Search results for: Performance model
1737 Analysis of One-Way and Two-Way FSI Approaches to Characterise the Flow Regime and the Mechanical Behaviour during Closing Manoeuvring Operation of a Butterfly Valve
Authors: M. Ezkurra, J. A. Esnaola, M. Martinez-Agirre, U. Etxeberria, U. Lertxundi, L. Colomo, M. Begiristain, I. Zurutuza
Abstract:
Butterfly valves are widely used industrial piping components as on-off and flow controlling devices. The main challenge in the design process of this type of valves is the correct dimensioning to ensure proper mechanical performance as well as to minimise flow losses that affect the efficiency of the system. Butterfly valves are typically dimensioned in a closed position based on mechanical approaches considering uniform hydrostatic pressure, whereas the flow losses are analysed by means of CFD simulations. The main limitation of these approaches is that they do not consider either the influence of the dynamics of the manoeuvring stage or coupled phenomena. Recent works have included the influence of the flow on the mechanical behaviour for different opening angles by means of one-way FSI approach. However, these works consider steady-state flow for the selected angles, not capturing the effect of the transient flow evolution during the manoeuvring stage. Two-way FSI modelling approach could allow overcoming such limitations providing more accurate results. Nevertheless, the use of this technique is limited due to the increase in the computational cost. In the present work, the applicability of FSI one-way and two-way approaches is evaluated for the analysis of butterfly valves, showing that not considering fluid-structure coupling involves not capturing the most critical situation for the valve disc.
Keywords: Butterfly valves, fluid-structure interaction, one-way approach, two-way approach.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15971736 A Basic Study on Ubiquitous Overloaded Vehicles Regulation System
Authors: Byung-Wan Jo, Kwang-Won Yoon, Ji-Sun Choi
Abstract:
Load managing method on road became necessary since overloaded vehicles occur damage on road facilities and existing systems for preventing this damage still show many problems.Accordingly, efficient managing system for preventing overloaded vehicles could be organized by using the road itself as a scale by applying genetic algorithm to analyze the load and the drive information of vehicles.Therefore, this paper organized Ubiquitous sensor network system for development of intelligent overload vehicle regulation system, also in this study, to use the behavior of road, the transformation was measured by installing underground box type indoor model and indoor experiment was held using genetic algorithm. And we examined wireless possibility of overloaded vehicle regulation system through experiment of the transmission and reception distance.If this system will apply to road and bridge, might be effective for economy and convenience through establishment of U-IT system..Keywords: Overload Vehicle. Genetic Algorithm, EmbeddedSystem, Wim Sensor, overload vehicle regulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15641735 Acoustic and Thermal Isolation Performance Comparison between Recycled and Ceramic Roof Tiles Using Digital Holographic Interferometry
Authors: A. Araceli Sánchez, I. Manuel H. De la Torre, S. Fernando Mendoza, R. Cesar Tavera, R. Manuel de J. Briones
Abstract:
Recycling, as part of any sustainable environment, is continuously evolving and impacting on new materials in manufacturing. One example of this is the recycled solid waste of Tetra Pak ™ packaging, which is a highly pollutant waste as it is not biodegradable since it is manufactured with different materials. The Tetra Pak ™ container consists of thermally joined layers of paper, aluminum and polyethylene. Once disposed, this packaging is recycled by completely separating the paperboard from the rest of the materials. The aluminum and the polyethylene remain together and are used to create the poly-aluminum, which is widely used to manufacture roof tiles. These recycled tiles have different thermal and acoustic properties compared with traditional manufactured ceramic and cement tiles. In this work, we compare a group of tiles using nondestructive optical testing to measure the superficial micro deformations of the tiles under well controlled experiments. The results of the acoustic and thermal tests show remarkable differences between the recycled tile and the traditional ones. These results help to determine which tile could be better suited to the specific environmental conditions in countries where extreme climates, ranging from tropical, desert-like, to very cold are experienced throughout the year.Keywords: Digital holographic interferometry, nondestructive testing, recycled, sustainable, thermal study.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21381734 Personalized Email Marketing Strategy: A Reinforcement Learning Approach
Authors: Lei Zhang, Tingting Xu, Jun He, Zhenyu Yan, Roger Brooks
Abstract:
Email marketing is one of the most important segments of online marketing. Email content is vital to customers. Different customers may have different familiarity with a product, so a successful marketing strategy must personalize email content based on individual customers’ product affinity. In this study, we build our personalized email marketing strategy with three types of emails: nurture, promotion, and conversion. Each type of emails has a different influence on customers. We investigate this difference by analyzing customers’ open rates, click rates and opt-out rates. Feature importance from response models is also analyzed. The goal of the marketing strategy is to improve the click rate on conversion-type emails. To build the personalized strategy, we formulate the problem as a reinforcement learning problem and adopt a Q-learning algorithm with variations. The simulation results show that our model-based strategy outperforms the current marketer’s strategy.
