operational risk modeling. The method based on the combination of historical loss events modeling and scenario analysis provides reasonable capital estimates and allows for the measurement of the impact of extreme events on banking operations.

Keywords: operational risk, scenario analysis, economic capital, loss distribution approach, extreme value theory, stress testing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2430
7263 A Simulation Model and Parametric Study of Triple-Effect Desalination Plant

Authors: Maha BenHamad, Ali Snoussi, Ammar Ben Brahim

Abstract:

A steady-state analysis of triple-effect thermal vapor compressor desalination unit was performed. A mathematical model based on mass, salinity and energy balances is developed. The purpose of this paper is to develop a connection between process simulator and process optimizer in order to study the influence of several operating variables on the performance and the produced water cost of the unit. A MATLAB program is used to solve the model equations, and Aspen HYSYS is used to model the plant. The model validity is examined against a commercial plant and showed a good agreement between industrial data and simulations results. Results show that the pressures of the last effect and the compressed vapor have an important influence on the produced cost, and the increase of the difference temperature in the condenser decreases the specific heat area about 22%.

Keywords: Steady-state, triple effect, thermal vapor compressor, MATLAB, Aspen HYSYS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1072
7262 Simulating the Dynamics of Distribution of Hazardous Substances Emitted by Motor Engines in a Residential Quarter

Authors: S. Grishin

Abstract:

This article is dedicated to development of mathematical models for determining the dynamics of concentration of hazardous substances in urban turbulent atmosphere. Development of the mathematical models implied taking into account the time-space variability of the fields of meteorological items and such turbulent atmosphere data as vortex nature, nonlinear nature, dissipativity and diffusivity. Knowing the turbulent airflow velocity is not assumed when developing the model. However, a simplified model implies that the turbulent and molecular diffusion ratio is a piecewise constant function that changes depending on vertical distance from the earth surface. Thereby an important assumption of vertical stratification of urban air due to atmospheric accumulation of hazardous substances emitted by motor vehicles is introduced into the mathematical model. The suggested simplified non-linear mathematical model of determining the sought exhaust concentration at a priori unknown turbulent flow velocity through non-degenerate transformation is reduced to the model which is subsequently solved analytically.

Keywords: Urban ecology, time-dependent mathematical model, exhaust concentration, turbulent and molecular diffusion, airflow velocity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1411
7261 Application of Smooth Ergodic Hidden Markov Model in Text to Speech Systems

Authors: Armin Ghayoori, Faramarz Hendessi, Asrar Sheikh

Abstract:

In developing a text-to-speech system, it is well known that the accuracy of information extracted from a text is crucial to produce high quality synthesized speech. In this paper, a new scheme for converting text into its equivalent phonetic spelling is introduced and developed. This method is applicable to many applications in text to speech converting systems and has many advantages over other methods. The proposed method can also complement the other methods with a purpose of improving their performance. The proposed method is a probabilistic model and is based on Smooth Ergodic Hidden Markov Model. This model can be considered as an extension to HMM. The proposed method is applied to Persian language and its accuracy in converting text to speech phonetics is evaluated using simulations.

Keywords: Hidden Markov Models, text, synthesis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1549
7260 Mathematical Modeling of Surface Roughness in Surface Grinding Operation

Authors: M.A. Kamely, S.M. Kamil, C.W. Chong

Abstract:

A mathematical model of the surface roughness has been developed by using response surface methodology (RSM) in grinding of AISI D2 cold work tool steels. Analysis of variance (ANOVA) was used to check the validity of the model. Low and high value for work speed and feed rate are decided from design of experiment. The influences of all machining parameters on surface roughness have been analyzed based on the developed mathematical model. The developed prediction equation shows that both the feed rate and work speed are the most important factor that influences the surface roughness. The surface roughness was found to be the lowers with the used of low feed rate and low work speed. Accuracy of the best model was proved with the testing data.

