Search results for: stochastic optimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2080

Search results for: stochastic optimization

1120 Model Reduction of Linear Systems by Conventional and Evolutionary Techniques

Authors: S. Panda, S. K. Tomar, R. Prasad, C. Ardil

Abstract:

Reduction of Single Input Single Output (SISO) continuous systems into Reduced Order Model (ROM), using a conventional and an evolutionary technique is presented in this paper. In the conventional technique, the mixed advantages of Mihailov stability criterion and continued fraction expansions (CFE) technique is employed where the reduced denominator polynomial is derived using Mihailov stability criterion and the numerator is obtained by matching the quotients of the Cauer second form of Continued fraction expansions. In the evolutionary technique method Particle Swarm Optimization (PSO) is employed to reduce the higher order model. PSO method is based on the minimization of the Integral Squared Error (ISE) between the transient responses of original higher order model and the reduced order model pertaining to a unit step input. Both the methods are illustrated through numerical example.

Keywords: Reduced Order Modeling, Stability, Continued Fraction Expansions, Mihailov Stability Criterion, Particle Swarm Optimization, Integral Squared Error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1927
1119 Proposing a Pareto-based Multi-Objective Evolutionary Algorithm to Flexible Job Shop Scheduling Problem

Authors: Seyed Habib A. Rahmati

Abstract:

During last decades, developing multi-objective evolutionary algorithms for optimization problems has found considerable attention. Flexible job shop scheduling problem, as an important scheduling optimization problem, has found this attention too. However, most of the multi-objective algorithms that are developed for this problem use nonprofessional approaches. In another words, most of them combine their objectives and then solve multi-objective problem through single objective approaches. Of course, except some scarce researches that uses Pareto-based algorithms. Therefore, in this paper, a new Pareto-based algorithm called controlled elitism non-dominated sorting genetic algorithm (CENSGA) is proposed for the multi-objective FJSP (MOFJSP). Our considered objectives are makespan, critical machine work load, and total work load of machines. The proposed algorithm is also compared with one the best Pareto-based algorithms of the literature on some multi-objective criteria, statistically.

Keywords: Scheduling, Flexible job shop scheduling problem, controlled elitism non-dominated sorting genetic algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1936
1118 Basic Tendency Model in Complete Factor Synergetics of Complex Systems

Authors: Li Zong-Cheng

Abstract:

The deviation between the target state variable and the practical state variable should be used to form the state tending factor of complex systems, which can reflect the process for the complex system to tend rationalization. Relating to the system of basic equations of complete factor synergetics consisting of twenty nonlinear stochastic differential equations, the two new models are considered to set, which should be called respectively the rationalizing tendency model and the non- rationalizing tendency model. Therefore we can extend the theory of programming with the objective function & constraint condition suitable only for the realm of man-s activities into the new analysis with the tendency function & constraint condition suitable for all the field of complex system.

Keywords: complex system, complete factor synergetics, basicequation, rationalizing tendency model, non-rationalizing tendencymodel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1336
1117 Dynamic Economic Dispatch Constrained by Wind Power Weibull Distribution: A Here-and-Now Strategy

Authors: Mostafa A. Elshahed, Magdy M. Elmarsfawy, Hussain M. Zain Eldain

Abstract:

In this paper, a Dynamic Economic Dispatch (DED) model is developed for the system consisting of both thermal generators and wind turbines. The inclusion of a significant amount of wind energy into power systems has resulted in additional constraints on DED to accommodate the intermittent nature of the output. The probability of stochastic wind power based on the Weibull probability density function is included in the model as a constraint; A Here-and-Now Approach. The Environmental Protection Agency-s hourly emission target, which gives the maximum emission during the day, is used as a constraint to reduce the atmospheric pollution. A 69-bus test system with non-smooth cost function is used to illustrate the effectiveness of the proposed model compared with static economic dispatch model with including the wind power.

Keywords: Dynamic Economic Dispatch, StochasticOptimization, Weibull Distribution, Wind Power

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2963
1116 Quantitative Study for Exchange of Gases from Open Sewer Channel to Atmosphere

Authors: Asif Mansoor, Nasiruddin Khan, Noreen Jamil

Abstract:

In this communication a quantitative modeling approach is applied to construct model for the exchange of gases from open sewer channel to the atmosphere. The data for the exchange of gases of the open sewer channel for the year January 1979 to December 2006 is utilized for the construction of the model. The study reveals that stream flow of the open sewer channel exchanges the toxic gases continuously with time varying scale. We find that the quantitative modeling approach is more parsimonious model for these exchanges. The usual diagnostic tests are applied for the model adequacy. This model is beneficial for planner and managerial bodies for the improvement of implemented policies to overcome future environmental problems.