Keywords: Email marketing, email content, reinforcement learning, machine learning, Q-learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7271733 Recycled Plastic Fibers for Minimizing Plastic Shrinkage Cracking of Cement Based Mortar
Authors: B.S. Al-Tulaian, M. J. Al-Shannag, A.M. Al-Hozaimy
Abstract:
The development of new construction materials using recycled plastic is important to both the construction and the plastic recycling industries. Manufacturing of fibers from industrial or postconsumer plastic waste is an attractive approach with such benefits as concrete performance enhancement, and reduced needs for land filling. The main objective of this study is to investigate the effect of Plastic fibers obtained locally from recycled waste on plastic shrinkage cracking of ordinary cement based mortar. Parameters investigated include: fiber length ranging from 20 to 50mm, and fiber volume fraction ranging from 0% to 1.5% by volume. The test results showed significant improvement in crack arresting mechanism and substantial reduction in the surface area of cracks for the mortar reinforced with recycled plastic fibers compared to plain mortar. Furthermore, test results indicated that there was a slight decrease in compressive strength of mortar reinforced with different lengths and contents of recycled fibers compared to plain mortar. This study suggests that adding more than 1% of RP fibers to mortar, can be used effectively for controlling plastic shrinkage cracking of cement based mortar, and thus results in waste reduction and resources conservation.
Keywords: Mortar, plastic, shrinkage cracking, compressive strength, RF recycled fibers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30741732 A New Fast Skin Color Detection Technique
Authors: Tarek M. Mahmoud
Abstract:
Skin color can provide a useful and robust cue for human-related image analysis, such as face detection, pornographic image filtering, hand detection and tracking, people retrieval in databases and Internet, etc. The major problem of such kinds of skin color detection algorithms is that it is time consuming and hence cannot be applied to a real time system. To overcome this problem, we introduce a new fast technique for skin detection which can be applied in a real time system. In this technique, instead of testing each image pixel to label it as skin or non-skin (as in classic techniques), we skip a set of pixels. The reason of the skipping process is the high probability that neighbors of the skin color pixels are also skin pixels, especially in adult images and vise versa. The proposed method can rapidly detect skin and non-skin color pixels, which in turn dramatically reduce the CPU time required for the protection process. Since many fast detection techniques are based on image resizing, we apply our proposed pixel skipping technique with image resizing to obtain better results. The performance evaluation of the proposed skipping and hybrid techniques in terms of the measured CPU time is presented. Experimental results demonstrate that the proposed methods achieve better result than the relevant classic method.Keywords: Adult images filtering, image resizing, skin color detection, YcbCr color space.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40031731 Research on Reservoir Lithology Prediction Based on Residual Neural Network and Squeeze-and- Excitation Neural Network
Authors: Li Kewen, Su Zhaoxin, Wang Xingmou, Zhu Jian Bing
Abstract:
Conventional reservoir prediction methods ar not sufficient to explore the implicit relation between seismic attributes, and thus data utilization is low. In order to improve the predictive classification accuracy of reservoir lithology, this paper proposes a deep learning lithology prediction method based on ResNet (Residual Neural Network) and SENet (Squeeze-and-Excitation Neural Network). The neural network model is built and trained by using seismic attribute data and lithology data of Shengli oilfield, and the nonlinear mapping relationship between seismic attribute and lithology marker is established. The experimental results show that this method can significantly improve the classification effect of reservoir lithology, and the classification accuracy is close to 70%. This study can effectively predict the lithology of undrilled area and provide support for exploration and development.
