Search results for: error compensation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1380

Search results for: error compensation

390 A Comparison of Real Valued Transforms for Image Compression

Authors: Shivali D. Kulkarni, Ameya K. Naik, Nitin S. Nagori

Abstract:

In this paper we present simulation results for the application of a bandwidth efficient algorithm (mapping algorithm) to an image transmission system. This system considers three different real valued transforms to generate energy compact coefficients. First results are presented for gray scale and color image transmission in the absence of noise. It is seen that the system performs its best when discrete cosine transform is used. Also the performance of the system is dominated more by the size of the transform block rather than the number of coefficients transmitted or the number of bits used to represent each coefficient. Similar results are obtained in the presence of additive white Gaussian noise. The varying values of the bit error rate have very little or no impact on the performance of the algorithm. Optimum results are obtained for the system considering 8x8 transform block and by transmitting 15 coefficients from each block using 8 bits.

Keywords: Additive white Gaussian noise channel, mapping algorithm, peak signal to noise ratio, transform encoding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1499
389 PID Control Design Based on Genetic Algorithm with Integrator Anti-Windup for Automatic Voltage Regulator and Speed Governor of Brushless Synchronous Generator

Authors: O. S. Ebrahim, M. A. Badr, Kh. H. Gharib, H. K. Temraz

Abstract:

This paper presents a methodology based on genetic algorithm (GA) to tune the parameters of proportional-integral-differential (PID) controllers utilized in the automatic voltage regulator (AVR) and speed governor of a brushless synchronous generator driven by three-stage steam turbine. The parameter tuning is represented as a nonlinear optimization problem solved by GA to minimize the integral of absolute error (IAE). The problem of integral windup due to physical system limitations is solved using simple anti-windup scheme. The obtained controllers are compared to those designed using classical Ziegler-Nichols technique and constrained optimization. Results show distinct superiority of the proposed method.

Keywords: Brushless synchronous generator, Genetic Algorithm, GA, Proportional-Integral-Differential control, PID control, automatic voltage regulator, AVR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 295
388 Design of a Pneumonia Ontology for Diagnosis Decision Support System

Authors: Sabrina Azzi, Michal Iglewski, Véronique Nabelsi

Abstract:

Diagnosis error problem is frequent and one of the most important safety problems today. One of the main objectives of our work is to propose an ontological representation that takes into account the diagnostic criteria in order to improve the diagnostic. We choose pneumonia disease since it is one of the frequent diseases affected by diagnosis errors and have harmful effects on patients. To achieve our aim, we use a semi-automated method to integrate diverse knowledge sources that include publically available pneumonia disease guidelines from international repositories, biomedical ontologies and electronic health records. We follow the principles of the Open Biomedical Ontologies (OBO) Foundry. The resulting ontology covers symptoms and signs, all the types of pneumonia, antecedents, pathogens, and diagnostic testing. The first evaluation results show that most of the terms are covered by the ontology. This work is still in progress and represents a first and major step toward a development of a diagnosis decision support system for pneumonia.

Keywords: Clinical decision support system, diagnostic errors, ontology, pneumonia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 882
387 Digital Redesign of Interval Systems via Particle Swarm Optimization

Authors: Chen-Chien Hsu, Chun-Hui Gao

Abstract:

In this paper, a PSO-based approach is proposed to derive a digital controller for redesigned digital systems having an interval plant based on resemblance of the extremal gain/phase margins. By combining the interval plant and a controller as an interval system, extremal GM/PM associated with the loop transfer function can be obtained. The design problem is then formulated as an optimization problem of an aggregated error function revealing the deviation on the extremal GM/PM between the redesigned digital system and its continuous counterpart, and subsequently optimized by a proposed PSO to obtain an optimal set of parameters for the digital controller. Computer simulations have shown that frequency responses of the redesigned digital system having an interval plant bare a better resemblance to its continuous-time counter part by the incorporation of a PSO-derived digital controller in comparison to those obtained using existing open-loop discretization methods.