Keywords: Open sewer channel, Industrial waste, Municipalwaste, Gases exchange, Atmosphere, Stochastic models, Diagnosticschecks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1556
1115 Optimum Time Coordination of Overcurrent Relays using Two Phase Simplex Method

Authors: Prashant P. Bedekar, Sudhir R. Bhide, Vijay S. Kale

Abstract:

Overcurrent (OC) relays are the major protection devices in a distribution system. The operating time of the OC relays are to be coordinated properly to avoid the mal-operation of the backup relays. The OC relay time coordination in ring fed distribution networks is a highly constrained optimization problem which can be stated as a linear programming problem (LPP). The purpose is to find an optimum relay setting to minimize the time of operation of relays and at the same time, to keep the relays properly coordinated to avoid the mal-operation of relays. This paper presents two phase simplex method for optimum time coordination of OC relays. The method is based on the simplex algorithm which is used to find optimum solution of LPP. The method introduces artificial variables to get an initial basic feasible solution (IBFS). Artificial variables are removed using iterative process of first phase which minimizes the auxiliary objective function. The second phase minimizes the original objective function and gives the optimum time coordination of OC relays.

Keywords: Constrained optimization, LPP, Overcurrent relaycoordination, Two-phase simplex method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3007
1114 Seismic Control of Tall Building Using a New Optimum Controller Based on GA

Authors: A. Shayeghi, H. Eimani Kalasar, H. Shayeghi

Abstract:

This paper emphasizes on the application of genetic algorithm (GA) to optimize the parameters of the TMD for achieving the best results in the reduction of the building response under earthquake excitations. The Integral of the Time multiplied Absolute value of the Error (ITAE) based on relative displacement of all floors in the building is taken as a performance index of the optimization criterion. The problem of robustly TMD controller design is formatted as an optimization problem based on the ITAE performance index to be solved using GA that has a story ability to find the most optimistic results. An 11–story realistic building, located in the city of Rasht, Iran is considered as a test system to demonstrate effectiveness of the proposed GA based TMD (GATMD) controller without specifying which mode should be controlled. The results of the proposed GATMD controller are compared with the uncontrolled structure through timedomain simulation and some performance indices. The results analysis reveals that the designed GA based TMD controller has an excellent capability in reduction of the seismically excited example building and the ITAE performance, that is so for remains as unknown, can be introduced a new criteria - method for structural dynamic design.

Keywords: Tuned Mass Damper, Genetic Algorithm, TallBuildings, Structural Dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1798
1113 Dynamic Correlations and Portfolio Optimization between Islamic and Conventional Equity Indexes: A Vine Copula-Based Approach

Authors: Imen Dhaou

Abstract:

This study examines conditional Value at Risk by applying the GJR-EVT-Copula model, and finds the optimal portfolio for eight Dow Jones Islamic-conventional pairs. Our methodology consists of modeling the data by a bivariate GJR-GARCH model in which we extract the filtered residuals and then apply the Peak over threshold model (POT) to fit the residual tails in order to model marginal distributions. After that, we use pair-copula to find the optimal portfolio risk dependence structure. Finally, with Monte Carlo simulations, we estimate the Value at Risk (VaR) and the conditional Value at Risk (CVaR). The empirical results show the VaR and CVaR values for an equally weighted portfolio of Dow Jones Islamic-conventional pairs. In sum, we found that the optimal investment focuses on Islamic-conventional US Market index pairs because of high investment proportion; however, all other index pairs have low investment proportion. These results deliver some real repercussions for portfolio managers and policymakers concerning to optimal asset allocations, portfolio risk management and the diversification advantages of these markets.

