Search results for: Rolling Element Bearing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1684

Search results for: Rolling Element Bearing

694 Numerical Analysis of Hydrogen Transport using a Hydrogen-Enhanced Localized Plasticity Mechanism

Authors: Seul-Kee Kim, Chi-Seung Lee, Myung-Hyun Kim, Jae-Myung Lee

Abstract:

In this study, the hydrogen transport phenomenon was numerically evaluated by using hydrogen-enhanced localized plasticity (HELP) mechanisms. Two dominant governing equations, namely, the hydrogen transport model and the elasto-plastic model, were introduced. In addition, the implicitly formulated equations of the governing equations were implemented into ABAQUS UMAT user-defined subroutines. The simulation results were compared to published results to validate the proposed method.

Keywords: Hydrogen-enhanced localized plasticity (HELP), Hydrogen embrittlement, Hydrogen transport analysis, ABAQUS UMAT, Finite element method (FEM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2408
693 Analytical Estimation of Rotor Loss Due to Stator Slotting of Synchronous PM Machines

Authors: Adel Bettayeb, Robert Kaczmarek, Jean-Claude Vannier

Abstract:

In this paper, we analyze the rotor eddy currents losses provoqued by the stator slot harmonics developed in the permanent magnets or pole pieces of synchronous machines. An analytical approach is presented to evaluate the effect of slot ripples on rotor field and losses calculation. This analysis is then tested on a model by 2D/3D finite element (FE) calculation. The results show a good agreement on loss calculations when skin effect is negligible and the magnet is considered.

Keywords: Analytical modeling, Eddy-currents, Finite-elementmethods, Power losses, Slot harmonics effect.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2529
692 Enhanced Efficacy of Kinetic Power Transform for High-Speed Wind Field

Authors: Nan-Chyuan Tsai, Chao-Wen Chiang, Bai-Lu Wang

Abstract:

The three-time-scale plant model of a wind power generator, including a wind turbine, a flexible vertical shaft, a Variable Inertia Flywheel (VIF) module, an Active Magnetic Bearing (AMB) unit and the applied wind sequence, is constructed. In order to make the wind power generator be still able to operate as the spindle speed exceeds its rated speed, the VIF is equipped so that the spindle speed can be appropriately slowed down once any stronger wind field is exerted. To prevent any potential damage due to collision by shaft against conventional bearings, the AMB unit is proposed to regulate the shaft position deviation. By singular perturbation order-reduction technique, a lower-order plant model can be established for the synthesis of feedback controller. Two major system parameter uncertainties, an additive uncertainty and a multiplicative uncertainty, are constituted by the wind turbine and the VIF respectively. Frequency Shaping Sliding Mode Control (FSSMC) loop is proposed to account for these uncertainties and suppress the unmodeled higher-order plant dynamics. At last, the efficacy of the FSSMC is verified by intensive computer and experimental simulations for regulation on position deviation of the shaft and counter-balance of unpredictable wind disturbance.

Keywords: Sliding Mode Control, Singular Perturbation, Variable Inertia Flywheel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1438
691 Thermal Analysis of the Fuse with Unequal Fuse Links Using Finite Element Method

Authors: Adrian T.Pleşca

Abstract:

In this paper a three dimensional thermal model of high breaking capacity fuse with unequal fuse links is proposed for both steady-state or transient conditions. The influence of ambient temperature and electric current on the temperature distribution inside the fuse, has been investigated. A thermal analysis of the unbalanced distribution of the electric current through the fuse elements and their influence on fuse link temperature rise, has been performed. To validate the three dimensional thermal model, some experimental tests have been done. There is a good correlation between experimental and simulation results.