Keywords: Mathematical Modeling, Response surfacemethodology, Surface roughness, Cylindrical Grinding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3253
7259 A Content Vector Model for Text Classification

Authors: Eric Jiang

Abstract:

As a popular rank-reduced vector space approach, Latent Semantic Indexing (LSI) has been used in information retrieval and other applications. In this paper, an LSI-based content vector model for text classification is presented, which constructs multiple augmented category LSI spaces and classifies text by their content. The model integrates the class discriminative information from the training data and is equipped with several pertinent feature selection and text classification algorithms. The proposed classifier has been applied to email classification and its experiments on a benchmark spam testing corpus (PU1) have shown that the approach represents a competitive alternative to other email classifiers based on the well-known SVM and naïve Bayes algorithms.

Keywords: Feature Selection, Latent Semantic Indexing, Text Classification, Vector Space Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1885
7258 A Refined Energy-Based Model for Friction-Stir Welding

Authors: Samir A. Emam, Ali El Domiaty

Abstract:

Friction-stir welding has received a huge interest in the last few years. The many advantages of this promising process have led researchers to present different theoretical and experimental explanation of the process. The way to quantitatively and qualitatively control the different parameters of the friction-stir welding process has not been paved. In this study, a refined energybased model that estimates the energy generated due to friction and plastic deformation is presented. The effect of the plastic deformation at low energy levels is significant and hence a scale factor is introduced to control its effect. The predicted heat energy and the obtained maximum temperature using our model are compared to the theoretical and experimental results available in the literature and a good agreement is obtained. The model is applied to AA6000 and AA7000 series.

Keywords: Friction-stir welding, Energy, Aluminum Alloys.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1751
7257 3D Liver Segmentation from CT Images Using a Level Set Method Based on a Shape and Intensity Distribution Prior

Authors: Nuseiba M. Altarawneh, Suhuai Luo, Brian Regan, Guijin Tang

Abstract:

Liver segmentation from medical images poses more challenges than analogous segmentations of other organs. This contribution introduces a liver segmentation method from a series of computer tomography images. Overall, we present a novel method for segmenting liver by coupling density matching with shape priors. Density matching signifies a tracking method which operates via maximizing the Bhattacharyya similarity measure between the photometric distribution from an estimated image region and a model photometric distribution. Density matching controls the direction of the evolution process and slows down the evolving contour in regions with weak edges. The shape prior improves the robustness of density matching and discourages the evolving contour from exceeding liver’s boundaries at regions with weak boundaries. The model is implemented using a modified distance regularized level set (DRLS) model. The experimental results show that the method achieves a satisfactory result. By comparing with the original DRLS model, it is evident that the proposed model herein is more effective in addressing the over segmentation problem. Finally, we gauge our performance of our model against matrices comprising of accuracy, sensitivity, and specificity.

Keywords: Bhattacharyya distance, distance regularized level set (DRLS) model, liver segmentation, level set method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2338
7256 The Discriminate Analysis and Relevant Model for Mapping Export Potential

Authors: Jana Gutierrez Chvalkovská, Michal Mejstřík, Matěj Urban

Abstract:

There are pending discussions over the mapping of country export potential in order to refocus export strategy of firms and its evidence-based promotion by the Export Credit Agencies (ECAs) and other permitted vehicles of governments. In this paper we develop our version of an applied model that offers “stepwise” elimination of unattractive markets. We modify and calibrate the model for the particular features of the Czech Republic and specific pilot cases where we apply an individual approach to each sector.

