Search results for: Component based shape analysis and classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17645

Search results for: Component based shape analysis and classification

17645 Chilean Wines Classification based only on Aroma Information

Authors: Nicolás H. Beltrán, Manuel A. Duarte-Mermoud, Víctor A. Soto, Sebastián A. Salah, and Matías A. Bustos

Abstract:

Results of Chilean wine classification based on the information provided by an electronic nose are reported in this paper. The classification scheme consists of two parts; in the first stage, Principal Component Analysis is used as feature extraction method to reduce the dimensionality of the original information. Then, Radial Basis Functions Neural Networks is used as pattern recognition technique to perform the classification. The objective of this study is to classify different Cabernet Sauvignon, Merlot and Carménère wine samples from different years, valleys and vineyards of Chile.

Keywords: Feature extraction techniques, Pattern recognitiontechniques, Principal component analysis, Radial basis functionsneural networks, Wine classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1501
17644 Principal Component Analysis for the Characterization in the Application of Some Soil Properties

Authors: Kamolchanok Panishkan, Kanokporn Swangjang, Natdhera Sanmanee, Daoroong Sungthong

Abstract:

The objective of this research is to study principal component analysis for classification of 67 soil samples collected from different agricultural areas in the western part of Thailand. Six soil properties were measured on the soil samples and are used as original variables. Principal component analysis is applied to reduce the number of original variables. A model based on the first two principal components accounts for 72.24% of total variance. Score plots of first two principal components were used to map with agricultural areas divided into horticulture, field crops and wetland. The results showed some relationships between soil properties and agricultural areas. PCA was shown to be a useful tool for agricultural areas classification based on soil properties.

Keywords: soil organic matter, soil properties, classification, principal components

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4050
17643 Statistical Wavelet Features, PCA, and SVM Based Approach for EEG Signals Classification

Authors: R. K. Chaurasiya, N. D. Londhe, S. Ghosh

Abstract:

The study of the electrical signals produced by neural activities of human brain is called Electroencephalography. In this paper, we propose an automatic and efficient EEG signal classification approach. The proposed approach is used to classify the EEG signal into two classes: epileptic seizure or not. In the proposed approach, we start with extracting the features by applying Discrete Wavelet Transform (DWT) in order to decompose the EEG signals into sub-bands. These features, extracted from details and approximation coefficients of DWT sub-bands, are used as input to Principal Component Analysis (PCA). The classification is based on reducing the feature dimension using PCA and deriving the supportvectors using Support Vector Machine (SVM). The experimental are performed on real and standard dataset. A very high level of classification accuracy is obtained in the result of classification.

Keywords: Discrete Wavelet Transform, Electroencephalogram, Pattern Recognition, Principal Component Analysis, Support Vector Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3062
17642 Non-negative Principal Component Analysis for Face Recognition

Authors: Zhang Yan, Yu Bin

Abstract:

Principle component analysis is often combined with the state-of-art classification algorithms to recognize human faces. However, principle component analysis can only capture these features contributing to the global characteristics of data because it is a global feature selection algorithm. It misses those features contributing to the local characteristics of data because each principal component only contains some levels of global characteristics of data. In this study, we present a novel face recognition approach using non-negative principal component analysis which is added with the constraint of non-negative to improve data locality and contribute to elucidating latent data structures. Experiments are performed on the Cambridge ORL face database. We demonstrate the strong performances of the algorithm in recognizing human faces in comparison with PCA and NREMF approaches.

Keywords: classification, face recognition, non-negativeprinciple component analysis (NPCA)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1652
17641 An Optimal Feature Subset Selection for Leaf Analysis

Authors: N. Valliammal, S.N. Geethalakshmi

Abstract:

This paper describes an optimal approach for feature subset selection to classify the leaves based on Genetic Algorithm (GA) and Kernel Based Principle Component Analysis (KPCA). Due to high complexity in the selection of the optimal features, the classification has become a critical task to analyse the leaf image data. Initially the shape, texture and colour features are extracted from the leaf images. These extracted features are optimized through the separate functioning of GA and KPCA. This approach performs an intersection operation over the subsets obtained from the optimization process. Finally, the most common matching subset is forwarded to train the Support Vector Machine (SVM). Our experimental results successfully prove that the application of GA and KPCA for feature subset selection using SVM as a classifier is computationally effective and improves the accuracy of the classifier.