Keywords: Electric fuse, fuse links, temperature distribution, thermal analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2781
690 Site Inspection and Evaluation Behavior of Qing Shang Concrete Bridge

Authors: Haleem K. Hussain, Liu Gui Wei, Zhang Lian Zhen, Yongxue Li

Abstract:

It is necessary to evaluate the bridges conditions and strengthen bridges or parts of them. The reinforcement necessary due to some reasons can be summarized as: First, a changing in use of bridge could produce internal forces in a part of structural which exceed the existing cross-sectional capacity. Second, bridges may also need reinforcement because damage due to external factors which reduced the cross-sectional resistance to external loads. One of other factors could listed here its misdesign in some details, like safety of bridge or part of its.This article identify the design demands of Qing Shan bridge located in is in Heilongjiang Province He gang - Nen Jiang Road 303 provincial highway, Wudalianchi area, China, is an important bridge in the urban areas. The investigation program was include the observation and evaluate the damage in T- section concrete beams , prestressed concrete box girder bridges section in additional evaluate the whole state of bridge includes the pier , abutments , bridge decks, wings , bearing and capping beam, joints, ........etc. The test results show that the bridges in general structural condition are good. T beam span No 10 were observed, crack extended upward along the ribbed T beam, and continue to the T beam flange. Crack width varying between 0.1mm to 0.4mm, the maximum about 0.4mm. The bridge needs to be improved flexural bending strength especially at for T beam section.

Keywords: Field investigation, prestressed concrete box girder, maintenance, Qing Shan Bridge

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1850
689 Comparison between Experimental and Numerical Studies of Fully Encased Composite Columns

Authors: Md. Soebur Rahman, Mahbuba Begum, Raquib Ahsan

Abstract:

Composite column is a structural member that uses a combination of structural steel shapes, pipes or tubes with or without reinforcing steel bars and reinforced concrete to provide adequate load carrying capacity to sustain either axial compressive loads alone or a combination of axial loads and bending moments. Composite construction takes the advantages of the speed of construction, light weight and strength of steel, and the higher mass, stiffness, damping properties and economy of reinforced concrete. The most usual types of composite columns are the concrete filled steel tubes and the partially or fully encased steel profiles. Fully encased composite column (FEC) provides compressive strength, stability, stiffness, improved fire proofing and better corrosion protection. This paper reports experimental and numerical investigations of the behaviour of concrete encased steel composite columns subjected to short-term axial load. In this study, eleven short FEC columns with square shaped cross section were constructed and tested to examine the load-deflection behavior. The main variables in the test were considered as concrete compressive strength, cross sectional size and percentage of structural steel. A nonlinear 3-D finite element (FE) model has been developed to analyse the inelastic behaviour of steel, concrete, and longitudinal reinforcement as well as the effect of concrete confinement of the FEC columns. FE models have been validated against the current experimental study conduct in the laboratory and published experimental results under concentric load. It has been observed that FE model is able to predict the experimental behaviour of FEC columns under concentric gravity loads with good accuracy. Good agreement has been achieved between the complete experimental and the numerical load-deflection behaviour in this study. The capacities of each constituent of FEC columns such as structural steel, concrete and rebar's were also determined from the numerical study. Concrete is observed to provide around 57% of the total axial capacity of the column whereas the steel I-sections contributes to the rest of the capacity as well as ductility of the overall system. The nonlinear FE model developed in this study is also used to explore the effect of concrete strength and percentage of structural steel on the behaviour of FEC columns under concentric loads. The axial capacity of FEC columns has been found to increase significantly by increasing the strength of concrete.

Keywords: Composite, columns, experimental, finite element, fully encased, strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2826
688 An Advanced Exponential Model for Seismic Isolators Having Hardening or Softening Behavior at Large Displacements

Authors: Nicolò Vaiana, Giorgio Serino

Abstract:

In this paper, an advanced Nonlinear Exponential Model (NEM), able to simulate the uniaxial dynamic behavior of seismic isolators having a continuously decreasing tangent stiffness with increasing displacement in the relatively large displacements range and a hardening or softening behavior at large displacements, is presented. The mathematical model is validated by comparing the experimental force-displacement hysteresis loops obtained during cyclic tests, conducted on a helical wire rope isolator and a recycled rubber-fiber reinforced bearing, with those predicted analytically. Good agreement between the experimental and simulated results shows that the proposed model can be an effective numerical tool to predict the force-displacement relationship of seismic isolation devices within the large displacements range. Compared to the widely used Bouc-Wen model, unable to simulate the response of seismic isolators at large displacements, the proposed one allows to avoid the numerical solution of a first order nonlinear ordinary differential equation for each time step of a nonlinear time history analysis, thus reducing the computation effort. Furthermore, the proposed model can simulate the smooth transition of the hysteresis loops from small to large displacements by adopting only one set of five parameters determined from the experimental hysteresis loops having the largest amplitude.