Keywords: Convolutional neural network, lithology, prediction of reservoir lithology, seismic attributes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6531730 Comparison between Skyhook and Minimax Control Strategies for Semi-active Suspension System
Authors: Hongkun Zhang, Hermann Winner, Wenjun Li
Abstract:
This paper describes the development, modeling, and testing of skyhook and MiniMax control strategies of semi-active suspension. The control performances are investigated using Matlab/Simulink [1], with a two-degree-of-freedom quarter car semiactive suspension system model. The comparison and evaluation of control result are made using software-in-the-loop simulation (SILS) method. This paper also outlines the development of a hardware-inthe- loop simulation (HILS) system. The simulation results show that skyhook strategy can significantly reduce the resonant peak of body and provide improvement in vehicle ride comfort. Otherwise, MiniMax strategy can be employed to effectively improve drive safety of vehicle by influencing wheel load. The two strategies can be switched to control semi-active suspension system to fulfill different requirement of vehicle in different stages.Keywords: Hardware-in-the-loop simulation, Semi-active suspension, Skyhook control, MiniMax control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26881729 A Phenomic Algorithm for Reconstruction of Gene Networks
Authors: Rio G. L. D'Souza, K. Chandra Sekaran, A. Kandasamy
Abstract:
The goal of Gene Expression Analysis is to understand the processes that underlie the regulatory networks and pathways controlling inter-cellular and intra-cellular activities. In recent times microarray datasets are extensively used for this purpose. The scope of such analysis has broadened in recent times towards reconstruction of gene networks and other holistic approaches of Systems Biology. Evolutionary methods are proving to be successful in such problems and a number of such methods have been proposed. However all these methods are based on processing of genotypic information. Towards this end, there is a need to develop evolutionary methods that address phenotypic interactions together with genotypic interactions. We present a novel evolutionary approach, called Phenomic algorithm, wherein the focus is on phenotypic interaction. We use the expression profiles of genes to model the interactions between them at the phenotypic level. We apply this algorithm to the yeast sporulation dataset and show that the algorithm can identify gene networks with relative ease.
Keywords: Evolutionary computing, gene expression analysis, gene networks, microarray data analysis, phenomic algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19241728 Night-Time Traffic Light Detection Based On SVM with Geometric Moment Features
Authors: Hyun-Koo Kim, Young-Nam Shin, Sa-gong Kuk, Ju H. Park, Ho-Youl Jung
Abstract:
This paper presents an effective traffic lights detection method at the night-time. First, candidate blobs of traffic lights are extracted from RGB color image. Input image is represented on the dominant color domain by using color transform proposed by Ruta, then red and green color dominant regions are selected as candidates. After candidate blob selection, we carry out shape filter for noise reduction using information of blobs such as length, area, area of boundary box, etc. A multi-class classifier based on SVM (Support Vector Machine) applies into the candidates. Three kinds of features are used. We use basic features such as blob width, height, center coordinate, area, area of blob. Bright based stochastic features are also used. In particular, geometric based moment-s values between candidate region and adjacent region are proposed and used to improve the detection performance. The proposed system is implemented on Intel Core CPU with 2.80 GHz and 4 GB RAM and tested with the urban and rural road videos. Through the test, we show that the proposed method using PF, BMF, and GMF reaches up to 93 % of detection rate with computation time of in average 15 ms/frame.Keywords: Night-time traffic light detection, multi-class classification, driving assistance system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38841727 Precision Grinding of Titanium (Ti-6Al-4V) Alloy Using Nanolubrication
Authors: Ahmed A. D. Sarhan, Hong Wan Ping, M. Sayuti
Abstract:
In this current era of competitive machinery productions, the industries are designed to place more emphasis on the product quality and reduction of cost whilst abiding by the pollution-preventing policy. In attempting to delve into the concerns, the industries are aware that the effectiveness of existing lubrication systems must be improved to achieve power-efficient and pollution-preventing machining processes. As such, this research is targeted to study on a plausible solution to the issue in grinding titanium alloy (Ti-6Al-4V) by using nanolubrication, as an alternative to flood grinding. The aim of this research is to evaluate the optimum condition of grinding force and surface roughness using MQL lubricating system to deliver nano-oil at different level of weight concentration of Silicon Dioxide (SiO2) mixed normal mineral oil. Taguchi Design of Experiment (DoE) method is carried out using a standard Taguchi orthogonal array of L16(43) to find the optimized combination of weight concentration mixture of SiO2, nozzle orientation and pressure of MQL. Surface roughness and grinding force are also analyzed using signal-to-noise(S/N) ratio to determine the best level of each factor that are tested. Consequently, the best combination of parameters is tested for a period of time and the results are compared with conventional grinding method of dry and flood condition. The results show a positive performance of MQL nanolubrication.