Keywords: Digital redesign, Extremal systems, Particle swarm optimization, Uncertain interval systems

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1275
386 Continual Learning Using Data Generation for Hyperspectral Remote Sensing Scene Classification

Authors: Samiah Alammari, Nassim Ammour

Abstract:

When providing a massive number of tasks successively to a deep learning process, a good performance of the model requires preserving the previous tasks data to retrain the model for each upcoming classification. Otherwise, the model performs poorly due to the catastrophic forgetting phenomenon. To overcome this shortcoming, we developed a successful continual learning deep model for remote sensing hyperspectral image regions classification. The proposed neural network architecture encapsulates two trainable subnetworks. The first module adapts its weights by minimizing the discrimination error between the land-cover classes during the new task learning, and the second module tries to learn how to replicate the data of the previous tasks by discovering the latent data structure of the new task dataset. We conduct experiments on hyperspectral image (HSI) dataset on Indian Pines. The results confirm the capability of the proposed method.

Keywords: Continual learning, data reconstruction, remote sensing, hyperspectral image segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 232
385 Identification of Optimum Parameters of Deep Drawing of a Cylindrical Workpiece using Neural Network and Genetic Algorithm

Authors: D. Singh, R. Yousefi, M. Boroushaki

Abstract:

Intelligent deep-drawing is an instrumental research field in sheet metal forming. A set of 28 different experimental data have been employed in this paper, investigating the roles of die radius, punch radius, friction coefficients and drawing ratios for axisymmetric workpieces deep drawing. This paper focuses an evolutionary neural network, specifically, error back propagation in collaboration with genetic algorithm. The neural network encompasses a number of different functional nodes defined through the established principles. The input parameters, i.e., punch radii, die radii, friction coefficients and drawing ratios are set to the network; thereafter, the material outputs at two critical points are accurately calculated. The output of the network is used to establish the best parameters leading to the most uniform thickness in the product via the genetic algorithm. This research achieved satisfactory results based on demonstration of neural networks.

Keywords: Deep-drawing, Neural network, Genetic algorithm, Sheet metal forming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2202
384 Granger Causal Nexus between Financial Development and Energy Consumption: Evidence from Cross Country Panel Data

Authors: Rudra P. Pradhan

Abstract:

This paper examines the Granger causal nexus between financial development and energy consumption in the group of 35 Financial Action Task Force (FATF) Countries over the period 1988-2012. The study uses two financial development indicators such as private sector credit and stock market capitalization and seven energy consumption indicators such as coal, oil, gas, electricity, hydro-electrical, nuclear and biomass. Using panel cointegration tests, the study finds that financial development and energy consumption are cointegrated, indicating the presence of a long-run relationship between the two. Using a panel vector error correction model (VECM), the study detects both bidirectional and unidirectional causality between financial development and energy consumption. The variation of this causality is due to the use of different proxies for both financial development and energy consumption. The policy implication of this study is that economic policies should recognize the differences in the financial development-energy consumption nexus in order to maintain sustainable development in the selected 35 FATF countries.

Keywords: Financial development, energy consumption, Panel VECM, FATF countries.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1513
383 A Comparison and Analysis of Name Matching Algorithms

Authors: Chakkrit Snae

Abstract:

Names are important in many societies, even in technologically oriented ones which use e.g. ID systems to identify individual people. Names such as surnames are the most important as they are used in many processes, such as identifying of people and genealogical research. On the other hand variation of names can be a major problem for the identification and search for people, e.g. web search or security reasons. Name matching presumes a-priori that the recorded name written in one alphabet reflects the phonetic identity of two samples or some transcription error in copying a previously recorded name. We add to this the lode that the two names imply the same person. This paper describes name variations and some basic description of various name matching algorithms developed to overcome name variation and to find reasonable variants of names which can be used to further increasing mismatches for record linkage and name search. The implementation contains algorithms for computing a range of fuzzy matching based on different types of algorithms, e.g. composite and hybrid methods and allowing us to test and measure algorithms for accuracy. NYSIIS, LIG2 and Phonex have been shown to perform well and provided sufficient flexibility to be included in the linkage/matching process for optimising name searching.