Keywords: CVaR, Dow Jones Islamic index, GJR-GARCH-EVT-pair copula, portfolio optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 997
1112 Optimization of Process Parameters using Response Surface Methodology for the Removal of Zinc(II) by Solvent Extraction

Authors: B. Guezzen, M.A. Didi, B. Medjahed

Abstract:

A factorial design of experiments and a response surface methodology were implemented to investigate the liquid-liquid extraction process of zinc (II) from acetate medium using the 1-Butyl-imidazolium di(2-ethylhexyl) phosphate [BIm+][D2EHP-]. The optimization process of extraction parameters such as the initial pH effect (2.5, 4.5, and 6.6), ionic liquid concentration (1, 5.5, and 10 mM) and salt effect (0.01, 5, and 10 mM) was carried out using a three-level full factorial design (33). The results of the factorial design demonstrate that all these factors are statistically significant, including the square effects of pH and ionic liquid concentration. The results showed that the order of significance: IL concentration > salt effect > initial pH. Analysis of variance (ANOVA) showing high coefficient of determination (R2 = 0.91) and low probability values (P < 0.05) signifies the validity of the predicted second-order quadratic model for Zn (II) extraction. The optimum conditions for the extraction of zinc (II) at the constant temperature (20 °C), initial Zn (II) concentration (1mM) and A/O ratio of unity were: initial pH (4.8), extractant concentration (9.9 mM), and NaCl concentration (8.2 mM). At the optimized condition, the metal ion could be quantitatively extracted.

Keywords: Ionic liquid, response surface methodology, solvent extraction, zinc acetate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1152
1111 Real Power Generation Scheduling to Improve Steady State Stability Limit in the Java-Bali 500kV Interconnection Power System

Authors: Indar Chaerah Gunadin, Adi Soeprijanto, Ontoseno Penangsang

Abstract:

This paper will discuss about an active power generator scheduling method in order to increase the limit level of steady state systems. Some power generator optimization methods such as Langrange, PLN (Indonesian electricity company) Operation, and the proposed Z-Thevenin-based method will be studied and compared in respect of their steady state aspects. A method proposed in this paper is built upon the thevenin equivalent impedance values between each load respected to each generator. The steady state stability index obtained with the REI DIMO method. This research will review the 500kV-Jawa-Bali interconnection system. The simulation results show that the proposed method has the highest limit level of steady state stability compared to other optimization techniques such as Lagrange, and PLN operation. Thus, the proposed method can be used to create the steady state stability limit of the system especially in the peak load condition.

Keywords: generation scheduling, steady-state stability limit, REI Dimo, margin stability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2284
1110 Scheduling Maintenance Actions for Gas Turbines Aircraft Engines

Authors: Anis Gharbi

Abstract:

This paper considers the problem of scheduling maintenance actions for identical aircraft gas turbine engines. Each one of the turbines consists of parts which frequently require replacement. A finite inventory of spare parts is available and all parts are ready for replacement at any time. The inventory consists of both new and refurbished parts. Hence, these parts have different field lives. The goal is to find a replacement part sequencing that maximizes the time that the aircraft will keep functioning before the inventory is replenished. The problem is formulated as an identical parallel machine scheduling problem where the minimum completion time has to be maximized. Two models have been developed. The first one is an optimization model which is based on a 0-1 linear programming formulation, while the second one is an approximate procedure which consists in decomposing the problem into several two-machine subproblems. Each subproblem is optimally solved using the first model. Both models have been implemented using Lingo and have been tested on two sets of randomly generated data with up to 150 parts and 10 turbines. Experimental results show that the optimization model is able to solve only instances with no more than 4 turbines, while the decomposition procedure often provides near-optimal solutions within a maximum CPU time of 3 seconds.

Keywords: Aircraft turbines, Scheduling, Identical parallel machines, 0-1 linear programming, Heuristic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2002
1109 Tuberculosis Modelling Using Bio-PEPA Approach

Authors: Dalila Hamami, Baghdad Atmani

Abstract:

Modelling is a widely used tool to facilitate the evaluation of disease management. The interest of epidemiological models lies in their ability to explore hypothetical scenarios and provide decision makers with evidence to anticipate the consequences of disease incursion and impact of intervention strategies.

All models are, by nature, simplification of more complex systems. Models that involve diseases can be classified into different categories depending on how they treat the variability, time, space, and structure of the population. Approaches may be different from simple deterministic mathematical models, to complex stochastic simulations spatially explicit.

Thus, epidemiological modelling is now a necessity for epidemiological investigations, surveillance, testing hypotheses and generating follow-up activities necessary to perform complete and appropriate analysis.

The state of the art presented in the following, allows us to position itself to the most appropriate approaches in the epidemiological study.

