Search results for: classification and clustering.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1479

Search results for: classification and clustering.

519 Secure and Efficient Transmission of Aggregated Data for Mobile Wireless Sensor Networks

Authors: A. Krishna Veni, R.Geetha

Abstract:

Wireless Sensor Networks (WSNs) are suitable for many scenarios in the real world. The retrieval of data is made efficient by the data aggregation techniques. Many techniques for the data aggregation are offered and most of the existing schemes are not energy efficient and secure. However, the existing techniques use the traditional clustering approach where there is a delay during the packet transmission since there is no proper scheduling. The presented system uses the Velocity Energy-efficient and Link-aware Cluster-Tree (VELCT) scheme in which there is a Data Collection Tree (DCT) which improves the lifetime of the network. The VELCT scheme and the construction of DCT reduce the delay and traffic. The network lifetime can be increased by avoiding the frequent change in cluster topology. Secure and Efficient Transmission of Aggregated data (SETA) improves the security of the data transmission via the trust value of the nodes prior the aggregation of data. Since SETA considers the data only from the trustworthy nodes for aggregation, it is more secure in transmitting the data thereby improving the accuracy of aggregated data.

Keywords: Aggregation, lifetime, network security, wireless sensor network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1215
518 Objective Assessment of Psoriasis Lesion Thickness for PASI Scoring using 3D Digital Imaging

Authors: M.H. Ahmad Fadzil, Hurriyatul Fitriyah, Esa Prakasa, Hermawan Nugroho, S.H. Hussein, Azura Mohd. Affandi

Abstract:

Psoriasis is a chronic inflammatory skin condition which affects 2-3% of population around the world. Psoriasis Area and Severity Index (PASI) is a gold standard to assess psoriasis severity as well as the treatment efficacy. Although a gold standard, PASI is rarely used because it is tedious and complex. In practice, PASI score is determined subjectively by dermatologists, therefore inter and intra variations of assessment are possible to happen even among expert dermatologists. This research develops an algorithm to assess psoriasis lesion for PASI scoring objectively. Focus of this research is thickness assessment as one of PASI four parameters beside area, erythema and scaliness. Psoriasis lesion thickness is measured by averaging the total elevation from lesion base to lesion surface. Thickness values of 122 3D images taken from 39 patients are grouped into 4 PASI thickness score using K-means clustering. Validation on lesion base construction is performed using twelve body curvature models and show good result with coefficient of determinant (R2) is equal to 1.

Keywords: 3D digital imaging, base construction, PASI, psoriasis lesion thickness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2453
517 Game Skill Measure for Mixed Games

Authors: Roman V. Yampolskiy

Abstract:

Games can be classified as games of skill, games of chance or otherwise be classified as mixed. This paper deals with the topic of scientifically classifying mixed games as more reliant on elements of chance or elements of skill and ways to scientifically measure the amount of skill involved. This is predominantly useful for classification of games as legal or illegal in deferent jurisdictions based on the local gaming laws. We propose a novel measure of skill to chance ratio called the Game Skill Measure (GSM) and utilize it to calculate the skill component of a popular variant of Poker.

Keywords: Chance, Game, Skill, Luck.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1462
516 Real-Time Visualization Using GPU-Accelerated Filtering of LiDAR Data

Authors: Sašo Pečnik, Borut Žalik

Abstract:

This paper presents a real-time visualization technique and filtering of classified LiDAR point clouds. The visualization is capable of displaying filtered information organized in layers by the classification attribute saved within LiDAR datasets. We explain the used data structure and data management, which enables real-time presentation of layered LiDAR data. Real-time visualization is achieved with LOD optimization based on the distance from the observer without loss of quality. The filtering process is done in two steps and is entirely executed on the GPU and implemented using programmable shaders.

Keywords: Filtering, graphics, level-of-details, LiDAR, realtime visualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2544
515 Unified Method to Block Pornographic Images in Websites

Authors: Sakthi Priya Balaji R., Vijayendar G.