Keywords: Grinding, MQL, precision grinding, Taguchi optimization, titanium alloy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18831726 Photo Mosaic Smartphone Application in Client-Server Based Large-Scale Image Databases
Authors: Sang-Hun Lee, Bum-Soo Kim, Yang-Sae Moon, Jinho Kim
Abstract:
In this paper we present a photo mosaic smartphone application in client-server based large-scale image databases. Photo mosaic is not a new concept, but there are very few smartphone applications especially for a huge number of images in the client-server environment. To support large-scale image databases, we first propose an overall framework working as a client-server model. We then present a concept of image-PAA features to efficiently handle a huge number of images and discuss its lower bounding property. We also present a best-match algorithm that exploits the lower bounding property of image-PAA. We finally implement an efficient Android-based application and demonstrate its feasibility.Keywords: smartphone applications; photo mosaic; similarity search; data mining; large-scale image databases.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16711725 Order Reduction of Linear Dynamic Systems using Stability Equation Method and GA
Authors: G. Parmar, R. Prasad, S. Mukherjee
Abstract:
The authors present an algorithm for order reduction of linear dynamic systems using the combined advantages of stability equation method and the error minimization by Genetic algorithm. The denominator of the reduced order model is obtained by the stability equation method and the numerator terms of the lower order transfer function are determined by minimizing the integral square error between the transient responses of original and reduced order models using Genetic algorithm. The reduction procedure is simple and computer oriented. It is shown that the algorithm has several advantages, e.g. the reduced order models retain the steady-state value and stability of the original system. The proposed algorithm has also been extended for the order reduction of linear multivariable systems. Two numerical examples are solved to illustrate the superiority of the algorithm over some existing ones including one example of multivariable system.
Keywords: Genetic algorithm, Integral square error, Orderreduction, Stability equation method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31881724 Decision Tree Based Scheduling for Flexible Job Shops with Multiple Process Plans
Authors: H.-H. Doh, J.-M. Yu, Y.-J. Kwon, J.-H. Shin, H.-W. Kim, S.-H. Nam, D.-H. Lee
Abstract:
This paper suggests a decision tree based approach for flexible job shop scheduling with multiple process plans, i.e. each job can be processed through alternative operations, each of which can be processed on alternative machines. The main decision variables are: (a) selecting operation/machine pair; and (b) sequencing the jobs assigned to each machine. As an extension of the priority scheduling approach that selects the best priority rule combination after many simulation runs, this study suggests a decision tree based approach in which a decision tree is used to select a priority rule combination adequate for a specific system state and hence the burdens required for developing simulation models and carrying out simulation runs can be eliminated. The decision tree based scheduling approach consists of construction and scheduling modules. In the construction module, a decision tree is constructed using a four-stage algorithm, and in the scheduling module, a priority rule combination is selected using the decision tree. To show the performance of the decision tree based approach suggested in this study, a case study was done on a flexible job shop with reconfigurable manufacturing cells and a conventional job shop, and the results are reported by comparing it with individual priority rule combinations for the objectives of minimizing total flow time and total tardiness.
Keywords: Flexible job shop scheduling, Decision tree, Priority rules, Case study.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33171723 School Emergency Drills Evaluation through E-PreS Monitoring System
Authors: A. Kourou, A. Ioakeimidou, V. Avramea
Abstract:
Planning for natural disasters and emergencies is something every school or educational institution must consider, regardless of its size or location. Preparedness is the key to save lives if a disaster strikes. School disaster management mirrors individual and family disaster prevention, and wider community disaster prevention efforts. This paper presents the usage of E-PreS System as a helpful, managerial tool during the school earthquake drill, in order to support schools in developing effective disaster and emergency plans specific to their local needs. The project comes up with a holistic methodology using real-time evaluation involving different categories of actors, districts, steps and metrics. The main outcomes of E-PreS project are the development of E-PreS web platform that host the needed data of school emergency planning; the development of E-PreS System; the implementation of disaster drills using E-PreS System in educational premises and local schools; and the evaluation of E-PreS System. Taking into consideration that every disaster drill aims to test and valid school plan and procedures; clarify and train personnel in roles and responsibilities; improve interagency coordination; identify gaps in resources; improve individual performance; and identify opportunities for improvement, E-PreS Project was submitted and approved by the European Commission (EC).