Keywords: Bio-PEPA, Cellular automata, Epidemiological modelling, multi agent system, ordinary differential equations, PEPA, Process Algebra, Tuberculosis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2158
1108 Cost Analysis of Hybrid Wind Energy Generating System Considering CO2 Emissions

Authors: M. A. Badr, M.N. El Kordy, A. N. Mohib, M. M. Ibrahim

Abstract:

The basic objective of the research is to study the effect of hybrid wind energy on the cost of generated electricity considering the cost of reduction CO2 emissions. The system consists of small wind turbine(s), storage battery bank and a diesel generator (W/D/B). Using an optimization software package, different system configurations are investigated to reach optimum configuration based on the net present cost (NPC) and cost of energy (COE) as economic optimization criteria. The cost of avoided CO2 is taken into consideration. The system is intended to supply the electrical load of a small community (gathering six families) in a remote Egyptian area. The investigated system is not connected to the electricity grid and may replace an existing conventional diesel powered electric supply system to reduce fuel consumption and CO2 emissions. The simulation results showed that W/D energy system is more economic than diesel alone. The estimated COE is 0.308$/kWh and extracting the cost of avoided CO2, the COE reached 0.226 $/kWh which is an external benefit of wind turbine, as there are no pollutant emissions through operational phase.

Keywords: Hybrid wind turbine systems, remote areas electrification, simulation of hybrid energy systems, techno-economic study.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1195
1107 Optimization of Control Parameters for MRR in Injection Flushing Type of EDM on Stainless Steel 304 Workpiece

Authors: M. S. Reza, M. Hamdi, A.S. Hadi

Abstract:

The operating control parameters of injection flushing type of electrical discharge machining process on stainless steel 304 workpiece with copper tools are being optimized according to its individual machining characteristic i.e. material removal rate (MRR). Lower MRR during EDM machining process may decrease its- machining productivity. Hence, the quality characteristic for MRR is set to higher-the-better to achieve the optimum machining productivity. Taguchi method has been used for the construction, layout and analysis of the experiment for each of the machining characteristic for the MRR. The use of Taguchi method in the experiment saves a lot of time and cost of preparing and machining the experiment samples. Therefore, an L18 Orthogonal array which was the fundamental component in the statistical design of experiments has been used to plan the experiments and Analysis of Variance (ANOVA) is used to determine the optimum machining parameters for this machining characteristic. The control parameters selected for this optimization experiments are polarity, pulse on duration, discharge current, discharge voltage, machining depth, machining diameter and dielectric liquid pressure. The result had shown that the higher the discharge voltage, the higher will be the MRR.

Keywords: ANOVA, EDM, Injection Flushing, L18 OrthogonalArray, MRR, Stainless Steel 304

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1821
1106 Genetic Algorithm Parameters Optimization for Bi-Criteria Multiprocessor Task Scheduling Using Design of Experiments

Authors: Sunita Dhingra, Satinder Bal Gupta, Ranjit Biswas

Abstract:

Multiprocessor task scheduling is a NP-hard problem and Genetic Algorithm (GA) has been revealed as an excellent technique for finding an optimal solution. In the past, several methods have been considered for the solution of this problem based on GAs. But, all these methods consider single criteria and in the present work, minimization of the bi-criteria multiprocessor task scheduling problem has been considered which includes weighted sum of makespan & total completion time. Efficiency and effectiveness of genetic algorithm can be achieved by optimization of its different parameters such as crossover, mutation, crossover probability, selection function etc. The effects of GA parameters on minimization of bi-criteria fitness function and subsequent setting of parameters have been accomplished by central composite design (CCD) approach of response surface methodology (RSM) of Design of Experiments. The experiments have been performed with different levels of GA parameters and analysis of variance has been performed for significant parameters for minimisation of makespan and total completion time simultaneously.