Keywords: Optimization, Feature extraction, Feature subset, Classification, GA, KPCA, SVM and Computation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2181
17640 An Optimization Analysis on an Automotive Component with Fatigue Constraint Using HyperWorks Software for Environmental Sustainability

Authors: W. M. Wan Muhamad, E. Sujatmika, M.R. Idris, S.A. Syed Ahmad

Abstract:

A finite element analysis (FEA) computer software HyperWorks is utilized in re-designing an automotive component to reduce its mass. Reduction of components mass contributes towards environmental sustainability by saving world-s valuable metal resources and by reducing carbon emission through improved overall vehicle fuel efficiency. A shape optimization analysis was performed on a rear spindle component. Pre-processing and solving procedures were performed using HyperMesh and RADIOSS respectively. Shape variables were defined using HyperMorph. Then optimization solver OptiStruct was utilized with fatigue life set as a design constraint. Since Stress-Number of Cycle (S-N) theory deals with uni-axial stress, the Signed von Misses stress on the component was used for looking up damage on S-N curve, and Gerber criterion for mean stress corrections. The optimization analysis resulted in mass reduction of 24% of the original mass. The study proved that the adopted approach has high potential use for environmental sustainability.

Keywords: Environmental Sustainability, Shape Optimization, Fatigue, Rear Spindle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4235
17639 Automated Particle Picking based on Correlation Peak Shape Analysis and Iterative Classification

Authors: Hrabe Thomas, Beck Florian, Nickell Stephan

Abstract:

Cryo-electron microscopy (CEM) in combination with single particle analysis (SPA) is a widely used technique for elucidating structural details of macromolecular assemblies at closeto- atomic resolutions. However, development of automated software for SPA processing is still vital since thousands to millions of individual particle images need to be processed. Here, we present our workflow for automated particle picking. Our approach integrates peak shape analysis to the classical correlation and an iterative approach to separate macromolecules and background by classification. This particle selection workflow furthermore provides a robust means for SPA with little user interaction. Processing simulated and experimental data assesses performance of the presented tools.

Keywords: Cryo-electron Microscopy, Single Particle Analysis, Image Processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1626
17638 Sensitive Analysis of the ZF Model for ABC Multi Criteria Inventory Classification

Authors: Makram Ben Jeddou

Abstract:

ABC classification is widely used by managers for inventory control. The classical ABC classification is based on Pareto principle and according to the criterion of the annual use value only. Single criterion classification is often insufficient for a closely inventory control. Multi-criteria inventory classification models have been proposed by researchers in order to consider other important criteria. From these models, we will consider a specific model in order to make a sensitive analysis on the composite score calculated for each item. In fact, this score, based on a normalized average between a good and a bad optimized index, can affect the ABC-item classification. We will focus on items differently assigned to classes and then propose a classification compromise.

Keywords: ABC classification, Multi criteria inventory classification models, ZF-model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2462
17637 Classification of Non Stationary Signals Using Ben Wavelet and Artificial Neural Networks

Authors: Mohammed Benbrahim, Khalid Benjelloun, Aomar Ibenbrahim, Adil Daoudi

Abstract:

The automatic classification of non stationary signals is an important practical goal in several domains. An essential classification task is to allocate the incoming signal to a group associated with the kind of physical phenomena producing it. In this paper, we present a modular system composed by three blocs: 1) Representation, 2) Dimensionality reduction and 3) Classification. The originality of our work consists in the use of a new wavelet called "Ben wavelet" in the representation stage. For the dimensionality reduction, we propose a new algorithm based on the random projection and the principal component analysis.