Keywords: Data mining, name matching algorithm, nominaldata, searching system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11090
382 Kinetic Modeling of Transesterification of Triacetin Using Synthesized Ion Exchange Resin (SIERs)

Authors: Hafizuddin W. Yussof, Syamsutajri S. Bahri, Adam P. Harvey

Abstract:

Strong anion exchange resins with QN+OH-, have the potential to be developed and employed as heterogeneous catalyst for transesterification, as they are chemically stable to leaching of the functional group. Nine different SIERs (SIER1-9) with QN+OH-were prepared by suspension polymerization of vinylbenzyl chloridedivinylbenzene (VBC-DVB) copolymers in the presence of n-heptane (pore-forming agent). The amine group was successfully grafted into the polymeric resin beads through functionalization with trimethylamine. These SIERs are then used as a catalyst for the transesterification of triacetin with methanol. A set of differential equations that represents the Langmuir-Hinshelwood-Hougen- Watson (LHHW) and Eley-Rideal (ER) models for the transesterification reaction were developed. These kinetic models of LHHW and ER were fitted to the experimental data. Overall, the synthesized ion exchange resin-catalyzed reaction were welldescribed by the Eley-Rideal model compared to LHHW models, with sum of square error (SSE) of 0.742 and 0.996, respectively.

Keywords: Anion exchange resin, Eley-Rideal, Langmuir-Hinshelwood-Hougen-Watson, transesterification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2392
381 Electrical Impedance Imaging Using Eddy Current

Authors: A. Ambia, T. Takemae, Y. Kosugi, M. Hongo

Abstract:

Electric impedance imaging is a method of reconstructing spatial distribution of electrical conductivity inside a subject. In this paper, a new method of electrical impedance imaging using eddy current is proposed. The eddy current distribution in the body depends on the conductivity distribution and the magnetic field pattern. By changing the position of magnetic core, a set of voltage differences is measured with a pair of electrodes. This set of voltage differences is used in image reconstruction of conductivity distribution. The least square error minimization method is used as a reconstruction algorithm. The back projection algorithm is used to get two dimensional images. Based on this principle, a measurement system is developed and some model experiments were performed with a saline filled phantom. The shape of each model in the reconstructed image is similar to the corresponding model, respectively. From the results of these experiments, it is confirmed that the proposed method is applicable in the realization of electrical imaging.

Keywords: Back projection algorithm, electrical impedancetomography, eddy current, magnetic inductance tomography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1696
380 Gain Tuning Fuzzy Controller for an Optical Disk Drive

Authors: Shiuh-Jer Huang, Ming-Tien Su

Abstract:

Since the driving speed and control accuracy of commercial optical disk are increasing significantly, it needs an efficient controller to monitor the track seeking and following operations of the servo system for achieving the desired data extracting response. The nonlinear behaviors of the actuator and servo system of the optical disk drive will influence the laser spot positioning. Here, the model-free fuzzy control scheme is employed to design the track seeking servo controller for a d.c. motor driving optical disk drive system. In addition, the sliding model control strategy is introduced into the fuzzy control structure to construct a 1-D adaptive fuzzy rule intelligent controller for simplifying the implementation problem and improving the control performance. The experimental results show that the steady state error of the track seeking by using this fuzzy controller can maintain within the track width (1.6 μm ). It can be used in the track seeking and track following servo control operations.