Keywords: Multiprocessor task scheduling, Design of experiments, Genetic Algorithm, Makespan, Total completion time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2846
1105 Statistical Optimization of Medium Components for Biomass Production of Chlorella pyrenoidosa under Autotrophic Conditions and Evaluation of Its Biochemical Composition under Stress Conditions

Authors: N. P. Dhull, K. Gupta, R. Soni, D. K. Rahi, S. K. Soni

Abstract:

The aim of the present work was to statistically design an autotrophic medium for maximum biomass production by Chlorella pyrenoidosa using response surface methodology. After evaluating one factor at a time approach, K2HPO4, KNO3, MgSO4.7H2O and NaHCO3 were preferred over the other components of the fog’s medium as most critical autotrophic medium components. The study showed that the maximum biomass yield was achieved while the concentrations of MgSO4.7H2O, K2HPO4, KNO3 and NaHCO3 were 0.409 g/L, 0.24 g/L, 1.033 g/L, and 3.265 g/L, respectively. The study reported that the biomass productivity of C. pyrenoidosa improved from 0.14 g/L in defined fog’s medium to 1.40 g/L in modified fog’s medium resulting 10 fold increase. The biochemical composition biosynthesis of C. pyrenoidosa was altered using nitrogen limiting stress bringing about 5.23 fold increase in lipid content than control (cell without stress), as analyzed by FTIR integration method.

Keywords: Autotrophic condition, Chlorella pyrenoidosa, FTIR, Response Surface Methodology, Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2440
1104 Evolving a Fuzzy Rule-Base for Image Segmentation

Authors: A. Borji, M. Hamidi

Abstract:

A new method for color image segmentation using fuzzy logic is proposed in this paper. Our aim here is to automatically produce a fuzzy system for color classification and image segmentation with least number of rules and minimum error rate. Particle swarm optimization is a sub class of evolutionary algorithms that has been inspired from social behavior of fishes, bees, birds, etc, that live together in colonies. We use comprehensive learning particle swarm optimization (CLPSO) technique to find optimal fuzzy rules and membership functions because it discourages premature convergence. Here each particle of the swarm codes a set of fuzzy rules. During evolution, a population member tries to maximize a fitness criterion which is here high classification rate and small number of rules. Finally, particle with the highest fitness value is selected as the best set of fuzzy rules for image segmentation. Our results, using this method for soccer field image segmentation in Robocop contests shows 89% performance. Less computational load is needed when using this method compared with other methods like ANFIS, because it generates a smaller number of fuzzy rules. Large train dataset and its variety, makes the proposed method invariant to illumination noise

Keywords: Comprehensive learning Particle Swarmoptimization, fuzzy classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1957
1103 An Agent-Based Scheduling Framework for Flexible Manufacturing Systems

Authors: Iman Badr

Abstract:

The concept of flexible manufacturing is highly appealing in gaining a competitive edge in the market by quickly adapting to the changing customer needs. Scheduling jobs on flexible manufacturing systems (FMSs) is a challenging task of managing the available flexibility on the shop floor to react to the dynamics of the environment in real-time. In this paper, an agent-oriented scheduling framework that can be integrated with a real or a simulated FMS is proposed. This framework works in stochastic environments with a dynamic model of job arrival. It supports a hierarchical cooperative scheduling that builds on the available flexibility of the shop floor. Testing the framework on a model of a real FMS showed the capability of the proposed approach to overcome the drawbacks of the conventional approaches and maintain a near optimal solution despite the dynamics of the operational environment.

Keywords: Autonomous agents, Flexible manufacturing systems(FMS), Manufacturing scheduling, Real-time systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1820
1102 A Particle Swarm Optimal Control Method for DC Motor by Considering Energy Consumption

Authors: Yingjie Zhang, Ming Li, Ying Zhang, Jing Zhang, Zuolei Hu

Abstract:

In the actual start-up process of DC motors, the DC drive system often faces a conflict between energy consumption and acceleration performance. To resolve the conflict, this paper proposes a comprehensive performance index that energy consumption index is added on the basis of classical control performance index in the DC motor starting process. Taking the comprehensive performance index as the cost function, particle swarm optimization algorithm is designed to optimize the comprehensive performance. Then it conducts simulations on the optimization of the comprehensive performance of the DC motor on condition that the weight coefficient of the energy consumption index should be properly designed. The simulation results show that as the weight of energy consumption increased, the energy efficiency was significantly improved at the expense of a slight sacrifice of fastness indicators with the comprehensive performance index method. The energy efficiency was increased from 63.18% to 68.48% and the response time reduced from 0.2875s to 0.1736s simultaneously compared with traditional proportion integrals differential controller in energy saving.

