Search results for: Genetic disease
247 Web–Based Tools and Databases for Micro-RNA Analysis: A Review
Authors: Sitansu Kumar Verma, Soni Yadav, Jitendra Singh, Shraddha, Ajay Kumar
Abstract:
MicroRNAs (miRNAs), a class of approximately 22 nucleotide long non coding RNAs which play critical role in different biological processes. The mature microRNA is usually 19–27 nucleotides long and is derived from a bigger precursor that folds into a flawed stem-loop structure. Mature micro RNAs are involved in many cellular processes that encompass development, proliferation, stress response, apoptosis, and fat metabolism by gene regulation. Resent finding reveals that certain viruses encode their own miRNA that processed by cellular RNAi machinery. In recent research indicate that cellular microRNA can target the genetic material of invading viruses. Cellular microRNA can be used in the virus life cycle; either to up regulate or down regulate viral gene expression Computational tools use in miRNA target prediction has been changing drastically in recent years. Many of the methods have been made available on the web and can be used by experimental researcher and scientist without expert knowledge of bioinformatics. With the development and ease of use of genomic technologies and computational tools in the field of microRNA biology has superior tremendously over the previous decade. This review attempts to give an overview over the genome wide approaches that have allow for the discovery of new miRNAs and development of new miRNA target prediction tools and databases.
Keywords: MicroRNAs, computational tools, gene regulation, databases, RNAi.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3184246 Nuts Composition and their Health Benefits
Authors: S. Azadmard-Damirchi, Sh. Emami, J. Hesari, S.H. Peighambardoust, M. Nemati
Abstract:
Nuts are part of a healthy diet such as Mediterranean diet. Benefits of nuts in reducing the risk of heart disease has been reasonably attributed to their composition of vitamins, minerals, unsaturated fatty acids, fiber and phytochemicals such as polyphenols, tocopherols, squalene and phytosterols. More than 75% of total fatty acids of nuts are unsaturated. α- tocopherol is the main tocopherol isomer present in most of the nuts. While walnuts, Brazil nut, cashew nut, peanut, pecan and pistachio nuts are rich in γ- tocopherol. β- sitosterol is dominant sterol in nuts. Pistachio and pine nut have the highest total phytosterol and Brazil nut and English walnut the lowest. Walnuts also contain large amount of phenolic compounds compared with other nuts. Nuts are rich in compounds with antioxidant properties and their consumption can offer preventing from incidence of many diseases including cardiovascular.
Keywords: Nuts, phenols, phytosterols, squalene, vitamin E.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5655245 A Spanning Tree for Enhanced Cluster Based Routing in Wireless Sensor Network
Authors: M. Saravanan, M. Madheswaran
Abstract:
Wireless Sensor Network (WSN) clustering architecture enables features like network scalability, communication overhead reduction, and fault tolerance. After clustering, aggregated data is transferred to data sink and reducing unnecessary, redundant data transfer. It reduces nodes transmitting, and so saves energy consumption. Also, it allows scalability for many nodes, reduces communication overhead, and allows efficient use of WSN resources. Clustering based routing methods manage network energy consumption efficiently. Building spanning trees for data collection rooted at a sink node is a fundamental data aggregation method in sensor networks. The problem of determining Cluster Head (CH) optimal number is an NP-Hard problem. In this paper, we combine cluster based routing features for cluster formation and CH selection and use Minimum Spanning Tree (MST) for intra-cluster communication. The proposed method is based on optimizing MST using Simulated Annealing (SA). In this work, normalized values of mobility, delay, and remaining energy are considered for finding optimal MST. Simulation results demonstrate the effectiveness of the proposed method in improving the packet delivery ratio and reducing the end to end delay.