Keywords: Disaster drills, earthquake preparedness, E-PreS system, school emergency plans.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11281722 Fuzzy Logic Based Cascaded H-Bridge Eleven Level Inverter for Photovoltaic System Using Sinusoidal Pulse Width Modulation Technique
Authors: M. S. Sivagamasundari, P. Melba Mary
Abstract:
Multilevel inverter is a promising inverter topology for high voltage and high power applications. This inverter synthesizes several different levels of DC voltages to produce a stepped AC output that approaches the pure sine waveform. The three different topologies, diode-clamped inverter, capacitor-clamped inverter and cascaded h-bridge multilevel inverter are widely used in these multilevel inverters. Among the three topologies, cascaded h-bridge multilevel inverter is more suitable for photovoltaic applications since each PV array can act as a separate dc source for each h-bridge module. This research especially focus on photovoltaic power source as input to the system and shows the potential of a Single Phase Cascaded H-bridge Eleven level inverter governed by the fuzzy logic controller to improve the power quality by reducing the total harmonic distortion at the output voltage. Hence the efficiency of the system will be improved. Simulation using MATLAB/SIMULINK has been done to verify the performance of cascaded h-bridge eleven level inverter using sinusoidal pulse width modulation technique. The simulated output shows very favorable result.
Keywords: Multilevel inverter, Cascaded H-Bridge multilevel inverter, Total Harmonic Distortion, Photovoltaic cell, Sinusoidal pulse width modulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33431721 Indonesian Store Loyalty Factors for Modern Retailing Market
Authors: Lina Salim
Abstract:
Modern retailers such as hypermarket/supermarket need to be more customer-oriented in order to survive in today-s competitive business world. As a result, the investigation of determinant factors of store loyalty becomes important issue for modern retailing players. This study suggests that consumers- store loyalty in the modern retailing market (hypermarkets and supermarkets) is influenced by environmental factors (such as store image, store personnel). Using a model of stimulus-organismresponse (S-O-R), this research examines S-R relationship of store loyalty. S-O-R framework is derived from the existence literature and tested empirically based on Indonesian consumers- experience. The stimuli for this study are store image, store personnel, satisfaction and culture factors. Affect, or the consumers- liking to modern retailing stores, mediates the chosen environmental factors on consumer-s store loyalty. The findings showed that store image, store satisfaction and culture have significant positive relationship to store loyalty via affect.Keywords: Affect, Culture, Store Image, Store Loyalty, StorePersonnel, Store Satisfaction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25031720 Determining Full Stage Creep Properties from Miniature Specimen Creep Test
Authors: W. Sun, W. Wen, J. Lu, A. A. Becker
Abstract:
In this work, methods for determining creep properties which can be used to represent the full life until failure from miniature specimen creep tests based on analytical solutions are presented. Examples used to demonstrate the application of the methods include a miniature rectangular thin beam specimen creep test under three-point bending and a miniature two-material tensile specimen creep test subjected to a steady load. Mathematical expressions for deflection and creep strain rate of the two specimens were presented for the Kachanov-Rabotnov creep damage model. On this basis, an inverse procedure was developed which has potential applications for deriving the full life creep damage constitutive properties from a very small volume of material, in particular, for various microstructure constitutive regions, e.g. within heat-affected zones of power plant pipe weldments. Further work on validation and improvement of the method is addressed.Keywords: Creep damage property, analytical solutions, inverse approach, miniature specimen test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7791719 Effect of VA-Mycorrhiza on Growth and Yield of Sunflower (Helianthus annuus L.) at Different Phosphorus Levels
Authors: Hossein Soleimanzadeh
Abstract:
The effect of seed inoculation by VA- mycorrhiza and different levels of phosphorus fertilizer on growth and yield of sunflower (Azargol cultivar) was studied in experiment farm of Islamic Azad University, Karaj Branch during 2008 growing season. The experiment treatments were arranged in factorial based on a complete randomized block design with three replications. Four phosphorus fertilizer levels of 25%, 50% 75% and 100% P recommended with two levels of Mycorrhiza: with and without Mycorrhiza (control) were assigned in a factorial combination. Results showed that head diameter, number of seeds in head, seed yield and oil yield were significantly higher in inoculated plants than in non-inoculated plants. Head diameter, number of seeds in head, 1000 seeds weight, biological yield, seed yield and oil yield increased with increasing P level above 75% P recommended in non-inoculated plants, whereas no significant difference was observed between 75% and 100% P recommended. The positive effect of mycorrhizal inoculation decreased with increasing P levels due to decreased percent root colonization at higher P levels. According to the results of this experiment, application of mycorrhiza in present of 50% P recommended had an appropriate performance and could increase seed yield and oil production to an acceptable level, so it could be considered as a suitable substitute for chemical phosphorus fertilizer in organic agricultural systems.Keywords: phosphorus fertilizer, seed yield, sunflower, VA-mycorrhiza
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23141718 Assessment of Water Quality Used for Irrigation: Case Study of Josepdam Irrigation Scheme