Keywords: Fuzzy control, gain tuning and optical disk drive.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1587
379 Solution of Density Dependent Nonlinear Reaction-Diffusion Equation Using Differential Quadrature Method

Authors: Gülnihal Meral

Abstract:

In this study, the density dependent nonlinear reactiondiffusion equation, which arises in the insect dispersal models, is solved using the combined application of differential quadrature method(DQM) and implicit Euler method. The polynomial based DQM is used to discretize the spatial derivatives of the problem. The resulting time-dependent nonlinear system of ordinary differential equations(ODE-s) is solved by using implicit Euler method. The computations are carried out for a Cauchy problem defined by a onedimensional density dependent nonlinear reaction-diffusion equation which has an exact solution. The DQM solution is found to be in a very good agreement with the exact solution in terms of maximum absolute error. The DQM solution exhibits superior accuracy at large time levels tending to steady-state. Furthermore, using an implicit method in the solution procedure leads to stable solutions and larger time steps could be used.

Keywords: Density Dependent Nonlinear Reaction-Diffusion Equation, Differential Quadrature Method, Implicit Euler Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2273
378 A Study of Islamic Stock Indices and Macroeconomic Variables

Authors: Mohammad Irfan

Abstract:

The purpose of this paper is to investigate the relationship among the key macroeconomic variables and Islamic stock market in India. This study is based on the time series data of financial years 2009-2015 to explore the consistency of relationship between macroeconomic variables and Shariah Indices. The ADF (Augmented Dickey–Fuller Test Statistic) and PP (Phillips–Perron Test Statistic) tests are employed to check stationarity of the data. The study depicts the long run relationship between Shariah indices and macroeconomic variables by using the Johansen Co-integration test. BSE Shariah and Nifty Shariah have uni-direct Granger causality. The outcome of VECM is significantly confirming the applicability of best fitted model. Thus, Islamic stock indices are proficiently working for the development of Indian economy. It suggests that by keeping eyes on Islamic stock market which will be more interactive in the future with other macroeconomic variables.

Keywords: Indian shariah indices, macroeconomic variables, co-integration, Granger causality, Vector error correction model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1218
377 Small Signal Stability Enhancement for Hybrid Power Systems by SVC

Authors: Ali Dehghani, Mojtaba Hakimzadeh, Amir Habibi, Navid Mehdizadeh Afroozi

Abstract:

In this paper an isolated wind-diesel hybrid power system has been considered for reactive power control study having an induction generator for wind power conversion and synchronous alternator with automatic voltage regulator (AVR) for diesel unit is presented. The dynamic voltage stability evaluation is dependent on small signal analysis considering a Static VAR Compensator (SVC) and IEEE type -I excitation system. It's shown that the variable reactive power source like SVC is crucial to meet the varying demand of reactive power by induction generator and load and to acquire an excellent voltage regulation of the system with minimum fluctuations. Integral square error (ISE) criterion can be used to evaluate the optimum setting of gain parameters. Finally the dynamic responses of the power systems considered with optimum gain setting will also be presented.

Keywords: SVC, Small Signal Stability, Reactive Power, Control, Hybrid System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2458
376 A Detection Method of Faults in Railway Pantographs Based on Dynamic Phase Plots

Authors: G. Santamato, M. Solazzi, A. Frisoli

Abstract:

Systems for detection of damages in railway pantographs effectively reduce the cost of maintenance and improve time scheduling. In this paper, we present an approach to design a monitoring tool fitting strong customer requirements such as portability and ease of use. Pantograph has been modeled to estimate its dynamical properties, since no data are available. With the aim to focus on suspensions health, a two Degrees of Freedom (DOF) scheme has been adopted. Parameters have been calculated by means of analytical dynamics. A Finite Element Method (FEM) modal analysis verified the former model with an acceptable error. The detection strategy seeks phase-plots topology alteration, induced by defects. In order to test the suitability of the method, leakage in the dashpot was simulated on the lumped model. Results are interesting because changes in phase plots are more appreciable than frequency-shift. Further calculations as well as experimental tests will support future developments of this smart strategy.