Abstract:

This paper proposes a technique to block adult images displayed in websites. The filter is designed so as to perform even in exceptional cases such as, where face detection is not possible or improper face visibility. This is achieved by using an alternative phase to extract the MFC (Most Frequent Color) from the Human Body regions estimated using a biometric of anthropometric distances between fixed rigidly connected body locations. The logical results generated can be protected from overriding by a firewall or intrusion, by encrypting the result in a SSH data packet.

Keywords: Face detection, characteristics extraction andclassification, Component based shape analysis and classification, open source SSH V2 protocol

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1395
514 The Influence of Preprocessing Parameters on Text Categorization

Authors: Jan Pomikalek, Radim Rehurek

Abstract:

Text categorization (the assignment of texts in natural language into predefined categories) is an important and extensively studied problem in Machine Learning. Currently, popular techniques developed to deal with this task include many preprocessing and learning algorithms, many of which in turn require tuning nontrivial internal parameters. Although partial studies are available, many authors fail to report values of the parameters they use in their experiments, or reasons why these values were used instead of others. The goal of this work then is to create a more thorough comparison of preprocessing parameters and their mutual influence, and report interesting observations and results.

Keywords: Text categorization, machine learning, electronic documents, classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1572
513 Genetic Mining: Using Genetic Algorithm for Topic based on Concept Distribution

Authors: S. M. Khalessizadeh, R. Zaefarian, S.H. Nasseri, E. Ardil

Abstract:

Today, Genetic Algorithm has been used to solve wide range of optimization problems. Some researches conduct on applying Genetic Algorithm to text classification, summarization and information retrieval system in text mining process. This researches show a better performance due to the nature of Genetic Algorithm. In this paper a new algorithm for using Genetic Algorithm in concept weighting and topic identification, based on concept standard deviation will be explored.

Keywords: Genetic Algorithm, Text Mining, Term Weighting, Concept Extraction, Concept Distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3709
512 Modeling of Pulping of Sugar Maple Using Advanced Neural Network Learning

Authors: W. D. Wan Rosli, Z. Zainuddin, R. Lanouette, S. Sathasivam

Abstract:

This paper reports work done to improve the modeling of complex processes when only small experimental data sets are available. Neural networks are used to capture the nonlinear underlying phenomena contained in the data set and to partly eliminate the burden of having to specify completely the structure of the model. Two different types of neural networks were used for the application of Pulping of Sugar Maple problem. A three layer feed forward neural networks, using the Preconditioned Conjugate Gradient (PCG) methods were used in this investigation. Preconditioning is a method to improve convergence by lowering the condition number and increasing the eigenvalues clustering. The idea is to solve the modified problem where M is a positive-definite preconditioner that is closely related to A. We mainly focused on Preconditioned Conjugate Gradient- based training methods which originated from optimization theory, namely Preconditioned Conjugate Gradient with Fletcher-Reeves Update (PCGF), Preconditioned Conjugate Gradient with Polak-Ribiere Update (PCGP) and Preconditioned Conjugate Gradient with Powell-Beale Restarts (PCGB). The behavior of the PCG methods in the simulations proved to be robust against phenomenon such as oscillations due to large step size.

Keywords: Convergence, Modeling, Neural Networks, Preconditioned Conjugate Gradient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1684
511 A Design Framework for Event Recommendation in Novice Low-Literacy Communities

Authors: Yimeng Deng, Klarissa T.T. Chang

Abstract:

The proliferation of user-generated content (UGC) results in huge opportunities to explore event patterns. However, existing event recommendation systems primarily focus on advanced information technology users. Little work has been done to address novice and low-literacy users. The next billion users providing and consuming UGC are likely to include communities from developing countries who are ready to use affordable technologies for subsistence goals. Therefore, we propose a design framework for providing event recommendations to address the needs of such users. Grounded in information integration theory (IIT), our framework advocates that effective event recommendation is supported by systems capable of (1) reliable information gathering through structured user input, (2) accurate sense making through spatial-temporal analytics, and (3) intuitive information dissemination through interactive visualization techniques. A mobile pest management application is developed as an instantiation of the design framework. Our preliminary study suggests a set of design principles for novice and low-literacy users.