Keywords: Base isolation, hardening behavior, nonlinear exponential model, seismic isolators, softening behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 865
687 Approximate Tension Buckling Capacity of Thin Edge-Cracked Web Plate Subjected to Pure Bending

Authors: Sebastian B. Mendes

Abstract:

The presence of a vertical edge-crack within a web plate subjected to pure bending induces local compressive stresses about the crack which may cause tension buckling. Approximate theoretical expressions were derived for the critical far-field tensile stress and bending moment capacity of an edge-cracked web plate associated with tension buckling. These expressions were validated with finite element analyses and used to investigate the possibility of tension buckling in web-cracked trial girders. It was found that tension buckling is an unlikely occurrence unless the web is relatively thin or the crack is very long.

Keywords: Fatigue crack, tension buckling, Rayleigh-Ritz, structural stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1992
686 Feasibility Study of a BLDC Motor with Integrated Drive Circuit

Authors: Jun-Hyuk Choi, Joon Sung Park, Jung-Moo Seo, In-Soung Jung

Abstract:

A brushless DC motor with integrated drive circuit for air management system is presented. Using magnetic equivalent circuit model a basic design of the motor is determined, and specific configurations are inspected thanks to finite element analysis. In order to reduce an unbalanced magnetic force in an axial direction, induced forces between a stator core and a permanent magnet are calculated with respect to the relative positions of them. For the high efficiency, and high power density, BLDC motor and drive are developed. Also vibration mode and eccentricity of a rotor are considered at the rated and maximum rotational speed Through the experimental results, a validity of the simulated one is confirmed.

Keywords: blower, BLDC, inverter

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2200
685 Detection ofTensile Forces in Cable-Stayed Structures Using the Advanced Hybrid Micro-Genetic Algorithm

Authors: Sang-Youl Lee

Abstract:

This study deals with an advanced numerical techniques to detect tensile forces in cable-stayed structures. The proposed method allows us not only to avoid the trap of minimum at initial searching stage but also to find their final solutions in better numerical efficiency. The validity of the technique is numerically verified using a set of dynamic data obtained from a simulation of the cable model modeled using the finite element method. The results indicate that the proposed method is computationally efficient in characterizing the tensile force variation for cable-stayed structures.

Keywords: Tensile force detection, cable-stayed structures, hybrid system identification (h-SI), dynamic response.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2108
684 Structural Safety Evaluation of Zip-Line Due to Dynamic Impact Load

Authors: Bu Seog Ju, Jae Sang Kim, Woo Young Jung

Abstract:

In recent year, with recent increase of interest towards leisure sports, increased number of Zip-Line or Zip-Wire facilities has built. Many researches have been actively conducted on the emphasis of the cable and the wire at the bridge. However, very limited researches have been conducted on the safety of the Zip-Line structure. In fact, fall accidents from Zip-Line have been reported frequently. Therefore, in this study, the structural safety of Zip-Line under dynamic impact loading condition were evaluated on the previously installed steel cable for leisure (Zip-Line), using 3-dimensional nonlinear Finite Element (FE) model. The result from current study would assist assurance of systematic stability of Zip-Line.