Keywords: Pantograph models, phase-plots, structural health monitoring, vibration-based condition monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1486
375 Predicting Extrusion Process Parameters Using Neural Networks

Authors: Sachin Man Bajimaya, SangChul Park, Gi-Nam Wang

Abstract:

The objective of this paper is to estimate realistic principal extrusion process parameters by means of artificial neural network. Conventionally, finite element analysis is used to derive process parameters. However, the finite element analysis of the extrusion model does not consider the manufacturing process constraints in its modeling. Therefore, the process parameters obtained through such an analysis remains highly theoretical. Alternatively, process development in industrial extrusion is to a great extent based on trial and error and often involves full-size experiments, which are both expensive and time-consuming. The artificial neural network-based estimation of the extrusion process parameters prior to plant execution helps to make the actual extrusion operation more efficient because more realistic parameters may be obtained. And so, it bridges the gap between simulation and real manufacturing execution system. In this work, a suitable neural network is designed which is trained using an appropriate learning algorithm. The network so trained is used to predict the manufacturing process parameters.

Keywords: Artificial Neural Network (ANN), Indirect Extrusion, Finite Element Analysis, MES.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2367
374 Improved Processing Speed for Text Watermarking Algorithm in Color Images

Authors: Hamza A. Al-Sewadi, Akram N. A. Aldakari

Abstract:

Copyright protection and ownership proof of digital multimedia are achieved nowadays by digital watermarking techniques. A text watermarking algorithm for protecting the property rights and ownership judgment of color images is proposed in this paper. Embedding is achieved by inserting texts elements randomly into the color image as noise. The YIQ image processing model is found to be faster than other image processing methods, and hence, it is adopted for the embedding process. An optional choice of encrypting the text watermark before embedding is also suggested (in case required by some applications), where, the text can is encrypted using any enciphering technique adding more difficulty to hackers. Experiments resulted in embedding speed improvement of more than double the speed of other considered systems (such as least significant bit method, and separate color code methods), and a fairly acceptable level of peak signal to noise ratio (PSNR) with low mean square error values for watermarking purposes.

Keywords: Steganography, watermarking, private keys, time complexity measurements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 816
373 Personal Authentication Using FDOST in Finger Knuckle-Print Biometrics

Authors: N. B. Mahesh Kumar, K. Premalatha

Abstract:

The inherent skin patterns created at the joints in the finger exterior are referred as finger knuckle-print. It is exploited to identify a person in a unique manner because the finger knuckle print is greatly affluent in textures. In biometric system, the region of interest is utilized for the feature extraction algorithm. In this paper, local and global features are extracted separately. Fast Discrete Orthonormal Stockwell Transform is exploited to extract the local features. Global feature is attained by escalating the size of Fast Discrete Orthonormal Stockwell Transform to infinity. Two features are fused to increase the recognition accuracy. A matching distance is calculated for both the features individually. Then two distances are merged mutually to acquire the final matching distance. The proposed scheme gives the better performance in terms of equal error rate and correct recognition rate.

Keywords: Hamming distance, Instantaneous phase, Region of Interest, Recognition accuracy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2759
372 Comparison between Haar and Daubechies Wavelet Transformations on FPGA Technology

Authors: Fatma H. Elfouly, Mohamed I. Mahmoud, Moawad I. M. Dessouky, Salah Deyab

Abstract:

Recently, the Field Programmable Gate Array (FPGA) technology offers the potential of designing high performance systems at low cost. The discrete wavelet transform has gained the reputation of being a very effective signal analysis tool for many practical applications. However, due to its computation-intensive nature, current implementation of the transform falls short of meeting real-time processing requirements of most application. The objectives of this paper are implement the Haar and Daubechies wavelets using FPGA technology. In addition, the Bit Error Rate (BER) between the input audio signal and the reconstructed output signal for each wavelet is calculated. From the BER, it is seen that the implementations execute the operation of the wavelet transform correctly and satisfying the perfect reconstruction conditions. The design procedure has been explained and designed using the stat-ofart Electronic Design Automation (EDA) tools for system design on FPGA. Simulation, synthesis and implementation on the FPGA target technology has been carried out.