Keywords: Export strategy, Modeling export, Calibration, Export promotion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2420
7255 A Cohesive Lagrangian Swarm and Its Application to Multiple Unicycle-like Vehicles

Authors: Jito Vanualailai, Bibhya Sharma

Abstract:

Swarm principles are increasingly being used to design controllers for the coordination of multi-robot systems or, in general, multi-agent systems. This paper proposes a two-dimensional Lagrangian swarm model that enables the planar agents, modeled as point masses, to swarm whilst effectively avoiding each other and obstacles in the environment. A novel method, based on an extended Lyapunov approach, is used to construct the model. Importantly, the Lyapunov method ensures a form of practical stability that guarantees an emergent behavior, namely, a cohesive and wellspaced swarm with a constant arrangement of individuals about the swarm centroid. Computer simulations illustrate this basic feature of collective behavior. As an application, we show how multiple planar mobile unicycle-like robots swarm to eventually form patterns in which their velocities and orientations stabilize.

Keywords: Attractive-repulsive swarm model, individual-based swarm model, Lagrangian swarm model, Lyapunov stability, Lyapunov-like function, practical stability, unicycle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1539
7254 On Pooling Different Levels of Data in Estimating Parameters of Continuous Meta-Analysis

Authors: N. R. N. Idris, S. Baharom

Abstract:

A meta-analysis may be performed using aggregate data (AD) or an individual patient data (IPD). In practice, studies may be available at both IPD and AD level. In this situation, both the IPD and AD should be utilised in order to maximize the available information. Statistical advantages of combining the studies from different level have not been fully explored. This study aims to quantify the statistical benefits of including available IPD when conducting a conventional summary-level meta-analysis. Simulated meta-analysis were used to assess the influence of the levels of data on overall meta-analysis estimates based on IPD-only, AD-only and the combination of IPD and AD (mixed data, MD), under different study scenario. The percentage relative bias (PRB), root mean-square-error (RMSE) and coverage probability were used to assess the efficiency of the overall estimates. The results demonstrate that available IPD should always be included in a conventional meta-analysis using summary level data as they would significantly increased the accuracy of the estimates.On the other hand, if more than 80% of the available data are at IPD level, including the AD does not provide significant differences in terms of accuracy of the estimates. Additionally, combining the IPD and AD has moderating effects on the biasness of the estimates of the treatment effects as the IPD tends to overestimate the treatment effects, while the AD has the tendency to produce underestimated effect estimates. These results may provide some guide in deciding if significant benefit is gained by pooling the two levels of data when conducting meta-analysis.

Keywords: Aggregate data, combined-level data, Individual patient data, meta analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1741
7253 Practical Simulation Model of Floating-Gate MOS Transistor in Sub 100nm Technologies

Authors: Zina Saheb, Ezz El-Masry

Abstract:

As the Silicon oxide scaled down in MOSFET technology to few nanometers, gate Direct Tunneling (DT) in Floating gate (FGMOSFET) devices has become a major concern for analog designers. FGMOSFET has been used in many low-voltage and low-power applications, however, there is no accurate model that account for DT gate leakage in nano-scale. This paper studied and analyzed different simulation models for FGMOSFET using TSMC 90-nm technology. The simulation results for FGMOSFET cascade current mirror shows the impact of DT on circuit performance in terms of current and voltage without the need for fabrication. This works shows the significance of using an accurate model for FGMOSFET in nan-scale technologies.

Keywords: CMOS transistor, direct-tunneling current, floatinggate, gate-leakage current, simulation model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2990
7252 A Comparison between Heterogeneous and Homogeneous Gas Flow Model in Slurry Bubble Column Reactor for Direct Synthesis of DME

Authors: Sadegh Papari, Mohammad Kazemeini, Moslem Fattahi

Abstract:

In the present study, a heterogeneous and homogeneous gas flow dispersion model for simulation and optimisation of a large-scale catalytic slurry reactor for the direct synthesis of dimethyl ether (DME) from syngas and CO2, using a churn-turbulent regime was developed. In the heterogeneous gas flow model the gas phase was distributed into two bubble phases: small and large, however in the homogeneous one, the gas phase was distributed into only one large bubble phase. The results indicated that the heterogeneous gas flow model was in more agreement with experimental pilot plant data than the homogeneous one.