Authors: M. A. Adejumobi, J. O. Ojediran
Abstract:
The aim of irrigation is to recharge the available water in the soil. Quality of irrigation water is essential for the yield and quality of crops produced, maintenance of soil productivity and protection of the environment. The analysis of irrigation water arises as a need to know the impact of irrigation water on the yield of crops, the effect, and the necessary control measures to rectify the effect of this for optimum production and yield of crops. This study was conducted to assess the quality of irrigation water with its performance on crop planted, in Josepdam irrigation scheme Bacita, Nigeria. Field visits were undertaken to identify and locate water supply sources and collect water samples from these sources; X1 Drain, Oshin, River Niger loop and Ndafa. Laboratory experiments were then undertaken to determine the quality of raw water from these sources. The analysis was carried for various parameters namely; physical and chemical analyses after water samples have been taken from four sources. The samples were tested in laboratory. Results showed that the raw water sources shows no salinity tendencies with SAR values less than 1me/l and Ecvaules at Zero while the pH were within the recommended range by FAO, there are increase in potassium and sulphate content contamination in three of the location. From this, it is recommended that there should be proper monitoring of the scheme by conducting analysis of water and soil in the environment, preferable test should be carried out at least one year to cover the impact of seasonal variations and to determine the physical and chemical analysis of the water used for irrigation at the scheme.Keywords: Irrigation, Salinity, Raw water quality, Scheme.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24211717 Vacuum Membrane Distillation for Desalination of Ground Water by using Flat Sheet Membrane
Authors: Bhausaheb L. Pangarkar, M.G. Sane, Saroj B. Parjane, Mahendra Guddad
Abstract:
The possibility of producing drinking water from brackish ground water using Vacuum membrane distillation (VMD) process was studied. It is a rising technology for seawater or brine desalination process. The process simply consists of a flat sheet hydrophobic micro porous PTFE membrane and diaphragm vacuum pump without a condenser for the water recovery or trap. In this work, VMD performance was investigated for aqueous NaCl solution and natural ground water. The influence of operational parameters such as feed flow rate (30 to 55 l/h), feed temperature (313 to 333 K), feed salt concentration (5000 to 7000 mg/l) and permeate pressure (1.5 to 6 kPa) on the membrane distillation (MD) permeation flux have been investigated. The maximum flux reached to 28.34 kg/m2 h at feed temperature, 333 K; vacuum pressure, 1.5 kPa; feed flow rate, 55 l/h and feed salt concentration, 7000 mg/l. The negligible effects in the reduction of permeate flux found over 150 h experimental run for salt water. But for the natural ground water application over 75 h, scale deposits observed on the membrane surface and 29% reduction in the permeate flux over 75 h. This reduction can be eliminated by acidification of feed water. Hence, promote the research attention in apply of VMD for the ground water purification over today-s conventional RO operation.Keywords: VMD, hydrophobic PTFE flat membrane, desalination, ground water
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32871716 Hybridized Technique to Analyze Workstress Related Data via the StressCafé
Authors: Anusua Ghosh, Andrew Nafalski, Jeffery Tweedale, Maureen Dollard
Abstract:
This paper presents anapproach of hybridizing two or more artificial intelligence (AI) techniques which arebeing used to fuzzify the workstress level ranking and categorize the rating accordingly. The use of two or more techniques (hybrid approach) has been considered in this case, as combining different techniques may lead to neutralizing each other-s weaknesses generating a superior hybrid solution. Recent researches have shown that there is a need for a more valid and reliable tools, for assessing work stress. Thus artificial intelligence techniques have been applied in this instance to provide a solution to a psychological application. An overview about the novel and autonomous interactive model for analysing work-stress that has been developedusing multi-agent systems is also presented in this paper. The establishment of the intelligent multi-agent decision analyser (IMADA) using hybridized technique of neural networks and fuzzy logic within the multi-agent based framework is also described.Keywords: Fuzzy logic, intelligent agent, multi-agent systems, neural network, workplace stress.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39661715 A New Approach for Network Reconfiguration Problem in Order to Deviation Bus Voltage Minimization with Regard to Probabilistic Load Model and DGs
Authors: Mahmood Reza Shakarami, Reza Sedaghati
Abstract:
Recently, distributed generation technologies have received much attention for the potential energy savings and reliability assurances that might be achieved as a result of their widespread adoption. The distribution feeder reconfiguration (DFR) is one of the most important control schemes in the distribution networks, which can be affected by DGs. This paper presents a new approach to DFR at the distribution networks considering wind turbines. The main objective of the DFR is to minimize the deviation of the bus voltage. Since the DFR is a nonlinear optimization problem, we apply the Adaptive Modified Firefly Optimization (AMFO) approach to solve it. As a result of the conflicting behavior of the single- objective function, a fuzzy based clustering technique is employed to reach the set of optimal solutions called Pareto solutions. The approach is tested on the IEEE 32-bus standard test system.