Keywords: Daubechies wavelet, discrete wavelet transform, Haar wavelet, Xilinx FPGA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7230
371 Effectiveness of Contourlet vs Wavelet Transform on Medical Image Compression: a Comparative Study

Authors: Negar Riazifar, Mehran Yazdi

Abstract:

Discrete Wavelet Transform (DWT) has demonstrated far superior to previous Discrete Cosine Transform (DCT) and standard JPEG in natural as well as medical image compression. Due to its localization properties both in special and transform domain, the quantization error introduced in DWT does not propagate globally as in DCT. Moreover, DWT is a global approach that avoids block artifacts as in the JPEG. However, recent reports on natural image compression have shown the superior performance of contourlet transform, a new extension to the wavelet transform in two dimensions using nonseparable and directional filter banks, compared to DWT. It is mostly due to the optimality of contourlet in representing the edges when they are smooth curves. In this work, we investigate this fact for medical images, especially for CT images, which has not been reported yet. To do that, we propose a compression scheme in transform domain and compare the performance of both DWT and contourlet transform in PSNR for different compression ratios (CR) using this scheme. The results obtained using different type of computed tomography images show that the DWT has still good performance at lower CR but contourlet transform performs better at higher CR.

Keywords: Computed Tomography (CT), DWT, Discrete Contourlet Transform, Image Compression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2798
370 Neural Network Ensemble-based Solar Power Generation Short-Term Forecasting

Authors: A. Chaouachi, R.M. Kamel, R. Ichikawa, H. Hayashi, K. Nagasaka

Abstract:

This paper presents the applicability of artificial neural networks for 24 hour ahead solar power generation forecasting of a 20 kW photovoltaic system, the developed forecasting is suitable for a reliable Microgrid energy management. In total four neural networks were proposed, namely: multi-layred perceptron, radial basis function, recurrent and a neural network ensemble consisting in ensemble of bagged networks. Forecasting reliability of the proposed neural networks was carried out in terms forecasting error performance basing on statistical and graphical methods. The experimental results showed that all the proposed networks achieved an acceptable forecasting accuracy. In term of comparison the neural network ensemble gives the highest precision forecasting comparing to the conventional networks. In fact, each network of the ensemble over-fits to some extent and leads to a diversity which enhances the noise tolerance and the forecasting generalization performance comparing to the conventional networks.

Keywords: Neural network ensemble, Solar power generation, 24 hour forecasting, Comparative study

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3276
369 A Bayesian Network Reliability Modeling for FlexRay Systems

Authors: Kuen-Long Leu, Yung-Yuan Chen, Chin-Long Wey, Jwu-E Chen, Chung-Hsien Hsu

Abstract:

The increasing importance of FlexRay systems in automotive domain inspires unceasingly relative researches. One primary issue among researches is to verify the reliability of FlexRay systems either from protocol aspect or from system design aspect. However, research rarely discusses the effect of network topology on the system reliability. In this paper, we will illustrate how to model the reliability of FlexRay systems with various network topologies by a well-known probabilistic reasoning technology, Bayesian Network. In this illustration, we especially investigate the effectiveness of error containment built in star topology and fault-tolerant midpoint synchronization algorithm adopted in FlexRay communication protocol. Through a FlexRay steer-by-wire case study, the influence of different topologies on the failure probability of the FlexRay steerby- wire system is demonstrated. The notable value of this research is to show that the Bayesian Network inference is a powerful and feasible method for the reliability assessment of FlexRay systems.