Keywords: Seismic signals, Ben Wavelet, Dimensionality reduction, Artificial neural networks, Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1394
17636 A Survey of Business Component Identification Methods and Related Techniques

Authors: Zhongjie Wang, Xiaofei Xu, Dechen Zhan

Abstract:

With deep development of software reuse, componentrelated technologies have been widely applied in the development of large-scale complex applications. Component identification (CI) is one of the primary research problems in software reuse, by analyzing domain business models to get a set of business components with high reuse value and good reuse performance to support effective reuse. Based on the concept and classification of CI, its technical stack is briefly discussed from four views, i.e., form of input business models, identification goals, identification strategies, and identification process. Then various CI methods presented in literatures are classified into four types, i.e., domain analysis based methods, cohesion-coupling based clustering methods, CRUD matrix based methods, and other methods, with the comparisons between these methods for their advantages and disadvantages. Additionally, some insufficiencies of study on CI are discussed, and the causes are explained subsequently. Finally, it is concluded with some significantly promising tendency about research on this problem.

Keywords: Business component, component granularity, component identification, reuse performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1924
17635 A New Approach for Classifying Large Number of Mixed Variables

Authors: Hashibah Hamid

Abstract:

The issue of classifying objects into one of predefined groups when the measured variables are mixed with different types of variables has been part of interest among statisticians in many years. Some methods for dealing with such situation have been introduced that include parametric, semi-parametric and nonparametric approaches. This paper attempts to discuss on a problem in classifying a data when the number of measured mixed variables is larger than the size of the sample. A propose idea that integrates a dimensionality reduction technique via principal component analysis and a discriminant function based on the location model is discussed. The study aims in offering practitioners another potential tool in a classification problem that is possible to be considered when the observed variables are mixed and too large.

Keywords: classification, location model, mixed variables, principal component analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1504
17634 Rock Textures Classification Based on Textural and Spectral Features

Authors: Tossaporn Kachanubal, Somkait Udomhunsakul

Abstract:

In this paper, we proposed a method to classify each type of natural rock texture. Our goal is to classify 26 classes of rock textures. First, we extract five features of each class by using principle component analysis combining with the use of applied spatial frequency measurement. Next, the effective node number of neural network was tested. We used the most effective neural network in classification process. The results from this system yield quite high in recognition rate. It is shown that high recognition rate can be achieved in separation of 26 stone classes.

Keywords: Texture classification, SFM, neural network, rock texture classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1951
17633 Shape-Based Image Retrieval Using Shape Matrix

Authors: C. Sheng, Y. Xin

Abstract:

Retrieval image by shape similarity, given a template shape is particularly challenging, owning to the difficulty to derive a similarity measurement that closely conforms to the common perception of similarity by humans. In this paper, a new method for the representation and comparison of shapes is present which is based on the shape matrix and snake model. It is scaling, rotation, translation invariant. And it can retrieve the shape images with some missing or occluded parts. In the method, the deformation spent by the template to match the shape images and the matching degree is used to evaluate the similarity between them.

Keywords: shape representation, shape matching, shape matrix, deformation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1464
17632 Template-Based Object Detection through Partial Shape Matching and Boundary Verification

Authors: Feng Ge, Tiecheng Liu, Song Wang, Joachim Stahl

Abstract:

This paper presents a novel template-based method to detect objects of interest from real images by shape matching. To locate a target object that has a similar shape to a given template boundary, the proposed method integrates three components: contour grouping, partial shape matching, and boundary verification. In the first component, low-level image features, including edges and corners, are grouped into a set of perceptually salient closed contours using an extended ratio-contour algorithm. In the second component, we develop a partial shape matching algorithm to identify the fractions of detected contours that partly match given template boundaries. Specifically, we represent template boundaries and detected contours using landmarks, and apply a greedy algorithm to search the matched landmark subsequences. For each matched fraction between a template and a detected contour, we estimate an affine transform that transforms the whole template into a hypothetic boundary. In the third component, we provide an efficient algorithm based on oriented edge lists to determine the target boundary from the hypothetic boundaries by checking each of them against image edges. We evaluate the proposed method on recognizing and localizing 12 template leaves in a data set of real images with clutter back-grounds, illumination variations, occlusions, and image noises. The experiments demonstrate the high performance of our proposed method1.