Keywords: Zip-Line, Wire, Cable, 3D FE Model, Safety.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4066
683 Port Governance in Santos, Brazil: A Qualitative Approach

Authors: Guilherme B. B. Vieira, Rafael M. da Silva, Eliana T. P. Senna, Luiz A. S. Senna, Francisco J. Kliemann Neto

Abstract:

Given the importance of ports as links in the global supply chains and because they are key elements to induce competitiveness in their hinterlands, the number of studies devoted to port governance, management and operations has increased in the last decades. Some of these studies address the port governance model as an element to improve coordination among the actors of the portlogistics chain and to generate a better port performance. In this context, the present study analyzes the governance of Port of Santos through individual interviews with port managers, based on a conceptual model that considers the key dimensions associated with port governance. The results reinforce the usefulness of the applied model and highlight some existing improvement opportunities in the port studied.

Keywords: Port Governance, Model, Port of Santos, Managers’ Perception.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2664
682 Public Transport: Punctuality Index for Bus Operation

Authors: Noorfakhriah Yaakub, Madzlan Napiah

Abstract:

Public bus service plays a significant role in our society as people movers and to facilitate travels within towns and districts. The quality of service of public bus is always being regarded as poor, or rather, underestimated as second class means of transportation. Reliability of service, or the ability to deliver service as planned, is one key element in perceiving the quality of bus service and the punctuality index is one of the performance parameters in determining the service reliability. This study concentrates on evaluating the reliability performance of bus operation using punctuality index assessment. A week data for each of six city bus routes is recorded using the on-board methodology to calculate the punctuality index for city bus service in Kota Bharu. The results revealed that the punctuality index for the whole city bus network is 94.25% (LOS B).

Keywords: Punctuality Index, Reliability Performance, Service Performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3823
681 An Evaluation of Sag Detection Techniques for Fast Solid-State Electronic Transferring to Alternate Electrical Energy Sources

Authors: M. N. Moschakis, I. G. Andritsos, V. V. Dafopoulos, J. M. Prousalidis, E. S. Karapidakis

Abstract:

This paper deals with the evaluation of different detection strategies used in power electronic devices as a critical element for an effective mitigation of voltage disturbances. The effectiveness of those detection schemes in the mitigation of disturbances such as voltage sags by a Solid-State Transfer Switch is evaluated through simulations. All critical parameters affecting their performance is analytically described and presented. Moreover, the effect of fast detection of sags on the overall performance of STS is analyzed and investigated.

Keywords: Faults (short-circuits), industrial engineering, power electronics, power quality, static transfer switch, voltage sags (or dips).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1865
680 Effect of Mechanical Loading on the Delamination of Stratified Composite in Mode I

Authors: H. Achache, Y. Madani, A. Benzerdjeb

Abstract:

The present study is based on the three-dimensional digital analysis by the finite elements method of the mechanical loading effect on the delamination of unidirectional and multidirectional stratified composites. The aim of this work is the determination of the release energy rate G in mode I and the Von Mises equivalent constraint distribution along the damaged area under the influence of several parameters such as the applied load and the delamination size. The results obtained in this study show that the unidirectional composite laminates have better mechanical resistance one the loading line than the multidirectional composite laminates.

Keywords: Delamination, release energy rate, stratified composite, finite element method and ply.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1347
679 A New Similarity Measure on Intuitionistic Fuzzy Sets

Authors: Binyamin Yusoff, Imran Taib, Lazim Abdullah, Abd Fatah Wahab

Abstract:

Intuitionistic fuzzy sets as proposed by Atanassov, have gained much attention from past and latter researchers for applications in various fields. Similarity measures between intuitionistic fuzzy sets were developed afterwards. However, it does not cater the conflicting behavior of each element evaluated. We therefore made some modification to the similarity measure of IFS by considering conflicting concept to the model. In this paper, we concentrate on Zhang and Fu-s similarity measures for IFSs and some examples are given to validate these similarity measures. A simple modification to Zhang and Fu-s similarity measures of IFSs was proposed to find the best result according to the use of degree of indeterminacy. Finally, we mark up with the application to real decision making problems.