Keywords: Modelling, Slurry bubble column, Dimethyl ether synthesis, Homogeneous gas flow, Heterogeneous gas flow

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2169
7251 Model of Controled Six Phase Induction Motor

Authors: R. Rinkeviciene, B. Kundrotas, S. Lisauskas

Abstract:

In this paper, the authors take a look at advantages of multiphase induction motors comparing them with three phase ones and present the applications where six-phase induction motors are used. They elaborate the mathematical model of six-phase induction motor with two similar stator three phase winding, shifted by 30 degrees in space and three phase winding in rotor, in synchronous reference frame for soft starting and scalar control. The authors simulate and discuss results of speed and torque starting transients.

Keywords: Model, scalar control, six-phase induction motor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3117
7250 Interoperability Maturity Models for Consideration When Using School Management Systems in South Africa: A Scoping Review

Authors: Keneilwe Maremi, Marlien Herselman, Adele Botha

Abstract:

The main purpose and focus of this paper are to determine the Interoperability Maturity Models to consider when using School Management Systems (SMS). The importance of this is to inform and help schools with knowing which Interoperability Maturity Model is best suited for their SMS. To address the purpose, this paper will apply a scoping review to ensure that all aspects are provided. The scoping review will include papers written from 2012-2019 and a comparison of the different types of Interoperability Maturity Models will be discussed in detail, which includes the background information, the levels of interoperability, and area for consideration in each Maturity Model. The literature was obtained from the following databases: IEEE Xplore and Scopus, the following search engines were used: Harzings, and Google Scholar. The topic of the paper was used as a search term for the literature and the term ‘Interoperability Maturity Models’ was used as a keyword. The data were analyzed in terms of the definition of Interoperability, Interoperability Maturity Models, and levels of interoperability. The results provide a table that shows the focus area of concern for each Maturity Model (based on the scoping review where only 24 papers were found to be best suited for the paper out of 740 publications initially identified in the field). This resulted in the most discussed Interoperability Maturity Model for consideration (Information Systems Interoperability Maturity Model (ISIMM) and Organizational Interoperability Maturity Model for C2 (OIM)).

Keywords: Interoperability, Interoperability Maturity Model, School Management System, scoping review.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 798
7249 Knowledge Relationship Model among User in Virtual Community

Authors: Fariba Haghbin, Othman Bin Ibrahim, Mohammad Reza Attarzadeh Niaki

Abstract:

With the development of virtual communities, there is an increase in the number of members in Virtual Communities (VCs). Many join VCs with the objective of sharing their knowledge and seeking knowledge from others. Despite the eagerness of sharing knowledge and receiving knowledge through VCs, there is no standard of assessing ones knowledge sharing capabilities and prospects of knowledge sharing. This paper developed a vector space model to assess the knowledge sharing prospect of VC users.

Keywords: Knowledge sharing network, Virtual community, knowledge relationship, Vector Space Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1340
7248 Comparison of Fundamental Frequency Model and PWM Based Model of UPFC

Authors: S.A. Al-Qallaf, S.A. Al-Mawsawi, A. Haider

Abstract:

Among all FACTS devices, the unified power flow controller (UPFC) is considered to be the most versatile device. This is due to its capability to control all the transmission system parameters (impedance, voltage magnitude, and phase angle). With the growing interest in UPFC, the attention to develop a mathematical model has increased. Several models were introduced for UPFC in literature for different type of studies in power systems. In this paper a novel comparison study between two dynamic models of UPFC with their proposed control strategies.

Keywords: FACTS, UPFC, Dynamic Modeling, PWM, Fundamental Frequency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2221
7247 Parameter Estimation using Maximum Likelihood Method from Flight Data at High Angles of Attack

Authors: Rakesh Kumar, A. K. Ghosh

Abstract:

The paper presents the modeling of nonlinear longitudinal aerodynamics using flight data of Hansa-3 aircraft at high angles of attack near stall. The Kirchhoff-s quasi-steady stall model has been used to incorporate nonlinear aerodynamic effects in the aerodynamic model used to estimate the parameters, thereby, making the aerodynamic model nonlinear. The Maximum Likelihood method has been applied to the flight data (at high angles of attack) for the estimation of parameters (aerodynamic and stall characteristics) using the nonlinear aerodynamic model. To improve the accuracy level of the estimates, an approach of fixing the strong parameters has also been presented.