Keywords: Event recommendation, iconic interface, information integration, spatial-temporal clustering, user-generated content, visualization techniques

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1655
510 Rice Area Determination Using Landsat-Based Indices and Land Surface Temperature Values

Authors: Burçin Saltık, Levent Genç

Abstract:

In this study, it was aimed to determine a route for identification of rice cultivation areas within Thrace and Marmara regions of Turkey using remote sensing and GIS. Landsat 8 (OLI-TIRS) imageries acquired in production season of 2013 with 181/32 Path/Row number were used. Four different seasonal images were generated utilizing original bands and different transformation techniques. All images were classified individually using supervised classification techniques and Land Use Land Cover Maps (LULC) were generated with 8 classes. Areas (ha, %) of each classes were calculated. In addition, district-based rice distribution maps were developed and results of these maps were compared with Turkish Statistical Institute (TurkSTAT; TSI)’s actual rice cultivation area records. Accuracy assessments were conducted, and most accurate map was selected depending on accuracy assessment and coherency with TSI results. Additionally, rice areas on over 4° slope values were considered as mis-classified pixels and they eliminated using slope map and GIS tools. Finally, randomized rice zones were selected to obtain maximum-minimum value ranges of each date (May, June, July, August, September images separately) NDVI, LSWI, and LST images to test whether they may be used for rice area determination via raster calculator tool of ArcGIS. The most accurate classification for rice determination was obtained from seasonal LSWI LULC map, and considering TSI data and accuracy assessment results and mis-classified pixels were eliminated from this map. According to results, 83151.5 ha of rice areas exist within study area. However, this result is higher than TSI records with an area of 12702.3 ha. Use of maximum-minimum range of rice area NDVI, LSWI, and LST was tested in Meric district. It was seen that using the value ranges obtained from July imagery, gave the closest results to TSI records, and the difference was only 206.4 ha. This difference is normal due to relatively low resolution of images. Thus, employment of images with higher spectral, spatial, temporal and radiometric resolutions may provide more reliable results.

Keywords: Landsat 8 (OLI-TIRS), LULC, spectral indices, rice.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1298
509 Logistic Model Tree and Expectation-Maximization for Pollen Recognition and Grouping

Authors: Endrick Barnacin, Jean-Luc Henry, Jack Molinié, Jimmy Nagau, Hélène Delatte, Gérard Lebreton

Abstract:

Palynology is a field of interest for many disciplines. It has multiple applications such as chronological dating, climatology, allergy treatment, and even honey characterization. Unfortunately, the analysis of a pollen slide is a complicated and time-consuming task that requires the intervention of experts in the field, which is becoming increasingly rare due to economic and social conditions. So, the automation of this task is a necessity. Pollen slides analysis is mainly a visual process as it is carried out with the naked eye. That is the reason why a primary method to automate palynology is the use of digital image processing. This method presents the lowest cost and has relatively good accuracy in pollen retrieval. In this work, we propose a system combining recognition and grouping of pollen. It consists of using a Logistic Model Tree to classify pollen already known by the proposed system while detecting any unknown species. Then, the unknown pollen species are divided using a cluster-based approach. Success rates for the recognition of known species have been achieved, and automated clustering seems to be a promising approach.

Keywords: Pollen recognition, logistic model tree, expectation-maximization, local binary pattern.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 769
508 Attribute Selection Methods Comparison for Classification of Diffuse Large B-Cell Lymphoma

Authors: Helyane Bronoski Borges, Júlio Cesar Nievola

Abstract:

The most important subtype of non-Hodgkin-s lymphoma is the Diffuse Large B-Cell Lymphoma. Approximately 40% of the patients suffering from it respond well to therapy, whereas the remainder needs a more aggressive treatment, in order to better their chances of survival. Data Mining techniques have helped to identify the class of the lymphoma in an efficient manner. Despite that, thousands of genes should be processed to obtain the results. This paper presents a comparison of the use of various attribute selection methods aiming to reduce the number of genes to be searched, looking for a more effective procedure as a whole.