Keywords: Adaptive Modified Firefly Optimization (AMFO), Pareto solutions, feeder reconfiguration, wind turbines, bus voltage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20161714 Orbit Propagator and Geomagnetic Field Estimator for NanoSatellite: The ICUBE Mission
Authors: Lv Meibo, Naqvi Najam Abbas, Hina Arshad, Li YanJun
Abstract:
This research contribution is drafted to present the orbit design, orbit propagator and geomagnetic field estimator for the nanosatellites specifically for the upcoming CUBESAT, ICUBE-1 of the Institute of Space Technology (IST), Islamabad, Pakistan. The ICUBE mission is designed for the low earth orbit at the approximate height of 700KM. The presented research endeavor designs the Keplarian elements for ICUBE-1 orbit while incorporating the mission requirements and propagates the orbit using J2 perturbations, The attitude determination system of the ICUBE-1 consists of attitude determination sensors like magnetometer and sun sensor. The Geomagnetic field estimator is developed according to the model of International Geomagnetic Reference Field (IGRF) for comparing the magnetic field measurements by the magnetometer for attitude determination. The output of the propagator namely the Keplarians position and velocity vectors and the magnetic field vectors are compared and verified with the same scenario generated in the Satellite Tool Kit (STK).
Keywords: CUBESAT, Geomagnetic Field, ICUBE-1, Orbit Propagator, Satellite.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36101713 Solving Part Type Selection and Loading Problem in Flexible Manufacturing System Using Real Coded Genetic Algorithms – Part II: Optimization
Authors: Wayan F. Mahmudy, Romeo M. Marian, Lee H. S. Luong
Abstract:
This paper presents modeling and optimization of two NP-hard problems in flexible manufacturing system (FMS), part type selection problem and loading problem. Due to the complexity and extent of the problems, the paper was split into two parts. The first part of the papers has discussed the modeling of the problems and showed how the real coded genetic algorithms (RCGA) can be applied to solve the problems. This second part discusses the effectiveness of the RCGA which uses an array of real numbers as chromosome representation. The novel proposed chromosome representation produces only feasible solutions which minimize a computational time needed by GA to push its population toward feasible search space or repair infeasible chromosomes. The proposed RCGA improves the FMS performance by considering two objectives, maximizing system throughput and maintaining the balance of the system (minimizing system unbalance). The resulted objective values are compared to the optimum values produced by branch-and-bound method. The experiments show that the proposed RCGA could reach near optimum solutions in a reasonable amount of time.
Keywords: Flexible manufacturing system, production planning, part type selection problem, loading problem, real-coded genetic algorithm
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19701712 Implementation of an Undergraduate Integrated Biology and Chemistry Course
Authors: Jayson G. Balansag
Abstract:
An integrated biology and chemistry (iBC) course for freshmen college students was developed in University of Delaware. This course will prepare students to (1) become interdisciplinary thinkers in the field of biology and (2) collaboratively work with others from multiple disciplines in the future. This paper documents and describes the implementation of the course. The information gathered from reading literature, classroom observations, and interviews were used to carry out the purpose of this paper. The major goal of the iBC course is to align the concepts between Biology and Chemistry, so that students can draw science concepts from both disciplines which they can apply in their interdisciplinary researches. This course is offered every fall and spring semesters of each school year. Students enrolled in Biology are also enrolled in Chemistry during the same semester. The iBC is composed of lectures, laboratories, studio sessions, and workshops and is taught by the faculty from the biology and chemistry departments. In addition, the preceptors, graduate teaching assistants, and studio fellows facilitate the laboratory and studio sessions. These roles are interdependent with each other. The iBC can be used as a model for higher education institutions who wish to implement an integrated biology course.