Keywords: Wireless sensor network, clustering, minimum spanning tree, genetic algorithm, low energy adaptive clustering hierarchy, simulated annealing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1789244 Relationship between Behavioral Inhibition/Approach System and Perceived Stress: With White Blood Cell in Multiple Sclerosis Patients
Authors: Amin Alvani
Abstract:
Multiple sclerosis (MS) is a chronic, often disabling disease in which the immune system attacks the myelin sheath of neurons in the central nervous system. The purpose of this study was to explore the correlation between the Behavioral Inhibition/Approach System (BIS-BAS) and Perceived Stress (PS), while controlling for White Blood Cell (WBC) count. 60 MS patients (36.7% male, 63.3% female; aged 15-65 years) participated in this study. They completed a demographic questionnaire, underwent a complete blood cell (CBC) test, filled out the Behavioral Activation and Behavioral Inhibition Scale (BIS-BAS), and responded to the Perceived Stress Questionnaire (PSS-14). The results indicated a significant relationship between the BAS-Reward Responsiveness (BAS-RR) subscale and PS, particularly in a subset of MS patients with increased WBC counts.
Keywords: Behavioral inhibition/approach system, multiple sclerosis, perceived stress, white blood cell.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 65243 Trabecular Bone Radiograph Characterization Using Fractal, Multifractal Analysis and SVM Classifier
Authors: I. Slim, H. Akkari, A. Ben Abdallah, I. Bhouri, M. Hedi Bedoui
Abstract:
Osteoporosis is a common disease characterized by low bone mass and deterioration of micro-architectural bone tissue, which provokes an increased risk of fracture. This work treats the texture characterization of trabecular bone radiographs. The aim was to analyze according to clinical research a group of 174 subjects: 87 osteoporotic patients (OP) with various bone fracture types and 87 control cases (CC). To characterize osteoporosis, Fractal and MultiFractal (MF) methods were applied to images for features (attributes) extraction. In order to improve the results, a new method of MF spectrum based on the q-stucture function calculation was proposed and a combination of Fractal and MF attributes was used. The Support Vector Machines (SVM) was applied as a classifier to distinguish between OP patients and CC subjects. The features fusion (fractal and MF) allowed a good discrimination between the two groups with an accuracy rate of 96.22%.Keywords: Fractal, micro-architecture analysis, multifractal, SVM, osteoporosis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 989242 Evaluation of the Immunoregulatory Activity of rFip-gts Purified from Baculovirus-infected Insect Cells
Authors: Tzong Yuan Wu, Sheng Kuo Hsieh, Tzyy Rong Jinn
Abstract:
Fip-gts, an immunomodulatory protein purified from Ganoderma tsugae, has been reported to possess therapeutic effects in the treatment of cancer and autoimmune disease. For medicinal application, a recombinant Fip-gts was successfully expressed and purified in Sf21 insect cells by our previously work. It is important to evaluate the immunomodulatory activity of the rFip-gts. To assess the immunomodulatory potential of rFip-gts, the T lymphocytes of murine splenocytes were used in the present study. Results revealed that rFip-gts induced cellular aggregation formation. Additionally, the expression of IL-2 and IFN-r were up-regulated after the treatment of rFip-gts, and a corresponding increased production of IL-2 and IFN-r in a dose-dependent manner. The results showed that rFip-gts has an immunomodulatory activity in inducing Th1 lymphocytes from murine splenocytes released IL-2 and IFN-γ, thus suggest that rFip-gts may have therapeutic potential in vivo as an immune modulator.
Keywords: Fungal immunomodulatory protein, Ganodermatsugae, Interleukin 2, Interferon γ, Lingzhi.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1840241 An ANN-Based Predictive Model for Diagnosis and Forecasting of Hypertension
Authors: O. O. Obe, V. Balanica, E. Neagoe
Abstract:
The effects of hypertension are often lethal thus its early detection and prevention is very important for everybody. In this paper, a neural network (NN) model was developed and trained based on a dataset of hypertension causative parameters in order to forecast the likelihood of occurrence of hypertension in patients. Our research goal was to analyze the potential of the presented NN to predict, for a period of time, the risk of hypertension or the risk of developing this disease for patients that are or not currently hypertensive. The results of the analysis for a given patient can support doctors in taking pro-active measures for averting the occurrence of hypertension such as recommendations regarding the patient behavior in order to lower his hypertension risk. Moreover, the paper envisages a set of three example scenarios in order to determine the age when the patient becomes hypertensive, i.e. determine the threshold for hypertensive age, to analyze what happens if the threshold hypertensive age is set to a certain age and the weight of the patient if being varied, and, to set the ideal weight for the patient and analyze what happens with the threshold of hypertensive age.