Keywords: Bayesian Network, FlexRay, fault tolerance, network topology, reliability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2029
368 Intelligent Agent Approach to the Control of Critical Infrastructure Networks

Authors: James D. Gadze, Niki Pissinou, Kia Makki

Abstract:

In this paper we propose an intelligent agent approach to control the electric power grid at a smaller granularity in order to give it self-healing capabilities. We develop a method using the influence model to transform transmission substations into information processing, analyzing and decision making (intelligent behavior) units. We also develop a wireless communication method to deliver real-time uncorrupted information to an intelligent controller in a power system environment. A combined networking and information theoretic approach is adopted in meeting both the delay and error probability requirements. We use a mobile agent approach in optimizing the achievable information rate vector and in the distribution of rates to users (sensors). We developed the concept and the quantitative tools require in the creation of cooperating semiautonomous subsystems which puts the electric grid on the path towards intelligent and self-healing system.

Keywords: Mobile agent, power system operation and control, real time, wireless communication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1673
367 Application of Artificial Neural Network to Forecast Actual Cost of a Project to Improve Earned Value Management System

Authors: Seyed Hossein Iranmanesh, Mansoureh Zarezadeh

Abstract:

This paper presents an application of Artificial Neural Network (ANN) to forecast actual cost of a project based on the earned value management system (EVMS). For this purpose, some projects randomly selected based on the standard data set , and it is produced necessary progress data such as actual cost ,actual percent complete , baseline cost and percent complete for five periods of project. Then an ANN with five inputs and five outputs and one hidden layer is trained to produce forecasted actual costs. The comparison between real and forecasted data show better performance based on the Mean Absolute Percentage Error (MAPE) criterion. This approach could be applicable to better forecasting the project cost and result in decreasing the risk of project cost overrun, and therefore it is beneficial for planning preventive actions.

Keywords: Earned Value Management System (EVMS), Artificial Neural Network (ANN), Estimate At Completion, Forecasting Methods, Project Performance Measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2767
366 Quantifying and Adjusting the Effects of Publication Bias in Continuous Meta-Analysis

Authors: N.R.N. Idris

Abstract:

This study uses simulated meta-analysis to assess the effects of publication bias on meta-analysis estimates and to evaluate the efficacy of the trim and fill method in adjusting for these biases. The estimated effect sizes and the standard error were evaluated in terms of the statistical bias and the coverage probability. The results demonstrate that if publication bias is not adjusted it could lead to up to 40% bias in the treatment effect estimates. Utilization of the trim and fill method could reduce the bias in the overall estimate by more than half. The method is optimum in presence of moderate underlying bias but has minimal effects in presence of low and severe publication bias. Additionally, the trim and fill method improves the coverage probability by more than half when subjected to the same level of publication bias as those of the unadjusted data. The method however tends to produce false positive results and will incorrectly adjust the data for publication bias up to 45 % of the time. Nonetheless, the bias introduced into the estimates due to this adjustment is minimal

Keywords: Publication bias, Trim and Fill method, percentage relative bias, coverage probability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1558
365 Blind Identification Channel Using Higher Order Cumulants with Application to Equalization for MC−CDMA System

Authors: Mohammed Zidane, Said Safi, Mohamed Sabri, Ahmed Boumezzough

Abstract:

In this paper we propose an algorithm based on higher order cumulants, for blind impulse response identification of frequency radio channels and downlink (MC−CDMA) system Equalization. In order to test its efficiency, we have compared with another algorithm proposed in the literature, for that we considered on theoretical channel as the Proakis’s ‘B’ channel and practical frequency selective fading channel, called Broadband Radio Access Network (BRAN C), normalized for (MC−CDMA) systems, excited by non-Gaussian sequences. In the part of (MC−CDMA), we use the Minimum Mean Square Error (MMSE) equalizer after the channel identification to correct the channel’s distortion. The simulation results, in noisy environment and for different signal to noise ratio (SNR), are presented to illustrate the accuracy of the proposed algorithm.