Keywords: Comprehensive performance index, energy consumption, acceleration performance, particle swarm optimal control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 643
1101 Optimizing Logistics for Courier Organizations with Considerations of Congestions and Pickups: A Courier Delivery System in Amman as Case Study

Authors: Nader A. Al Theeb, Zaid Abu Manneh, Ibrahim Al-Qadi

Abstract:

Traveling salesman problem (TSP) is a combinatorial integer optimization problem that asks "What is the optimal route for a vehicle to traverse in order to deliver requests to a given set of customers?”. It is widely used by the package carrier companies’ distribution centers. The main goal of applying the TSP in courier organizations is to minimize the time that it takes for the courier in each trip to deliver or pick up the shipments during a day. In this article, an optimization model is constructed to create a new TSP variant to optimize the routing in a courier organization with a consideration of congestion in Amman, the capital of Jordan. Real data were collected by different methods and analyzed. Then, concert technology - CPLEX was used to solve the proposed model for some random generated data instances and for the real collected data. At the end, results have shown a great improvement in time compared with the current trip times, and an economic study was conducted afterwards to figure out the impact of using such models.

Keywords: Travel salesman problem, congestions, pick-up, integer programming, package carriers, service engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 942
1100 Near-Field Robust Adaptive Beamforming Based on Worst-Case Performance Optimization

Authors: Jing-ran Lin, Qi-cong Peng, Huai-zong Shao

Abstract:

The performance of adaptive beamforming degrades substantially in the presence of steering vector mismatches. This degradation is especially severe in the near-field, for the 3-dimensional source location is more difficult to estimate than the 2-dimensional direction of arrival in far-field cases. As a solution, a novel approach of near-field robust adaptive beamforming (RABF) is proposed in this paper. It is a natural extension of the traditional far-field RABF and belongs to the class of diagonal loading approaches, with the loading level determined based on worst-case performance optimization. However, different from the methods solving the optimal loading by iteration, it suggests here a simple closed-form solution after some approximations, and consequently, the optimal weight vector can be expressed in a closed form. Besides simplicity and low computational cost, the proposed approach reveals how different factors affect the optimal loading as well as the weight vector. Its excellent performance in the near-field is confirmed via a number of numerical examples.

Keywords: Robust adaptive beamforming (RABF), near-field, steering vector mismatches, diagonal loading, worst-case performanceoptimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1881
1099 Effect of Process Parameters on the Proximate Composition, Functional and Sensory Properties

Authors: C. I. Omohimi, O. P. Sobukola, K. O. Sarafadeen, L.O. Sanni

Abstract:

Flour from Mucuna beans (Mucuna pruriens) were used in producing texturized meat analogue using a single screw extruder to monitor modifications on the proximate composition and the functional properties at high moisture level. Response surface methodology based on Box Behnken design at three levels of barrel temperature (110, 120, 130°C), screw speed (100,120,140rpm) and feed moisture (44, 47, 50%) were used in 17 runs. Regression models describing the effect of variables on the product responses were obtained. Descriptive profile analyses and consumer acceptability test were carried out on optimized flavoured extruded meat analogue. Responses were mostly affected by barrel temperature and moisture level and to a lesser extent by screw speed. Optimization results based on desirability concept indicated that a barrel temperature of 120.15°C, feed moisture of 47% and screw speed of 119.19 rpm would produce meat analogue of preferable proximate composition, functional and sensory properties which reveals consumers` likeness for the product.

Keywords: Functional properties, mucuna bean flour, optimization, proximate composition, texturized meat analogue.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3011
1098 Mathematical Modeling of the AMCs Cross-Contamination Removal in the FOUPs: Finite Element Formulation and Application in FOUP’s Decontamination

Authors: N. Santatriniaina, J. Deseure, T.Q. Nguyen, H. Fontaine, C. Beitia, L. Rakotomanana

Abstract:

Nowadays, with the increasing of the wafer's size and the decreasing of critical size of integrated circuit manufacturing in modern high-tech, microelectronics industry needs a maximum attention to challenge the contamination control. The move to 300 [mm] is accompanied by the use of Front Opening Unified Pods for wafer and his storage. In these pods an airborne cross contamination may occur between wafers and the pods. A predictive approach using modeling and computational methods is very powerful method to understand and qualify the AMCs cross contamination processes. This work investigates the required numerical tools which are employed in order to study the AMCs cross-contamination transfer phenomena between wafers and FOUPs. Numerical optimization and finite element formulation in transient analysis were established. Analytical solution of one dimensional problem was developed and the calibration process of physical constants was performed. The least square distance between the model (analytical 1D solution) and the experimental data are minimized. The behavior of the AMCs intransient analysis was determined. The model framework preserves the classical forms of the diffusion and convection-diffusion equations and yields to consistent form of the Fick's law. The adsorption process and the surface roughness effect were also traduced as a boundary condition using the switch condition Dirichlet to Neumann and the interface condition. The methodology is applied, first using the optimization methods with analytical solution to define physical constants, and second using finite element method including adsorption kinetic and the switch of Dirichlet to Neumann condition.