Keywords: Neural Network, hypertension, data set, training set, supervised learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1660240 The Lymphocytes Number in the Blood of Kwashiorkor Rat Model Induced by Oral Immunization with 38-kDa Mycobacterium tuberculosis Protein
Authors: Novi Khila Firani, Elisa Nesdyaningtyas
Abstract:
Kwashiorkor is one of nutritional problem in Indonesia, which lead to decrease immune system. This condition causes susceptibility to infectious disease, especially tuberculosis. Development of new tuberculosis vaccine will be an important strategy to eliminate tuberculosis in kwashiorkor. Previous research showed that 38-kDa Mycobacterium tuberculosis protein is one of the potent immunogen. However, the role of oral immunization with 38- kDa Mycobacterium tuberculosis protein to the number of lymphocytes in the rat model of kwashiorkor is still unknown. We used kwashiorkor rat model groups with 4% and 2% low protein diet. Oral immunization with 38-kDa Mycobacterium tuberculosis protein given with 2 booster every week. The lymphocytes number were measured by flowcytometry. There was no significant difference between the number of lymphocytes in the normal rat group and the kwashiorkor rat groups. It may reveal the role of 38-kDa Mycobacterium tuberculosis protein as a potent immunogen that can increase the lymphocytes number from kwashiorkor rat model same as normal rat.Keywords: kwashiorkor rat, lymphocytes, 38-kDa Mycobacterium tuberculosis protein
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2509239 Cloning and Functional Characterization of Promoter Elements of the D Hordein Gene from the Barley (Hordeum vulgare L.) by Bioinformatic Tools
Authors: Kobra Nalbandi, Bahram Baghban Kohnehrouz, Khalil Alami Saeed
Abstract:
The low level of foreign genes expression in transgenic plants is a key factor that limits plant genetic engineering. Because of the critical regulatory activity of the promoters on gene transcription, they are studied extensively to improve the efficiency of the plant transgenic system. The strong constitutive promoters, such as CaMV 35S promoter and Ubiqutin 1 maize are usually used in plant biotechnology research. However the expression level of the foreign genes in all tissues is often undesirable. But using a strong seed-specific promoter to limit gene expression in the seed solves such problems. The purpose of this study is to isolate one of the seed specific promoters of Hordeum vulgare. So one of the common varieties of Hordeum vulgare in Iran was selected and their genomes extracted then the D-Hordein promoter amplified using the specific designed primers. Then the amplified fragment of the insert cloned in an appropriate vector and then transformed to E. coli. At last for the final admission of accuracy the cloned fragments sent for sequencing. Sequencing analysis showed that the cloned fragment DHPcontained motifs; like TATA box, CAAT-box, CCGTCC-box, AMYBOX1 and E-box etc., which constituted the seed-specific promoter activity. The results were compared with sequences existing in data banks. D-Hordein promoters of Alger has 99% similarity at 100 % coverage. The results also showed that D-Hordein promoter of barley and HMW promoter of wheat are too similar.
Keywords: Barley, Seed specific promoter, Hordein.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2641238 Resistance Training as a Powerful Tool in the Prevention and Treatment of Cardiovascular Diseases
Authors: I. Struhár, L. Dovrtělová, M. Kumstát
Abstract:
Regular exercise promotes reduction in blood pressure, reduction in body weight and it also helps to increase in insulin sensitivity. Participation in physical activity should always be linked to medical screening which can reveal serious medical problems. One of them is high blood pressure. Hypertension is risk factor for one billion people worldwide and the highest prevalence is found in Africa. Another component of hypertension is that people who suffer from hypertension have no symptoms. It is estimated that reduction of 3mm Hg in Systolic Blood Pressure decreases cardiac morbidity at least 5%. The most of the guidelines suggest aerobic exercise in a prevention of cardiovascular diseases. On the other hand, it is important to emphasize the impact of resistance training. Even, it was found higher effect for reduction on the level of systolic blood pressure than aerobic exercise.