Keywords: Attribute selection, data mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1416
507 Fuzzy Set Approach to Study Appositives and Its Impact Due to Positional Alterations

Authors: E. Mike Dison, T. Pathinathan

Abstract:

Computing with Words (CWW) and Possibilistic Relational Universal Fuzzy (PRUF) are the two concepts which widely represent and measure the vaguely defined natural phenomenon. In this paper, we study the positional alteration of the phrases by which the impact of a natural language proposition gets affected and/or modified. We observe the gradations due to sensitivity/feeling of a statement towards the positional alterations. We derive the classification and modification of the meaning of words due to the positional alteration. We present the results with reference to set theoretic interpretations.

Keywords: Appositive, computing with words, PRUF, semantic sentiment analysis, set theoretic interpretations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 839
506 Plant Varieties Selection System

Authors: Kitti Koonsanit, Chuleerat Jaruskulchai, Poonsak Miphokasap, Apisit Eiumnoh

Abstract:

In the end of the day, meteorological data and environmental data becomes widely used such as plant varieties selection system. Variety plant selection for planted area is of almost importance for all crops, including varieties of sugarcane. Since sugarcane have many varieties. Variety plant non selection for planting may not be adapted to the climate or soil conditions for planted area. Poor growth, bloom drop, poor fruit, and low price are to be from varieties which were not recommended for those planted area. This paper presents plant varieties selection system for planted areas in Thailand from meteorological data and environmental data by the use of decision tree techniques. With this software developed as an environmental data analysis tool, it can analyze resulting easier and faster. Our software is a front end of WEKA that provides fundamental data mining functions such as classify, clustering, and analysis functions. It also supports pre-processing, analysis, and decision tree output with exporting result. After that, our software can export and display data result to Google maps API in order to display result and plot plant icons effectively.

Keywords: Plant varieties selection system, decision tree, expert recommendation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1792
505 Mining Correlated Bicluster from Web Usage Data Using Discrete Firefly Algorithm Based Biclustering Approach

Authors: K. Thangavel, R. Rathipriya

Abstract:

For the past one decade, biclustering has become popular data mining technique not only in the field of biological data analysis but also in other applications like text mining, market data analysis with high-dimensional two-way datasets. Biclustering clusters both rows and columns of a dataset simultaneously, as opposed to traditional clustering which clusters either rows or columns of a dataset. It retrieves subgroups of objects that are similar in one subgroup of variables and different in the remaining variables. Firefly Algorithm (FA) is a recently-proposed metaheuristic inspired by the collective behavior of fireflies. This paper provides a preliminary assessment of discrete version of FA (DFA) while coping with the task of mining coherent and large volume bicluster from web usage dataset. The experiments were conducted on two web usage datasets from public dataset repository whereby the performance of FA was compared with that exhibited by other population-based metaheuristic called binary Particle Swarm Optimization (PSO). The results achieved demonstrate the usefulness of DFA while tackling the biclustering problem.

Keywords: Biclustering, Binary Particle Swarm Optimization, Discrete Firefly Algorithm, Firefly Algorithm, Usage profile Web usage mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2130
504 Hybrid Knowledge Approach for Determining Health Care Provider Specialty from Patient Diagnoses

Authors: Erin Lynne Plettenberg, Jeremy Vickery

Abstract:

In an access-control situation, the role of a user determines whether a data request is appropriate. This paper combines vetted web mining and logic modeling to build a lightweight system for determining the role of a health care provider based only on their prior authorized requests. The model identifies provider roles with 100% recall from very little data. This shows the value of vetted web mining in AI systems, and suggests the impact of the ICD classification on medical practice.