Keywords: Object detection, shape matching, contour grouping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2249
17631 An Attribute-Centre Based Decision Tree Classification Algorithm

Authors: Gökhan Silahtaroğlu

Abstract:

Decision tree algorithms have very important place at classification model of data mining. In literature, algorithms use entropy concept or gini index to form the tree. The shape of the classes and their closeness to each other some of the factors that affect the performance of the algorithm. In this paper we introduce a new decision tree algorithm which employs data (attribute) folding method and variation of the class variables over the branches to be created. A comparative performance analysis has been held between the proposed algorithm and C4.5.

Keywords: Classification, decision tree, split, pruning, entropy, gini.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1328
17630 Tongue Diagnosis System Based on PCA and SVM

Authors: Jin-Woong Park, Sun-Kyung Kang, Sung-Tae Jung

Abstract:

In this study, we propose a tongue diagnosis method which detects the tongue from face image and divides the tongue area into six areas, and finally generates tongue coating ratio of each area. To detect the tongue area from face image, we use ASM as one of the active shape models. Detected tongue area is divided into six areas widely used in the Korean traditional medicine and the distribution of tongue coating of the six areas is examined by SVM(Support Vector Machine). For SVM, we use a 3-dimensional vector calculated by PCA(Principal Component Analysis) from a 12-dimentional vector consisting of RGB, HIS, Lab, and Luv. As a result, we detected the tongue area stably using ASM and found that PCA and SVM helped raise the ratio of tongue coating detection.

Keywords: Active Shape Model, Principal Component Analysis, Support Vector Machine, Tongue diagnosis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1823
17629 Finger Vein Recognition using PCA-based Methods

Authors: Sepehr Damavandinejadmonfared, Ali Khalili Mobarakeh, Mohsen Pashna, , Jiangping Gou Sayedmehran Mirsafaie Rizi, Saba Nazari, Shadi Mahmoodi Khaniabadi, Mohamad Ali Bagheri

Abstract:

In this paper a novel algorithm is proposed to merit the accuracy of finger vein recognition. The performances of Principal Component Analysis (PCA), Kernel Principal Component Analysis (KPCA), and Kernel Entropy Component Analysis (KECA) in this algorithm are validated and compared with each other in order to determine which one is the most appropriate one in terms of finger vein recognition.

Keywords: Biometrics, finger vein recognition, PrincipalComponent Analysis (PCA), Kernel Principal Component Analysis(KPCA), Kernel Entropy Component Analysis (KPCA).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2627
17628 Person Identification using Gait by Combined Features of Width and Shape of the Binary Silhouette

Authors: M.K. Bhuyan, Aragala Jagan.

Abstract:

Current image-based individual human recognition methods, such as fingerprints, face, or iris biometric modalities generally require a cooperative subject, views from certain aspects, and physical contact or close proximity. These methods cannot reliably recognize non-cooperating individuals at a distance in the real world under changing environmental conditions. Gait, which concerns recognizing individuals by the way they walk, is a relatively new biometric without these disadvantages. The inherent gait characteristic of an individual makes it irreplaceable and useful in visual surveillance. In this paper, an efficient gait recognition system for human identification by extracting two features namely width vector of the binary silhouette and the MPEG-7-based region-based shape descriptors is proposed. In the proposed method, foreground objects i.e., human and other moving objects are extracted by estimating background information by a Gaussian Mixture Model (GMM) and subsequently, median filtering operation is performed for removing noises in the background subtracted image. A moving target classification algorithm is used to separate human being (i.e., pedestrian) from other foreground objects (viz., vehicles). Shape and boundary information is used in the moving target classification algorithm. Subsequently, width vector of the outer contour of binary silhouette and the MPEG-7 Angular Radial Transform coefficients are taken as the feature vector. Next, the Principal Component Analysis (PCA) is applied to the selected feature vector to reduce its dimensionality. These extracted feature vectors are used to train an Hidden Markov Model (HMM) for identification of some individuals. The proposed system is evaluated using some gait sequences and the experimental results show the efficacy of the proposed algorithm.