Keywords: AMCs, FOUP, cross-contamination, adsorption, diffusion, numerical analysis, wafers, Dirichlet to Neumann, finite elements methods, Fick’s law, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3176
1097 Mining Correlated Bicluster from Web Usage Data Using Discrete Firefly Algorithm Based Biclustering Approach

Authors: K. Thangavel, R. Rathipriya

Abstract:

For the past one decade, biclustering has become popular data mining technique not only in the field of biological data analysis but also in other applications like text mining, market data analysis with high-dimensional two-way datasets. Biclustering clusters both rows and columns of a dataset simultaneously, as opposed to traditional clustering which clusters either rows or columns of a dataset. It retrieves subgroups of objects that are similar in one subgroup of variables and different in the remaining variables. Firefly Algorithm (FA) is a recently-proposed metaheuristic inspired by the collective behavior of fireflies. This paper provides a preliminary assessment of discrete version of FA (DFA) while coping with the task of mining coherent and large volume bicluster from web usage dataset. The experiments were conducted on two web usage datasets from public dataset repository whereby the performance of FA was compared with that exhibited by other population-based metaheuristic called binary Particle Swarm Optimization (PSO). The results achieved demonstrate the usefulness of DFA while tackling the biclustering problem.

Keywords: Biclustering, Binary Particle Swarm Optimization, Discrete Firefly Algorithm, Firefly Algorithm, Usage profile Web usage mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2133
1096 Steepest Descent Method with New Step Sizes

Authors: Bib Paruhum Silalahi, Djihad Wungguli, Sugi Guritman

Abstract:

Steepest descent method is a simple gradient method for optimization. This method has a slow convergence in heading to the optimal solution, which occurs because of the zigzag form of the steps. Barzilai and Borwein modified this algorithm so that it performs well for problems with large dimensions. Barzilai and Borwein method results have sparked a lot of research on the method of steepest descent, including alternate minimization gradient method and Yuan method. Inspired by previous works, we modified the step size of the steepest descent method. We then compare the modification results against the Barzilai and Borwein method, alternate minimization gradient method and Yuan method for quadratic function cases in terms of the iterations number and the running time. The average results indicate that the steepest descent method with the new step sizes provide good results for small dimensions and able to compete with the results of Barzilai and Borwein method and the alternate minimization gradient method for large dimensions. The new step sizes have faster convergence compared to the other methods, especially for cases with large dimensions.

Keywords: Convergence, iteration, line search, running time, steepest descent, unconstrained optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3162
1095 Capacity Optimization for Local and Cooperative Spectrum Sensing in Cognitive Radio Networks

Authors: Ayman A. El-Saleh, Mahamod Ismail, Mohd. A. M. Ali, Ahmed N. H. Alnuaimy

Abstract:

The dynamic spectrum allocation solutions such as cognitive radio networks have been proposed as a key technology to exploit the frequency segments that are spectrally underutilized. Cognitive radio users work as secondary users who need to constantly and rapidly sense the presence of primary users or licensees to utilize their frequency bands if they are inactive. Short sensing cycles should be run by the secondary users to achieve higher throughput rates as well as to provide low level of interference to the primary users by immediately vacating their channels once they have been detected. In this paper, the throughput-sensing time relationship in local and cooperative spectrum sensing has been investigated under two distinct scenarios, namely, constant primary user protection (CPUP) and constant secondary user spectrum usability (CSUSU) scenarios. The simulation results show that the design of sensing slot duration is very critical and depends on the number of cooperating users under CPUP scenario whereas under CSUSU, cooperating more users has no effect if the sensing time used exceeds 5% of the total frame duration.