Keywords: Intuitionistic fuzzy sets, similarity measures, multicriteriadecision making.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2812
678 A Low-Area Fully-Reconfigurable Hardware Design of Fast Fourier Transform System for 3GPP-LTE Standard

Authors: Xin-Yu Shih, Yue-Qu Liu, Hong-Ru Chou

Abstract:

This paper presents a low-area and fully-reconfigurable Fast Fourier Transform (FFT) hardware design for 3GPP-LTE communication standard. It can fully support 32 different FFT sizes, up to 2048 FFT points. Besides, a special processing element is developed for making reconfigurable computing characteristics possible, while first-in first-out (FIFO) scheduling scheme design technique is proposed for hardware-friendly FIFO resource arranging. In a synthesis chip realization via TSMC 40 nm CMOS technology, the hardware circuit only occupies core area of 0.2325 mm2 and dissipates 233.5 mW at maximal operating frequency of 250 MHz.

Keywords: Reconfigurable, fast Fourier transform, single-path delay feedback, 3GPP-LTE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 981
677 Maximum Norm Analysis of a Nonmatching Grids Method for Nonlinear Elliptic Boundary Value Problem −Δu = f(u)

Authors: Abida Harbi

Abstract:

We provide a maximum norm analysis of a finite element Schwarz alternating method for a nonlinear elliptic boundary value problem of the form -Δu = f(u), on two overlapping sub domains with non matching grids. We consider a domain which is the union of two overlapping sub domains where each sub domain has its own independently generated grid. The two meshes being mutually independent on the overlap region, a triangle belonging to one triangulation does not necessarily belong to the other one. Under a Lipschitz assumption on the nonlinearity, we establish, on each sub domain, an optimal L∞ error estimate between the discrete Schwarz sequence and the exact solution of the boundary value problem.

Keywords: Error estimates, Finite elements, Nonlinear PDEs, Schwarz method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2737
676 An Adaptive Dynamic Fracture for 3D Fatigue Crack Growth Using X-FEM

Authors: S. Lecheb, A. Nour, A. Chellil, A. Basta, D. Belmiloud, H. Kebi

Abstract:

In recent years, a new numerical method has been developed, the extended finite element method (X-FEM). The objective of this work is to exploit the (X-FEM) for the treatment of the fracture mechanics problems on 3D geometries, where we showed the ability of this method to simulate the fatigue crack growth into two cases: edge and central crack. In the results we compared the six first natural frequencies of mode shapes uncracking with the cracking initiation in the structure, and showed the stress intensity factor (SIF) evolution function as crack size propagation into structure, the analytical validation of (SIF) is presented. For to evidence the aspects of this method, all result is compared between FEA and X-FEM.

Keywords: 3D fatigue crack growth, FEA, natural frequencies, stress intensity factor (SIF), X-FEM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1991
675 Non-Circular Carbon Fiber Reinforced Polymers Chainring Failure Analysis

Authors: A. Elmikaty, Z. Thanawarothon, L. Mezeix

Abstract:

This paper presents a finite element model to simulate the teeth failure of non-circular composite chainring. Model consists of the chainring and a part of the chain. To reduce the size of the model, only the first 11 rollers are simulated. In order to validate the model, it is firstly applied to a circular aluminum chainring and evolution of the stress in the teeth is compared with the literature. Then, effect of the non-circular shape is studied through three different loading positions. Strength of non-circular composite chainring and failure scenario is investigated. Moreover, two composite lay-ups are proposed to observe the influence of the stacking. Results show that composite material can be used but the lay-up has a large influence on the strength. Finally, loading position does not have influence on the first composite failure that always occurs in the first tooth.

Keywords: CFRP, composite failure, FEA, non-circular chainring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1142
674 Experimental Investigation on Cold-Formed Steel Foamed Concrete Composite Wall under Compression

Authors: Zhifeng Xu, Zhongfan Chen

Abstract:

A series of tests on cold-formed steel foamed concrete (CSFC) composite walls subjected to axial load were proposed. The primary purpose of the experiments was to study the mechanical behavior and identify the failure modes of CSFC composite walls. Two main factors were considered in this study: 1) specimen with pouring foamed concrete or without and 2) different foamed concrete density ranks (corresponding to different foamed concrete strength). The interior space between two pieces of straw board of the specimen W-2 and W-3 were poured foamed concrete, and the specimen W-1 does not have foamed concrete core. The foamed concrete density rank of the specimen W-2 was A05 grade, and that of the specimen W-3 was A07 grade. Results showed that the failure mode of CSFC composite wall without foamed concrete was distortional buckling of cold-formed steel (CFS) column, and that poured foamed concrete includes the local crushing of foamed concrete and local buckling of CFS column, but the former prior to the later. Compared with CSFC composite wall without foamed concrete, the ultimate bearing capacity of spec imens poured A05 grade and A07 grade foamed concrete increased 1.6 times and 2.2 times respectively, and specimen poured foamed concrete had a low vertical deformation. According to these results, the simplified calculation formula for the CSFC wall subjected to axial load was proposed, and the calculated results from this formula are in very good agreement with the test results.

Keywords: Cold-formed steel, composite wall, foamed concrete, axial behavior test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1319
673 Design Optimization of a Double Stator Cup- Rotor Machine

Authors: E. Diryak, P. Lefley, L. Petkovska, G. Cvetkovski

Abstract:

This paper presents the optimum design for a double stator, cup rotor machine; a novel type of BLDC PM Machine. The optimization approach is divided into two stages: the first stage is calculating the machine configuration using Matlab, and the second stage is the optimization of the machine using Finite Element Modeling (FEM). Under the design specifications, the machine model will be selected from three pole numbers, namely, 8, 10 and 12 with an appropriate slot number. A double stator brushless DC permanent magnet machine is designed to achieve low cogging torque; high electromagnetic torque and low ripple torque.

Keywords: Permanent magnet machine, low- cogging torque, low- ripple torque, high- electromagnetic torque, design optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2144
672 Application of De Novo Programming Approach for Optimizing the Business Process

Authors: Z. Babic, I. Veza, A. Balic, M. Crnjac

Abstract:

The linear programming model is sometimes difficult to apply in real business situations due to its assumption of proportionality. This paper shows an example of how to use De Novo programming approach instead of linear programming. In the De Novo programming, resources are not fixed like in linear programming but resource quantities depend only on available budget. Budget is a new, important element of the De Novo approach. Two different production situations are presented: increasing costs and quantity discounts of raw materials. The focus of this paper is on advantages of the De Novo approach in the optimization of production plan for production company which produces souvenirs made from famous stone from the island of Brac, one of the greatest islands from Croatia.

Keywords: De Novo Programming, production plan, stone souvenirs, variable prices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1219
671 Application of the Discrete-Event Simulation When Optimizing of Business Processes in Trading Companies

Authors: Maxat Bokambayev, Bella Tussupova, Aisha Mamyrova, Erlan Izbasarov

Abstract:

Optimization of business processes in trading companies is reviewed in the report. There is the presentation of the “Wholesale Customer Order Handling Process” business process model applicable for small and medium businesses. It is proposed to apply the algorithm for automation of the customer order processing which will significantly reduce labor costs and time expenditures and increase the profitability of companies. An optimized business process is an element of the information system of accounting of spare parts trading network activity. The considered algorithm may find application in the trading industry as well.

Keywords: Business processes, discrete-event simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1549
670 Electromagnetic Flow Meter Efficiency

Authors: Andrey D. Andreev, Ilona I. Iatcheva, Dimitar N. Karastoyanov, Rumena D. Stancheva

Abstract:

A study of electromagnetic flow meter is presented in the paper. Comparison has been made between the analytical and the numerical results by the use of FEM numerical analysis (Quick Field 5.6) for determining polarization voltage through the circle cross section of the polarization transducer. Exciting and geometrical parameters increasing its effectiveness has been examined. The aim is to obtain maximal output signal. The investigations include different variants of the magnetic flux density distribution around the tube: homogeneous field of magnitude Bm, linear distribution with maximal value Bm and trapezium distribution conserving the same exciting magnetic energy as the homogeneous field.