Keywords: Integrated biology and chemistry, integration, interdisciplinary research, new biology, undergraduate science education.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12191711 Self-Supervised Pretraining on Paired Sequences of fMRI Data for Transfer Learning to Brain Decoding Tasks
Authors: Sean Paulsen, Michael Casey
Abstract:
In this work, we present a self-supervised pretraining framework for transformers on functional Magnetic Resonance Imaging (fMRI) data. First, we pretrain our architecture on two self-supervised tasks simultaneously to teach the model a general understanding of the temporal and spatial dynamics of human auditory cortex during music listening. Our pretraining results are the first to suggest a synergistic effect of multitask training on fMRI data. Second, we finetune the pretrained models and train additional fresh models on a supervised fMRI classification task. We observe significantly improved accuracy on held-out runs with the finetuned models, which demonstrates the ability of our pretraining tasks to facilitate transfer learning. This work contributes to the growing body of literature on transformer architectures for pretraining and transfer learning with fMRI data, and serves as a proof of concept for our pretraining tasks and multitask pretraining on fMRI data.
Keywords: Transfer learning, fMRI, self-supervised, brain decoding, transformer, multitask training.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1501710 On Leak Localization in the Main Branched and Simple Inclined Gas Pipelines
Authors: T. Davitashvili, G. Gubelidze
Abstract:
In this paper two mathematical models for definition of gas accidental escape localization in the gas pipelines are suggested. The first model was created for leak localization in the horizontal branched pipeline and second one for leak detection in inclined section of the main gas pipeline. The algorithm of leak localization in the branched pipeline did not demand on knowledge of corresponding initial hydraulic parameters at entrance and ending points of each sections of pipeline. For detection of the damaged section and then leak localization in this section special functions and equations have been constructed. Some results of calculations for compound pipelines having two, four and five sections are presented. Also a method and formula for the leak localization in the simple inclined section of the main gas pipeline are suggested. Some results of numerical calculations defining localization of gas escape for the inclined pipeline are presented.
Keywords: Branched and inclined gas pipelines, leak detection, mathematical modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19001709 Sensitivity Analysis for Determining Priority of Factors Controlling SOC Content in Semiarid Condition of West of Iran
Authors: Y. Parvizi, M. Gorji, M.H. Mahdian, M. Omid
Abstract:
Soil organic carbon (SOC) plays a key role in soil fertility, hydrology, contaminants control and acts as a sink or source of terrestrial carbon content that can affect the concentration of atmospheric CO2. SOC supports the sustainability and quality of ecosystems, especially in semi-arid region. This study was conducted to determine relative importance of 13 different exploratory climatic, soil and geometric factors on the SOC contents in one of the semiarid watershed zones in Iran. Two methods canonical discriminate analysis (CDA) and feed-forward back propagation neural networks were used to predict SOC. Stepwise regression and sensitivity analysis were performed to identify relative importance of exploratory variables. Results from sensitivity analysis showed that 7-2-1 neural networks and 5 inputs in CDA models output have highest predictive ability that explains %70 and %65 of SOC variability. Since neural network models outperformed CDA model, it should be preferred for estimating SOC.Keywords: Soil organic carbon, modeling, neural networks, CDA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14341708 A Case Study to Assess the Validity of Function Points
Authors: Neelam Bawane nee' Singhal, C. V. Srikrishna
Abstract:
Many metrics were proposed to evaluate the characteristics of the analysis and design model of a given product which in turn help to assess the quality of the product. Function point metric is a measure of the 'functionality' delivery by the software. This paper presents an analysis of a set of programs of a project developed in Cµ through Function Points metric. Function points are measured for a Data Flow Diagram (DFD) of the case developed at initial stage. Lines of Codes (LOCs) and possible errors are calculated with the help of measured Function Points (FPs). The calculations are performed using suitable established functions. Calculated LOCs and errors are compared with actual LOCs and errors found at the time of analysis & design review, implementation and testing. It has been observed that actual found errors are more than calculated errors. On the basis of analysis and observations, authors conclude that function point provides useful insight and helps to analyze the drawbacks in the development process.Keywords: Function Points, Data Flow Diagram, Lines ofCodes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3671