Keywords: Capacity, cognitive radio, optimization, spectrumsensing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1615
1094 Vibration Attenuation Using Functionally Graded Material

Authors: Saeed Asiri, Hassan Hedia, Wael Eissa

Abstract:

The aim of the work was to attenuate the vibration amplitude in CESNA 172 airplane wing by using Functionally Graded Material instead of uniform or composite material. Wing strength was achieved by means of stress analysis study, while wing vibration amplitudes and shapes were achieved by means of Modal and Harmonic analysis. Results were verified by applying the methodology in a simple cantilever plate to the simple model and the results were promising and the same methodology can be applied to the airplane wing model. Aluminum models, Titanium models, and functionally graded materials of Aluminum and titanium results were compared to show a great vibration attenuation after using the FGM. Optimization in FGM gradation satisfied our objective of reducing and attenuating the vibration amplitudes to show the effect of using FGM in vibration behavior. Testing the Aluminum rich models, and comparing it with the titanium rich model was an optimization in this paper. Results have shown a significant attenuation in vibration magnitudes when using FGM instead of Titanium Plate, and Aluminium wing with FGM Spurs instead of Aluminium wings. It was also recommended that in future, changing the graphical scale to 1:10 or even 1:1 when the computers- capabilities allow.

Keywords: Vibration, Attenuation, FGM, ANSYS2011, FEM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3134
1093 Application of Genetic Algorithms for Evolution of Quantum Equivalents of Boolean Circuits

Authors: Swanti Satsangi, Ashish Gulati, Prem Kumar Kalra, C. Patvardhan

Abstract:

Due to the non- intuitive nature of Quantum algorithms, it becomes difficult for a classically trained person to efficiently construct new ones. So rather than designing new algorithms manually, lately, Genetic algorithms (GA) are being implemented for this purpose. GA is a technique to automatically solve a problem using principles of Darwinian evolution. This has been implemented to explore the possibility of evolving an n-qubit circuit when the circuit matrix has been provided using a set of single, two and three qubit gates. Using a variable length population and universal stochastic selection procedure, a number of possible solution circuits, with different number of gates can be obtained for the same input matrix during different runs of GA. The given algorithm has also been successfully implemented to obtain two and three qubit Boolean circuits using Quantum gates. The results demonstrate the effectiveness of the GA procedure even when the search spaces are large.

Keywords: Ancillas, Boolean functions, Genetic algorithm, Oracles, Quantum circuits, Scratch bit

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1943
1092 Forecasting Issues in Energy Markets within a Reg-ARIMA Framework

Authors: Ilaria Lucrezia Amerise

Abstract:

Electricity markets throughout the world have undergone substantial changes. Accurate, reliable, clear and comprehensible modeling and forecasting of different variables (loads and prices in the first instance) have achieved increasing importance. In this paper, we describe the actual state of the art focusing on reg-SARMA methods, which have proven to be flexible enough to accommodate the electricity price/load behavior satisfactory. More specifically, we will discuss: 1) The dichotomy between point and interval forecasts; 2) The difficult choice between stochastic (e.g. climatic variation) and non-deterministic predictors (e.g. calendar variables); 3) The confrontation between modelling a single aggregate time series or creating separated and potentially different models of sub-series. The noteworthy point that we would like to make it emerge is that prices and loads require different approaches that appear irreconcilable even though must be made reconcilable for the interests and activities of energy companies.

Keywords: Forecasting problem, interval forecasts, time series, electricity prices, reg-plus-SARMA methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 814
1091 Network Reconfiguration for Load Balancing in Distribution System with Distributed Generation and Capacitor Placement

Authors: T. Lantharthong, N. Rugthaicharoencheep

Abstract:

This paper presents an efficient algorithm for optimization of radial distribution systems by a network reconfiguration to balance feeder loads and eliminate overload conditions. The system load-balancing index is used to determine the loading conditions of the system and maximum system loading capacity. The index value has to be minimum in the optimal network reconfiguration of load balancing. A method based on Tabu search algorithm, The Tabu search algorithm is employed to search for the optimal network reconfiguration. The basic idea behind the search is a move from a current solution to its neighborhood by effectively utilizing a memory to provide an efficient search for optimality. It presents low computational effort and is able to find good quality configurations. Simulation results for a radial 69-bus system with distributed generations and capacitors placement. The study results show that the optimal on/off patterns of the switches can be identified to give the best network reconfiguration involving balancing of feeder loads while respecting all the constraints.

Keywords: Network reconfiguration, Distributed generation Capacitor placement, Load balancing, Optimization technique

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4220