Keywords: Coronary artery disease, physical activity, prevention, resistance training.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1971237 A Case Study on Optimization of Contractor’s Financing through Allocation of Subcontractors
Authors: Helen S. Ghali, Engy Serag, A. Samer Ezeldin
Abstract:
In many countries, the construction industry relies heavily on outsourcing models in executing their projects and expanding their businesses to fit in the diverse market. Such extensive integration of subcontractors is becoming an influential factor in contractor’s cash flow management. Accordingly, subcontractors’ financial terms are important phenomena and pivotal components for the well-being of the contractor’s cash flow. The aim of this research is to study the contractor’s cash flow with respect to the owner and subcontractor’s payment management plans, considering variable advance payment, payment frequency, and lag and retention policies. The model is developed to provide contractors with a decision support tool that can assist in selecting the optimum subcontracting plan to minimize the contractor’s financing limits and optimize the profit values. The model is built using Microsoft Excel VBA coding, and the genetic algorithm is utilized as the optimization tool. Three objective functions are investigated, which are minimizing the highest negative overdraft value, minimizing the net present worth of overdraft, and maximizing the project net profit. The model is validated on a full-scale project which includes both self-performed and subcontracted work packages. The results show potential outputs in optimizing the contractor’s negative cash flow values and, in the meantime, assisting contractors in selecting suitable subcontractors to achieve the objective function.
Keywords: Cash flow optimization, payment plan, procurement management, subcontracting plan.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 210236 Preserved Relative Differences between Regions of Different Thermal Scans
Authors: Tahir Majeed, Michael Handschuh, René Meier
Abstract:
Rheumatoid Arthritis patients have swelling and pain in joints of the hand. The regions where the patient feels pain also show increased body temperature. Thermal cameras can be used to detect the rise in temperature of the affected regions. To monitor the progression of Rheumatoid Arthritis, patients must visit the clinic regularly for scanning and examination. After scanning and evaluation, the dosage of the medicine is regulated accordingly. To monitor the disease progression over time, the correlation of the images between different visits must be established. It has been observed that the thermal measurements do not remain the same over time, even within a single scanning, when low-cost thermal cameras are used. In some situations, temperatures can vary as much as 2◦C within the same scanning sequence. In this paper, it has been shown that although the absolute temperature varies over time, the relative difference between different regions remains similar. Results have been computed over four scanning sequences and are presented.
Keywords: Relative thermal difference, rheumatoid arthritis, thermal imaging, thermal sensors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 513235 Exploring Dimensionality, Systematic Mutations and Number of Contacts in Simple HP ab-initio Protein Folding Using a Blackboard-based Agent Platform
Authors: Hiram I. Beltrán, Arturo Rojo-Domínguez, Máximo Eduardo Sánchez Gutiérrez, Pedro Pablo González Pérez
Abstract:
A computational platform is presented in this contribution. It has been designed as a virtual laboratory to be used for exploring optimization algorithms in biological problems. This platform is built on a blackboard-based agent architecture. As a test case, the version of the platform presented here is devoted to the study of protein folding, initially with a bead-like description of the chain and with the widely used model of hydrophobic and polar residues (HP model). Some details of the platform design are presented along with its capabilities and also are revised some explorations of the protein folding problems with different types of discrete space. It is also shown the capability of the platform to incorporate specific tools for the structural analysis of the runs in order to understand and improve the optimization process. Accordingly, the results obtained demonstrate that the ensemble of computational tools into a single platform is worthwhile by itself, since experiments developed on it can be designed to fulfill different levels of information in a self-consistent fashion. By now, it is being explored how an experiment design can be useful to create a computational agent to be included within the platform. These inclusions of designed agents –or software pieces– are useful for the better accomplishment of the tasks to be developed by the platform. Clearly, while the number of agents increases the new version of the virtual laboratory thus enhances in robustness and functionality.Keywords: genetic algorithms, multi-agent systems, bioinformatics, optimization, protein folding, structural biology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1901234 Segmental and Subsegmental Lung Vessel Segmentation in CTA Images
Authors: H. Özkan
Abstract:
In this paper, a novel and fast algorithm for segmental and subsegmental lung vessel segmentation is introduced using Computed Tomography Angiography images. This process is quite important especially at the detection of pulmonary embolism, lung nodule, and interstitial lung disease. The applied method has been realized at five steps. At the first step, lung segmentation is achieved. At the second one, images are threshold and differences between the images are detected. At the third one, left and right lungs are gathered with the differences which are attained in the second step and Exact Lung Image (ELI) is achieved. At the fourth one, image, which is threshold for vessel, is gathered with the ELI. Lastly, identifying and segmentation of segmental and subsegmental lung vessel have been carried out thanks to image which is obtained in the fourth step. The performance of the applied method is found quite well for radiologists and it gives enough results to the surgeries medically.Keywords: Computed tomography angiography (CTA), Computer aided detection (CAD), Lung segmentation, Lung vessel segmentation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2180233 Effect of the Seasonal Variation in the Extrinsic Incubation Period on the Long Term Behavior of the Dengue Hemorrhagic Fever Epidemic