Keywords: Ontology, logic modeling, electronic medical records, information extraction, vetted web mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 935
503 Grouping and Indexing Color Features for Efficient Image Retrieval

Authors: M. V. Sudhamani, C. R. Venugopal

Abstract:

Content-based Image Retrieval (CBIR) aims at searching image databases for specific images that are similar to a given query image based on matching of features derived from the image content. This paper focuses on a low-dimensional color based indexing technique for achieving efficient and effective retrieval performance. In our approach, the color features are extracted using the mean shift algorithm, a robust clustering technique. Then the cluster (region) mode is used as representative of the image in 3-D color space. The feature descriptor consists of the representative color of a region and is indexed using a spatial indexing method that uses *R -tree thus avoiding the high-dimensional indexing problems associated with the traditional color histogram. Alternatively, the images in the database are clustered based on region feature similarity using Euclidian distance. Only representative (centroids) features of these clusters are indexed using *R -tree thus improving the efficiency. For similarity retrieval, each representative color in the query image or region is used independently to find regions containing that color. The results of these methods are compared. A JAVA based query engine supporting query-by- example is built to retrieve images by color.

Keywords: Content-based, indexing, cluster, region.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1810
502 Training Radial Basis Function Networks with Differential Evolution

Authors: Bing Yu , Xingshi He

Abstract:

In this paper, Differential Evolution (DE) algorithm, a new promising evolutionary algorithm, is proposed to train Radial Basis Function (RBF) network related to automatic configuration of network architecture. Classification tasks on data sets: Iris, Wine, New-thyroid, and Glass are conducted to measure the performance of neural networks. Compared with a standard RBF training algorithm in Matlab neural network toolbox, DE achieves more rational architecture for RBF networks. The resulting networks hence obtain strong generalization abilities.

Keywords: differential evolution, neural network, Rbf function

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2049
501 Case Studies in Three Domains of Learning: Cognitive, Affective, Psychomotor

Authors: Zeinabsadat Haghshenas

Abstract:

Bloom’s Taxonomy has been changed during the years. The idea of this writing is about the revision that has happened in both facts and terms. It also contains case studies of using cognitive Bloom’s taxonomy in teaching geometric solids to the secondary school students, affective objectives in a creative workshop for adults and psychomotor objectives in fixing a malfunctioned refrigerator lamp. There is also pointed to the important role of classification objectives in adult education as a way to prevent memory loss.

Keywords: Adult education, affective domain, cognitive domain, memory loss, psychomotor domain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7181
500 Tsunami Modelling using the Well-Balanced Scheme

Authors: Ahmad Izani M. Ismail, Md. Fazlul Karim, Mai Duc Thanh

Abstract:

A well balanced numerical scheme based on stationary waves for shallow water flows with arbitrary topography has been introduced by Thanh et al. [18]. The scheme was constructed so that it maintains equilibrium states and tests indicate that it is stable and fast. Applying the well-balanced scheme for the one-dimensional shallow water equations, we study the early shock waves propagation towards the Phuket coast in Southern Thailand during a hypothetical tsunami. The initial tsunami wave is generated in the deep ocean with the strength that of Indonesian tsunami of 2004.

Keywords: Tsunami study, shallow water, conservation law, well-balanced scheme, topography. Subject classification: 86 A 05, 86 A 17.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1745
499 Performance Evaluation of Energy Efficient Communication Protocol for Mobile Ad Hoc Networks

Authors: Toshihiko Sasama, Kentaro Kishida, Kazunori Sugahara, Hiroshi Masuyama

Abstract:

A mobile ad hoc network is a network of mobile nodes without any notion of centralized administration. In such a network, each mobile node behaves not only as a host which runs applications but also as a router to forward packets on behalf of others. Clustering has been applied to routing protocols to achieve efficient communications. A CH network expresses the connected relationship among cluster-heads. This paper discusses the methods for constructing a CH network, and produces the following results: (1) The required running costs of 3 traditional methods for constructing a CH network are not so different from each other in the static circumstance, or in the dynamic circumstance. Their running costs in the static circumstance do not differ from their costs in the dynamic circumstance. Meanwhile, although the routing costs required for the above 3 methods are not so different in the static circumstance, the costs are considerably different from each other in the dynamic circumstance. Their routing costs in the static circumstance are also very different from their costs in the dynamic circumstance, and the former is one tenths of the latter. The routing cost in the dynamic circumstance is mostly the cost for re-routing. (2) On the strength of the above results, we discuss new 2 methods regarding whether they are tolerable or not in the dynamic circumstance, that is, whether the times of re-routing are small or not. These new methods are revised methods that are based on the traditional methods. We recommended the method which produces the smallest routing cost in the dynamic circumstance, therefore producing the smallest total cost.

Keywords: cluster, mobile ad hoc network, re-routing cost, simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1349
498 Performance Evaluation of Music and Minimum Norm Eigenvector Algorithms in Resolving Noisy Multiexponential Signals

Authors: Abdussamad U. Jibia, Momoh-Jimoh E. Salami

Abstract:

Eigenvector methods are gaining increasing acceptance in the area of spectrum estimation. This paper presents a successful attempt at testing and evaluating the performance of two of the most popular types of subspace techniques in determining the parameters of multiexponential signals with real decay constants buried in noise. In particular, MUSIC (Multiple Signal Classification) and minimum-norm techniques are examined. It is shown that these methods perform almost equally well on multiexponential signals with MUSIC displaying better defined peaks.

Keywords: Eigenvector, minimum norm, multiexponential, subspace.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1737
497 Discovery of Human HMG-Coa Reductase Inhibitors Using Structure-Based Pharmacophore Modeling Combined with Molecular Dynamics Simulation Methodologies

Authors: Minky Son, Chanin Park, Ayoung Baek, Shalini John, Keun Woo Lee

Abstract:

3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) catalyzes the conversion of HMG-CoA to mevalonate using NADPH and the enzyme is involved in rate-controlling step of mevalonate. Inhibition of HMGR is considered as effective way to lower cholesterol levels so it is drug target to treat hypercholesterolemia, major risk factor of cardiovascular disease. To discover novel HMGR inhibitor, we performed structure-based pharmacophore modeling combined with molecular dynamics (MD) simulation. Four HMGR inhibitors were used for MD simulation and representative structure of each simulation were selected by clustering analysis. Four structure-based pharmacophore models were generated using the representative structure. The generated models were validated used in virtual screening to find novel scaffolds for inhibiting HMGR. The screened compounds were filtered by applying drug-like properties and used in molecular docking. Finally, four hit compounds were obtained and these complexes were refined using energy minimization. These compounds might be potential leads to design novel HMGR inhibitor.

Keywords: Anti-hypercholesterolemia drug, HMGR inhibitor, Molecular dynamics simulation, Structure-based pharmacophore modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1947
496 Software Architectural Design Ontology

Authors: Muhammad Irfan Marwat, Sadaqat Jan, Syed Zafar Ali Shah

Abstract:

Software Architecture plays a key role in software development but absence of formal description of Software Architecture causes different impede in software development. To cope with these difficulties, ontology has been used as artifact. This paper proposes ontology for Software Architectural design based on IEEE model for architecture description and Kruchten 4+1 model for viewpoints classification. For categorization of style and views, ISO/IEC 42010 has been used. Corpus method has been used to evaluate ontology. The main aim of the proposed ontology is to classify and locate Software Architectural design information.

Keywords: Software Architecture Ontology, Semantic based Software Architecture, Software Architecture, Ontology, Software Engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4185
495 Optimizing the Probabilistic Neural Network Training Algorithm for Multi-Class Identification

Authors: Abdelhadi Lotfi, Abdelkader Benyettou

Abstract:

In this work, a training algorithm for probabilistic neural networks (PNN) is presented. The algorithm addresses one of the major drawbacks of PNN, which is the size of the hidden layer in the network. By using a cross-validation training algorithm, the number of hidden neurons is shrunk to a smaller number consisting of the most representative samples of the training set. This is done without affecting the overall architecture of the network. Performance of the network is compared against performance of standard PNN for different databases from the UCI database repository. Results show an important gain in network size and performance.