Keywords: Blind identification and equalization, Higher Order Cumulants, (MC−CDMA) system, MMSE equalizer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1781
364 An Energy Efficient Digital Baseband for Batteryless Remote Control

Authors: Wei-Da Toh, Yuan Gao, Minkyu Je

Abstract:

In this paper, an energy efficient digital baseband circuit for piezoelectric (PE) harvester powered batteryless remote control system is presented. Pulse mode PE harvester, which provides short duration of energy, is adopted to replace conventional chemical battery in wireless remote controller. The transmitter digital baseband repeats the control command transmission once the digital circuit is initiated by the power-on-reset. A power efficient data frame format is proposed to maximize the transmission repetition time. By using the proposed frame format and receiver clock and data recovery method, the receiver baseband is able to decode the command even when the received data has 20% error. The proposed transmitter and receiver baseband are implemented using FPGA and simulation results are presented.

Keywords: Clock and Data Recovery (CDR), Correlator, Digital Baseband, Gold Code, Power-On-Reset.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2022
363 Structural Evaluation of Airfield Pavement Using Finite Element Analysis Based Methodology

Authors: Richard Ji

Abstract:

Nondestructive deflection testing has been accepted widely as a cost-effective tool for evaluating the structural condition of airfield pavements. Backcalculation of pavement layer moduli can be used to characterize the pavement existing condition in order to compute the load bearing capacity of pavement. This paper presents an improved best-fit backcalculation methodology based on deflection predictions obtained using finite element method (FEM). The best-fit approach is based on minimizing the squared error between falling weight deflectometer (FWD) measured deflections and FEM predicted deflections. Then, concrete elastic modulus and modulus of subgrade reaction were back-calculated using Heavy Weight Deflectometer (HWD) deflections collected at the National Airport Pavement Testing Facility (NAPTF) test site. It is an alternative and more versatile method in considering concrete slab geometry and HWD testing locations compared to methods currently available.

Keywords: Nondestructive testing, Pavement moduli backcalculation, Finite Element Method, FEM, concrete pavements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 801
362 Variable Step-Size Affine Projection Algorithm With a Weighted and Regularized Projection Matrix

Authors: Tao Dai, Andy Adler, Behnam Shahrrava

Abstract:

This paper presents a forgetting factor scheme for variable step-size affine projection algorithms (APA). The proposed scheme uses a forgetting processed input matrix as the projection matrix of pseudo-inverse to estimate system deviation. This method introduces temporal weights into the projection matrix, which is typically a better model of the real error's behavior than homogeneous temporal weights. The regularization overcomes the ill-conditioning introduced by both the forgetting process and the increasing size of the input matrix. This algorithm is tested by independent trials with coloured input signals and various parameter combinations. Results show that the proposed algorithm is superior in terms of convergence rate and misadjustment compared to existing algorithms. As a special case, a variable step size NLMS with forgetting factor is also presented in this paper.

Keywords: Adaptive signal processing, affine projection algorithms, variable step-size adaptive algorithms, regularization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1631
361 Evaluating per-user Fairness of Goal-Oriented Parallel Computer Job Scheduling Policies

Authors: Sangsuree Vasupongayya

Abstract:

Fair share objective has been included into the goaloriented parallel computer job scheduling policy recently. However, the previous work only presented the overall scheduling performance. Thus, the per-user performance of the policy is still lacking. In this work, the details of per-user fair share performance under the Tradeoff-fs(Tx:avgX) policy will be further evaluated. A basic fair share priority backfill policy namely RelShare(1d) is also studied. The performance of all policies is collected using an event-driven simulator with three real job traces as input. The experimental results show that the high demand users are usually benefited under most policies because their jobs are large or they have a lot of jobs. In the large job case, one job executed may result in over-share during that period. In the other case, the jobs may be backfilled for performances. However, the users with a mixture of jobs may suffer because if the smaller jobs are executing the priority of the remaining jobs from the same user will be lower. Further analysis does not show any significant impact of users with a lot of jobs or users with a large runtime approximation error.

Keywords: deviation, fair share, discrepancy search, priority scheduling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1352