Authors: Puntani Pongsumpun, I-Ming Tang
Abstract:
The incidences of dengue hemorrhagic disease (DHF) over the long term exhibit a seasonal behavior. It has been hypothesized that these behaviors are due to the seasonal climate changes which in turn induce a seasonal variation in the incubation period of the virus while it is developing the mosquito. The standard dynamic analysis is applied for analysis the Susceptible-Exposed- Infectious-Recovered (SEIR) model which includes an annual variation in the length of the extrinsic incubation period (EIP). The presence of both asymptomatic and symptomatic infections is allowed in the present model. We found that dynamic behavior of the endemic state changes as the influence of the seasonal variation of the EIP becomes stronger. As the influence is further increased, the trajectory exhibits sustained oscillations when it leaves the chaotic region.Keywords: Chaotic behavior, dengue hemorrhagic fever, extrinsic incubation period, SEIR model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1764232 Fungal Disinfection by Nanofiltration in Tomato Soilless Culture
Authors: R. Amooaghaie
Abstract:
Principally, plants grown in soilless culture may be attacked by the same pests and diseases as cultivated traditionally in soil. The most destructive phytopathogens are fungi, such as Phythium, Phytophthora and Fusarium, followed by viruses, bacteria and nematodes. We investigated effect of carbon nanotube filters on disease management of soilless culture. Tomato seedlings transplant in plastic pots filled with a soilless media of vermiculite. The crop irrigated and fertilized using a hydroponic nutrient solution. We used carbon nanotube filters for nutrient solution disinfection. Our results show that carbon nanotube filtration significantly reduces pathogens on tomato plants. Fungal elimination (Fusarium oxysporum and Pythium spp.) was usually successful at about 96 to 99.9% all over the cultural season. It is seem that in tomato soilless culture, nanofiltration constitutes a reliable method that allows control of the development of diseases caused by pathogenic fungiKeywords: Fusarium oxysporum, Nanofilteration, Pythium spp., Soilless culture, Tomato
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1996231 Prediction of the Epileptic Events 'Epileptic Seizures' by Neural Networks and Expert Systems
Authors: Kifah Tout, Nisrine Sinno, Mohamad Mikati
Abstract:
Many studies have focused on the nonlinear analysis of electroencephalography (EEG) mainly for the characterization of epileptic brain states. It is assumed that at least two states of the epileptic brain are possible: the interictal state characterized by a normal apparently random, steady-state EEG ongoing activity; and the ictal state that is characterized by paroxysmal occurrence of synchronous oscillations and is generally called in neurology, a seizure. The spatial and temporal dynamics of the epileptogenic process is still not clear completely especially the most challenging aspects of epileptology which is the anticipation of the seizure. Despite all the efforts we still don-t know how and when and why the seizure occurs. However actual studies bring strong evidence that the interictal-ictal state transition is not an abrupt phenomena. Findings also indicate that it is possible to detect a preseizure phase. Our approach is to use the neural network tool to detect interictal states and to predict from those states the upcoming seizure ( ictal state). Analysis of the EEG signal based on neural networks is used for the classification of EEG as either seizure or non-seizure. By applying prediction methods it will be possible to predict the upcoming seizure from non-seizure EEG. We will study the patients admitted to the epilepsy monitoring unit for the purpose of recording their seizures. Preictal, ictal, and post ictal EEG recordings are available on such patients for analysis The system will be induced by taking a body of samples then validate it using another. Distinct from the two first ones a third body of samples is taken to test the network for the achievement of optimum prediction. Several methods will be tried 'Backpropagation ANN' and 'RBF'.Keywords: Artificial neural network (ANN), automatic prediction, epileptic seizures analysis, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1541230 Gene Selection Guided by Feature Interdependence
Authors: Hung-Ming Lai, Andreas Albrecht, Kathleen Steinhöfel
Abstract:
Cancers could normally be marked by a number of differentially expressed genes which show enormous potential as biomarkers for a certain disease. Recent years, cancer classification based on the investigation of gene expression profiles derived by high-throughput microarrays has widely been used. The selection of discriminative genes is, therefore, an essential preprocess step in carcinogenesis studies. In this paper, we have proposed a novel gene selector using information-theoretic measures for biological discovery. This multivariate filter is a four-stage framework through the analyses of feature relevance, feature interdependence, feature redundancy-dependence and subset rankings, and having been examined on the colon cancer data set. Our experimental result show that the proposed method outperformed other information theorem based filters in all aspect of classification errors and classification performance.