Keywords: Effectiveness, electromagnetic flow meter, finite element method, polarization voltage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2290
669 Application of Method of Symmetries at a Calculation and Planning of Circular Plate with Variable Thickness

Authors: Kirill Trapezon, Alexandr Trapezon

Abstract:

A problem is formulated for the natural oscillations of a circular plate of linearly variable thickness on the basis of the symmetry method. The equations of natural frequencies and forms for a plate are obtained, providing that it is rigidly fixed along the inner contour. The first three eigenfrequencies are calculated, and the eigenmodes of the oscillations of the acoustic element are constructed. An algorithm for applying the symmetry method and the factorization method for solving problems in the theory of oscillations for plates of variable thickness is shown. The effectiveness of the approach is demonstrated on the basis of comparison of known results and those obtained in the article. It is shown that the results are more accurate and reliable.

Keywords: Vibrations, plate, thickness, symmetry, factorization, approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 770
668 Entropy Generation for Natural Convection in a Darcy – Brinkman Porous Cavity

Authors: Ali Mchirgui, Nejib Hidouri, Mourad Magherbi, Ammar Ben Brahim

Abstract:

The paper provides a numerical investigation of the entropy generation analysis due to natural convection in an inclined square porous cavity. The coupled equations of mass, momentum, energy and species conservation are solved using the Control Volume Finite-Element Method. Effect of medium permeability and inclination angle on entropy generation is analysed. It was found that according to the Darcy number and the porous thermal Raleigh number values, the entropy generation could be mainly due to heat transfer or to fluid friction irreversibility and that entropy generation reaches extremum values for specific inclination angles.

Keywords: Porous media, entropy generation, convection, numerical method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2585
667 Slip Limit Prediction of High-Strength Bolt Joints Based on Local Approach

Authors: Chang He, Hiroshi Tamura, Hiroshi Katsuchi, Jiaqi Wang

Abstract:

In this study, the aim is to infer the slip limit (static friction limit) of contact interfaces in bolt friction joints by analyzing other bolt friction joints with the same contact surface but in a different shape. By using the Weibull distribution to deal with microelements on the contact surface statistically, the slip limit of a certain type of bolt joint was predicted from other types of bolt joint with the same contact surface. As a result, this research succeeded in predicting the slip limit of bolt joins with different numbers of contact surfaces and with different numbers of bolt rows.

Keywords: Bolt joints, slip coefficient, finite element method, Weibull distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 276
666 Bioclimatic Principles and Urban Open Spaces: The Case of Xanthi

Authors: Maria Giannopoulou

Abstract:

Open urban public spaces comprise an important element for the development of social, cultural and economic activities of the population in the modern cities. These spaces are also considered regulators of the region-s climate conditions, providing better thermal, visual and auditory conditions which can be optimized by the application of appropriate strategies of bioclimatic design. The paper focuses on the analysis and evaluation of the recent unification of the open spaces in the centre of Xanthi, a medium – size city in northern Greece, from a bioclimatic perspective, as well as in the creation of suitable methodology. It is based both on qualitative observation of the interventions by fieldwork research and assessment and on quantitative analysis and modeling of the research area.

Keywords: Bioclimatic principles, Quantitative analysis, Sustainability, TownScope III, Urban open spaces

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2758
665 Empirical Statistical Modeling of Rainfall Prediction over Myanmar

Authors: Wint Thida Zaw, Thinn Thu Naing

Abstract:

One of the essential sectors of Myanmar economy is agriculture which is sensitive to climate variation. The most important climatic element which impacts on agriculture sector is rainfall. Thus rainfall prediction becomes an important issue in agriculture country. Multi variables polynomial regression (MPR) provides an effective way to describe complex nonlinear input output relationships so that an outcome variable can be predicted from the other or others. In this paper, the modeling of monthly rainfall prediction over Myanmar is described in detail by applying the polynomial regression equation. The proposed model results are compared to the results produced by multiple linear regression model (MLR). Experiments indicate that the prediction model based on MPR has higher accuracy than using MLR.

Keywords: Polynomial Regression, Rainfall Forecasting, Statistical forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2607