Keywords: Gait Recognition, Gaussian Mixture Model, PrincipalComponent Analysis, MPEG-7 Angular Radial Transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1865
17627 Face Localization and Recognition in Varied Expressions and Illumination

Authors: Hui-Yu Huang, Shih-Hang Hsu

Abstract:

In this paper, we propose a robust scheme to work face alignment and recognition under various influences. For face representation, illumination influence and variable expressions are the important factors, especially the accuracy of facial localization and face recognition. In order to solve those of factors, we propose a robust approach to overcome these problems. This approach consists of two phases. One phase is preprocessed for face images by means of the proposed illumination normalization method. The location of facial features can fit more efficient and fast based on the proposed image blending. On the other hand, based on template matching, we further improve the active shape models (called as IASM) to locate the face shape more precise which can gain the recognized rate in the next phase. The other phase is to process feature extraction by using principal component analysis and face recognition by using support vector machine classifiers. The results show that this proposed method can obtain good facial localization and face recognition with varied illumination and local distortion.

Keywords: Gabor filter, improved active shape model (IASM), principal component analysis (PCA), face alignment, face recognition, support vector machine (SVM)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1445
17626 Isolation and Classification of Red Blood Cells in Anemic Microscopic Images

Authors: Jameela Ali Alkrimi, Loay E. George, Azizah Suliman, Abdul Rahim Ahmad, Karim Al-Jashamy

Abstract:

Red blood cells (RBCs) are among the most commonly and intensively studied type of blood cells in cell biology. Anemia is a lack of RBCs is characterized by its level compared to the normal hemoglobin level. In this study, a system based image processing methodology was developed to localize and extract RBCs from microscopic images. Also, the machine learning approach is adopted to classify the localized anemic RBCs images. Several textural and geometrical features are calculated for each extracted RBCs. The training set of features was analyzed using principal component analysis (PCA). With the proposed method, RBCs were isolated in 4.3secondsfrom an image containing 18 to 27 cells. The reasons behind using PCA are its low computation complexity and suitability to find the most discriminating features which can lead to accurate classification decisions. Our classifier algorithm yielded accuracy rates of 100%, 99.99%, and 96.50% for K-nearest neighbor (K-NN) algorithm, support vector machine (SVM), and neural network RBFNN, respectively. Classification was evaluated in highly sensitivity, specificity, and kappa statistical parameters. In conclusion, the classification results were obtained within short time period, and the results became better when PCA was used.

Keywords: Red blood cells, pre-processing image algorithms, classification algorithms, principal component analysis PCA, confusion matrix, kappa statistical parameters, ROC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3151
17625 Variance Based Component Analysis for Texture Segmentation

Authors: Zeinab Ghasemi, S. Amirhassan Monadjemi, Abbas Vafaei

Abstract:

This paper presents a comparative analysis of a new unsupervised PCA-based technique for steel plates texture segmentation towards defect detection. The proposed scheme called Variance Based Component Analysis or VBCA employs PCA for feature extraction, applies a feature reduction algorithm based on variance of eigenpictures and classifies the pixels as defective and normal. While the classic PCA uses a clusterer like Kmeans for pixel clustering, VBCA employs thresholding and some post processing operations to label pixels as defective and normal. The experimental results show that proposed algorithm called VBCA is 12.46% more accurate and 78.85% faster than the classic PCA.