Keywords: Maximum Likelihood, nonlinear, parameters, stall.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2216
7246 Stability Bound of Ruin Probability in a Reduced Two-Dimensional Risk Model

Authors: Zina Benouaret, Djamil Aissani

Abstract:

In this work, we introduce the qualitative and quantitative concept of the strong stability method in the risk process modeling two lines of business of the same insurance company or an insurance and re-insurance companies that divide between them both claims and premiums with a certain proportion. The approach proposed is based on the identification of the ruin probability associate to the model considered, with a stationary distribution of a Markov random process called a reversed process. Our objective, after clarifying the condition and the perturbation domain of parameters, is to obtain the stability inequality of the ruin probability which is applied to estimate the approximation error of a model with disturbance parameters by the considered model. In the stability bound obtained, all constants are explicitly written.

Keywords: Markov chain, risk models, ruin probabilities, strong stability analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 889
7245 Development of Gas Chromatography Model: Propylene Concentration Using Neural Network

Authors: Areej Babiker Idris Babiker, Rosdiazli Ibrahim

Abstract:

Gas chromatography (GC) is the most widely used technique in analytical chemistry. However, GC has high initial cost and requires frequent maintenance. This paper examines the feasibility and potential of using a neural network model as an alternative whenever GC is unvailable. It can also be part of system verification on the performance of GC for preventive maintenance activities. It shows the performance of MultiLayer Perceptron (MLP) with Backpropagation structure. Results demonstrate that neural network model when trained using this structure provides an adequate result and is suitable for this purpose. cm.

Keywords: Analyzer, Levenberg-Marquardt, Gas chromatography, Neural network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1768
7244 Bayesian Network Model for Students- Laboratory Work Performance Assessment: An Empirical Investigation of the Optimal Construction Approach

Authors: Ifeyinwa E. Achumba, Djamel Azzi, Rinat Khusainov

Abstract:

There are three approaches to complete Bayesian Network (BN) model construction: total expert-centred, total datacentred, and semi data-centred. These three approaches constitute the basis of the empirical investigation undertaken and reported in this paper. The objective is to determine, amongst these three approaches, which is the optimal approach for the construction of a BN-based model for the performance assessment of students- laboratory work in a virtual electronic laboratory environment. BN models were constructed using all three approaches, with respect to the focus domain, and compared using a set of optimality criteria. In addition, the impact of the size and source of the training, on the performance of total data-centred and semi data-centred models was investigated. The results of the investigation provide additional insight for BN model constructors and contribute to literature providing supportive evidence for the conceptual feasibility and efficiency of structure and parameter learning from data. In addition, the results highlight other interesting themes.

Keywords: Bayesian networks, model construction, parameterlearning, structure learning, performance index, model comparison.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1727
7243 The Evaluation of Complete Blood Cell Count-Based Inflammatory Markers in Pediatric Obesity and Metabolic Syndrome

Authors: Mustafa M. Donma, Orkide Donma

Abstract:

Obesity is defined as a severe chronic disease characterized by a low-grade inflammatory state. Therefore, inflammatory markers gained utmost importance during the evaluation of obesity and metabolic syndrome (MetS), a disease characterized by central obesity, elevated blood pressure, increased fasting blood glucose and elevated triglycerides or reduced high density lipoprotein cholesterol (HDL-C) values. Some inflammatory markers based upon complete blood cell count (CBC) are available. In this study, it was questioned which inflammatory marker was the best to evaluate the differences between various obesity groups. 514 pediatric individuals were recruited. 132 children with MetS, 155 morbid obese (MO), 90 obese (OB), 38 overweight (OW) and 99 children with normal BMI (N-BMI) were included into the scope of this study. Obesity groups were constituted using age- and sex-dependent body mass index (BMI) percentiles tabulated by World Health Organization. MetS components were determined to be able to specify children with MetS. CBC were determined using automated hematology analyzer. HDL-C analysis was performed. Using CBC parameters and HDL-C values, ratio markers of inflammation, which cover neutrophil-to-lymphocyte ratio (NLR), derived neutrophil-to-lymphocyte ratio (dNLR), platelet-to-lymphocyte ratio (PLR), lymphocyte-to-monocyte ratio (LMR), monocyte-to-HDL-C ratio (MHR) were calculated. Statistical analyses were performed. The statistical significance degree was considered as p < 0.05. There was no statistically significant difference among the groups in terms of platelet count, neutrophil count, lymphocyte count, monocyte count, and NLR. PLR differed significantly between OW and N-BMI as well as MetS. Monocyte-to HDL-C value exhibited statistical significance between MetS and N-BMI, OB, and MO groups. HDL-C value differed between MetS and N-BMI, OW, OB, MO groups. MHR was the ratio, which exhibits the best performance among the other CBC-based inflammatory markers. On the other hand, when MHR was compared to HDL-C only, it was suggested that HDL-C has given much more valuable information. Therefore, this parameter still keeps its value from the diagnostic point of view. Our results suggest that MHR can be an inflammatory marker during the evaluation of pediatric MetS, but the predictive value of this parameter was not superior to HDL-C during the evaluation of obesity.

Keywords: Children, complete blood cell count, high density lipoprotein cholesterol, metabolic syndrome, obesity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 851
7242 Applying Theory of Perceived Risk and Technology Acceptance Model in the Online Shopping Channel

Authors: Yong-Hui Li, Jing-Wen Huang

Abstract:

As the advancement of technology, online shopping channel develops rapidly in recent years. According to the report of Taiwan Network Information Center, there are almost eighty percents of internet population shopping in online channel. Synthesizing insights from the previous research, this study develops the conceptual model to integrate Theory of Perceived Risk (TPR) and Technology Acceptance Model (TAM) to apply in online shopping. Using data collected from 637 respondents from online survey website, we use structural equation modeling to test measurement and structural models. The results suggest the need for consideration of perceived risk as an antecedent in the Technology Acceptance Model. The limitations and implications are discussed.

Keywords: perceived risk, perceived usefulness, perceived ease of use, behavioral intention, actual purchase behavior

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6443
7241 Statistical Measures and Optimization Algorithms for Gene Selection in Lung and Ovarian Tumor

Authors: C. Gunavathi, K. Premalatha

Abstract:

Microarray technology is universally used in the study of disease diagnosis using gene expression levels. The main shortcoming of gene expression data is that it includes thousands of genes and a small number of samples. Abundant methods and techniques have been proposed for tumor classification using microarray gene expression data. Feature or gene selection methods can be used to mine the genes that directly involve in the classification and to eliminate irrelevant genes. In this paper statistical measures like T-Statistics, Signal-to-Noise Ratio (SNR) and F-Statistics are used to rank the genes. The ranked genes are used for further classification. Particle Swarm Optimization (PSO) algorithm and Shuffled Frog Leaping (SFL) algorithm are used to find the significant genes from the top-m ranked genes. The Naïve Bayes Classifier (NBC) is used to classify the samples based on the significant genes. The proposed work is applied on Lung and Ovarian datasets. The experimental results show that the proposed method achieves 100% accuracy in all the three datasets and the results are compared with previous works.