Keywords: Classification, probabilistic neural networks, network optimization, pattern recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1222
494 A Combined Neural Network Approach to Soccer Player Prediction

Authors: Wenbin Zhang, Hantian Wu, Jian Tang

Abstract:

An artificial neural network is a mathematical model inspired by biological neural networks. There are several kinds of neural networks and they are widely used in many areas, such as: prediction, detection, and classification. Meanwhile, in day to day life, people always have to make many difficult decisions. For example, the coach of a soccer club has to decide which offensive player to be selected to play in a certain game. This work describes a novel Neural Network using a combination of the General Regression Neural Network and the Probabilistic Neural Networks to help a soccer coach make an informed decision.

Keywords: General Regression Neural Network, Probabilistic Neural Networks, Neural function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3761
493 Analysis of Palm Perspiration Effect with SVM for Diabetes in People

Authors: Hamdi Melih Saraoğlu, Muhlis Yıldırım, Abdurrahman Özbeyaz, Feyzullah Temurtas

Abstract:

In this research, the diabetes conditions of people (healthy, prediabete and diabete) were tried to be identified with noninvasive palm perspiration measurements. Data clusters gathered from 200 subjects were used (1.Individual Attributes Cluster and 2. Palm Perspiration Attributes Cluster). To decrase the dimensions of these data clusters, Principal Component Analysis Method was used. Data clusters, prepared in that way, were classified with Support Vector Machines. Classifications with highest success were 82% for Glucose parameters and 84% for HbA1c parametres.

Keywords: Palm perspiration, Diabetes, Support Vector Machine, Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1945
492 Diagnosis of Ovarian Cancer with Proteomic Patterns in Serum using Independent Component Analysis and Neural Networks

Authors: Simone C. F. Neves, Lúcio F. A. Campos, Ewaldo Santana, Ginalber L. O. Serra, Allan K. Barros

Abstract:

We propose a method for discrimination and classification of ovarian with benign, malignant and normal tissue using independent component analysis and neural networks. The method was tested for a proteomic patters set from A database, and radial basis functions neural networks. The best performance was obtained with probabilistic neural networks, resulting I 99% success rate, with 98% of specificity e 100% of sensitivity.

Keywords: Cancer ovarian, Proteomic patterns in serum, independent component analysis and neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1830
491 Data Mining in Medicine Domain Using Decision Trees and Vector Support Machine

Authors: Djamila Benhaddouche, Abdelkader Benyettou

Abstract:

In this paper, we used data mining to extract biomedical knowledge. In general, complex biomedical data collected in studies of populations are treated by statistical methods, although they are robust, they are not sufficient in themselves to harness the potential wealth of data. For that you used in step two learning algorithms: the Decision Trees and Support Vector Machine (SVM). These supervised classification methods are used to make the diagnosis of thyroid disease. In this context, we propose to promote the study and use of symbolic data mining techniques.

Keywords: A classifier, Algorithms decision tree, knowledge extraction, Support Vector Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1869
490 Metamorphism, Formal Grammars and Undecidable Code Mutation

Authors: Eric Filiol

Abstract:

This paper presents a formalisation of the different existing code mutation techniques (polymorphism and metamorphism) by means of formal grammars. While very few theoretical results are known about the detection complexity of viral mutation techniques, we exhaustively address this critical issue by considering the Chomsky classification of formal grammars. This enables us to determine which family of code mutation techniques are likely to be detected or on the contrary are bound to remain undetected. As an illustration we then present, on a formal basis, a proof-of-concept metamorphic mutation engine denoted PB MOT, whose detection has been proven to be undecidable.

Keywords: Polymorphism, Metamorphism, Formal Grammars, Formal Languages, Language Decision, Code Mutation, Word Problem

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2427