Keywords: Principal Component Analysis; Variance Based Component Analysis; Defect Detection; Texture Segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1918
17624 Review and Comparison of Associative Classification Data Mining Approaches

Authors: Suzan Wedyan

Abstract:

Associative classification (AC) is a data mining approach that combines association rule and classification to build classification models (classifiers). AC has attracted a significant attention from several researchers mainly because it derives accurate classifiers that contain simple yet effective rules. In the last decade, a number of associative classification algorithms have been proposed such as Classification based Association (CBA), Classification based on Multiple Association Rules (CMAR), Class based Associative Classification (CACA), and Classification based on Predicted Association Rule (CPAR). This paper surveys major AC algorithms and compares the steps and methods performed in each algorithm including: rule learning, rule sorting, rule pruning, classifier building, and class prediction.

Keywords: Associative Classification, Classification, Data Mining, Learning, Rule Ranking, Rule Pruning, Prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6565
17623 Diagnosis of Ovarian Cancer with Proteomic Patterns in Serum using Independent Component Analysis and Neural Networks

Authors: Simone C. F. Neves, Lúcio F. A. Campos, Ewaldo Santana, Ginalber L. O. Serra, Allan K. Barros

Abstract:

We propose a method for discrimination and classification of ovarian with benign, malignant and normal tissue using independent component analysis and neural networks. The method was tested for a proteomic patters set from A database, and radial basis functions neural networks. The best performance was obtained with probabilistic neural networks, resulting I 99% success rate, with 98% of specificity e 100% of sensitivity.

Keywords: Cancer ovarian, Proteomic patterns in serum, independent component analysis and neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1781
17622 Multi-Label Hierarchical Classification for Protein Function Prediction

Authors: Helyane B. Borges, Julio Cesar Nievola

Abstract:

Hierarchical classification is a problem with applications in many areas as protein function prediction where the dates are hierarchically structured. Therefore, it is necessary the development of algorithms able to induce hierarchical classification models. This paper presents experimenters using the algorithm for hierarchical classification called Multi-label Hierarchical Classification using a Competitive Neural Network (MHC-CNN). It was tested in ten datasets the Gene Ontology (GO) Cellular Component Domain. The results are compared with the Clus-HMC and Clus-HSC using the hF-Measure.

Keywords: Hierarchical Classification, Competitive Neural Network, Global Classifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2336
17621 Unsupervised Texture Classification and Segmentation

Authors: V.P.Subramanyam Rallabandi, S.K.Sett

Abstract:

An unsupervised classification algorithm is derived by modeling observed data as a mixture of several mutually exclusive classes that are each described by linear combinations of independent non-Gaussian densities. The algorithm estimates the data density in each class by using parametric nonlinear functions that fit to the non-Gaussian structure of the data. This improves classification accuracy compared with standard Gaussian mixture models. When applied to textures, the algorithm can learn basis functions for images that capture the statistically significant structure intrinsic in the images. We apply this technique to the problem of unsupervised texture classification and segmentation.

Keywords: Gaussian Mixture Model, Independent Component Analysis, Segmentation, Unsupervised Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1546
17620 Unified Method to Block Pornographic Images in Websites

Authors: Sakthi Priya Balaji R., Vijayendar G.

Abstract:

This paper proposes a technique to block adult images displayed in websites. The filter is designed so as to perform even in exceptional cases such as, where face detection is not possible or improper face visibility. This is achieved by using an alternative phase to extract the MFC (Most Frequent Color) from the Human Body regions estimated using a biometric of anthropometric distances between fixed rigidly connected body locations. The logical results generated can be protected from overriding by a firewall or intrusion, by encrypting the result in a SSH data packet.