Keywords: Microarray, T-Statistics, Signal-to-Noise Ratio, FStatistics, Particle Swarm Optimization, Shuffled Frog Leaping, Naïve Bayes Classifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1945
7240 Existence and Uniqueness of Periodic Solution for a Discrete-time SIR Epidemic Model with Time Delays and Impulses

Authors: Ling Liu, Yuan Ye

Abstract:

In this paper, a discrete-time SIR epidemic model with nonlinear incidence rate, time delays and impulses is investigated. Sufficient conditions for the existence and uniqueness of periodic solutions are obtained by using contraction theorem and inequality techniques. An example is employed to illustrate our results.

Keywords: Discrete-time SIR epidemic model, time delay, nonlinear incidence rate, impulse.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1648
7239 Periodicity for a Food Chain Model with Functional Responses on Time Scales

Authors: Kejun Zhuang

Abstract:

With the help of coincidence degree theory, sufficient conditions for existence of periodic solutions for a food chain model with functional responses on time scales are established.

Keywords: time scales, food chain model, coincidence degree, periodic solutions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1713
7238 Predicting Protein-Protein Interactions from Protein Sequences Using Phylogenetic Profiles

Authors: Omer Nebil Yaveroglu, Tolga Can

Abstract:

In this study, a high accuracy protein-protein interaction prediction method is developed. The importance of the proposed method is that it only uses sequence information of proteins while predicting interaction. The method extracts phylogenetic profiles of proteins by using their sequence information. Combining the phylogenetic profiles of two proteins by checking existence of homologs in different species and fitting this combined profile into a statistical model, it is possible to make predictions about the interaction status of two proteins. For this purpose, we apply a collection of pattern recognition techniques on the dataset of combined phylogenetic profiles of protein pairs. Support Vector Machines, Feature Extraction using ReliefF, Naive Bayes Classification, K-Nearest Neighborhood Classification, Decision Trees, and Random Forest Classification are the methods we applied for finding the classification method that best predicts the interaction status of protein pairs. Random Forest Classification outperformed all other methods with a prediction accuracy of 76.93%

Keywords: Protein Interaction Prediction, Phylogenetic Profile, SVM , ReliefF, Decision Trees, Random Forest Classification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1613
7237 Determinants of Students- Intentions to Use a Mobile Messaging Service in Educational Institutions: a Theoretical Model

Authors: Boonlert Watjatrakul

Abstract:

Mobile marketing through mobile messaging service has highly impressive growth as it enables e-business firms to communicate with their customers effectively. Educational institutions hence start using this service to enhance communication with their students. Previous studies, however, have limited understanding of applying mobile messaging service in education. This study proposes a theoretical model to understand the drivers of students- intentions to use the university-s mobile messaging service. The model indicates that social influence, perceived control and attitudes affect students- intention to use the university-s mobile messaging service. It also provides five antecedents of students- attitudes–perceived utility (information utility, entertainment utility, and social utility), innovativeness, information seeking, transaction specificity (content specificity, sender specificity, and time specificity) and privacy concern. The proposed model enables universities to understand what students concern about the use of a mobile messaging service in universities and handle the service more effectively. The paper discusses the model development and concludes with limitations and implications of the proposed model.

Keywords: education, intention, mobile marketing, mobile messaging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1686
7236 The Non-Uniqueness of Partial Differential Equations Options Price Valuation Formula for Heston Stochastic Volatility Model

Authors: H. D. Ibrahim, H. C. Chinwenyi, T. Danjuma

Abstract:

An option is defined as a financial contract that provides the holder the right but not the obligation to buy or sell a specified quantity of an underlying asset in the future at a fixed price (called a strike price) on or before the expiration date of the option. This paper examined two approaches for derivation of Partial Differential Equation (PDE) options price valuation formula for the Heston stochastic volatility model. We obtained various PDE option price valuation formulas using the riskless portfolio method and the application of Feynman-Kac theorem respectively. From the results obtained, we see that the two derived PDEs for Heston model are distinct and non-unique. This establishes the fact of incompleteness in the model for option price valuation.

Keywords: Option price valuation, Partial Differential Equations, Black-Scholes PDEs, Ito process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 506