Keywords: Face detection, characteristics extraction andclassification, Component based shape analysis and classification, open source SSH V2 protocol

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1340
17619 Local Curvelet Based Classification Using Linear Discriminant Analysis for Face Recognition

Authors: Mohammed Rziza, Mohamed El Aroussi, Mohammed El Hassouni, Sanaa Ghouzali, Driss Aboutajdine

Abstract:

In this paper, an efficient local appearance feature extraction method based the multi-resolution Curvelet transform is proposed in order to further enhance the performance of the well known Linear Discriminant Analysis(LDA) method when applied to face recognition. Each face is described by a subset of band filtered images containing block-based Curvelet coefficients. These coefficients characterize the face texture and a set of simple statistical measures allows us to form compact and meaningful feature vectors. The proposed method is compared with some related feature extraction methods such as Principal component analysis (PCA), as well as Linear Discriminant Analysis LDA, and independent component Analysis (ICA). Two different muti-resolution transforms, Wavelet (DWT) and Contourlet, were also compared against the Block Based Curvelet-LDA algorithm. Experimental results on ORL, YALE and FERET face databases convince us that the proposed method provides a better representation of the class information and obtains much higher recognition accuracies.

Keywords: Curvelet, Linear Discriminant Analysis (LDA) , Contourlet, Discreet Wavelet Transform, DWT, Block-based analysis, face recognition (FR).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1759
17618 A Multiresolution Approach for Noised Texture Classification based on the Co-occurrence Matrix and First Order Statistics

Authors: M. Ben Othmen, M. Sayadi, F. Fnaiech

Abstract:

Wavelet transform provides several important characteristics which can be used in a texture analysis and classification. In this work, an efficient texture classification method, which combines concepts from wavelet and co-occurrence matrices, is presented. An Euclidian distance classifier is used to evaluate the various methods of classification. A comparative study is essential to determine the ideal method. Using this conjecture, we developed a novel feature set for texture classification and demonstrate its effectiveness

Keywords: Classification, Wavelet, Co-occurrence, Euclidian Distance, Classifier, Texture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1434
17617 Wear and Friction Analysis of Sintered Metal Powder Self Lubricating Bush Bearing

Authors: J. K. Khare, Abhay Kumar Sharma, Ajay Tiwari, Amol A. Talankar

Abstract:

Powder metallurgy (P/M) is the only economic way to produce porous parts/products. P/M can produce near net shape parts hence reduces wastage of raw material and energy, avoids various machining operations. The most vital use of P/M is in production of metallic filters and self lubricating bush bearings and siding surfaces. The porosity of the part can be controlled by varying compaction pressure, sintering temperature and composition of metal powder mix. The present work is aimed for experimental analysis of friction and wear properties of self lubricating copper and tin bush bearing. Experimental results confirm that wear rate of sintered component is lesser for components having 10% tin by weight percentage. Wear rate increases for high tin percentage (experimented for 20% tin and 30% tin) at same sintering temperature. Experimental results also confirms that wear rate of sintered component is also dependent on sintering temperature, soaking period, composition of the preform, compacting pressure, powder particle shape and size. Interfacial friction between die and punch, between inter powder particles, between die face and powder particle depends on compaction pressure, powder particle size and shape, size and shape of component which decides size & shape of die & punch, material of die & punch and material of powder particles.

Keywords: Interfacial friction, porous bronze bearing, sintering temperature, wear rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3929
17616 Multi-View Neural Network Based Gait Recognition

Authors: Saeid Fazli, Hadis Askarifar, Maryam Sheikh Shoaie

Abstract:

Human identification at a distance has recently gained growing interest from computer vision researchers. Gait recognition aims essentially to address this problem by identifying people based on the way they walk [1]. Gait recognition has 3 steps. The first step is preprocessing, the second step is feature extraction and the third one is classification. This paper focuses on the classification step that is essential to increase the CCR (Correct Classification Rate). Multilayer Perceptron (MLP) is used in this work. Neural Networks imitate the human brain to perform intelligent tasks [3].They can represent complicated relationships between input and output and acquire knowledge about these relationships directly from the data [2]. In this paper we apply MLP NN for 11 views in our database and compare the CCR values for these views. Experiments are performed with the NLPR databases, and the effectiveness of the proposed method for gait recognition is demonstrated.

Keywords: Human motion analysis, biometrics, gait recognition, principal component analysis, MLP neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2059