Keywords: Colon cancer, feature interdependence, feature subset selection, gene selection, microarray data analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2145229 A Growing Natural Gas Approach for Evaluating Quality of Software Modules
Authors: Parvinder S. Sandhu, Sandeep Khimta, Kiranpreet Kaur
Abstract:
The prediction of Software quality during development life cycle of software project helps the development organization to make efficient use of available resource to produce the product of highest quality. “Whether a module is faulty or not" approach can be used to predict quality of a software module. There are numbers of software quality prediction models described in the literature based upon genetic algorithms, artificial neural network and other data mining algorithms. One of the promising aspects for quality prediction is based on clustering techniques. Most quality prediction models that are based on clustering techniques make use of K-means, Mixture-of-Guassians, Self-Organizing Map, Neural Gas and fuzzy K-means algorithm for prediction. In all these techniques a predefined structure is required that is number of neurons or clusters should be known before we start clustering process. But in case of Growing Neural Gas there is no need of predetermining the quantity of neurons and the topology of the structure to be used and it starts with a minimal neurons structure that is incremented during training until it reaches a maximum number user defined limits for clusters. Hence, in this work we have used Growing Neural Gas as underlying cluster algorithm that produces the initial set of labeled cluster from training data set and thereafter this set of clusters is used to predict the quality of test data set of software modules. The best testing results shows 80% accuracy in evaluating the quality of software modules. Hence, the proposed technique can be used by programmers in evaluating the quality of modules during software development.
Keywords: Growing Neural Gas, data clustering, fault prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1866228 Convective Hot Air Drying of Different Varieties of Blanched Sweet Potato Slices
Authors: M. O. Oke, T. S. Workneh
Abstract:
Drying behavior of blanched sweet potato in a cabinet dryer using different five air temperatures (40-80°C) and ten sweet potato varieties sliced to 5mm thickness were investigated. The drying data were fitted to eight models. The Modified Henderson and Pabis model gave the best fit to the experimental moisture ratio data obtained during the drying of all the varieties while Newton (Lewis) and Wang and Singh models gave the least fit. The values of Deff obtained for Bophelo variety (1.27 x 10-9 to 1.77 x 10-9 m2/s) was the least while that of S191 (1.93 x 10-9 to 2.47 x 10-9 m2/s) was the highest which indicates that moisture diffusivity in sweet potato is affected by the genetic factor. Activation energy values ranged from 0.27-6.54 kJ/mol. The lower activation energy indicates that drying of sweet potato slices requires less energy and is hence a cost and energy saving method. The drying behavior of blanched sweet potato was investigated in a cabinet dryer. Drying time decreased considerably with increase in hot air temperature. Out of the eight models fitted, the Modified Henderson and Pabis model gave the best fit to the experimental moisture ratio data on all the varieties while Newton, Wang and Singh models gave the least. The lower activation energy (0.27 - 6.54 kJ/mol) obtained indicates that drying of sweet potato slices requires less energy and is hence a cost and energy saving method.
Keywords: Sweet Potato Slice, Drying Models, Moisture Ratio, Moisture Diffusivity, Activation Energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3007227 Computer Countenanced Diagnosis of Skin Nodule Detection and Histogram Augmentation: Extracting System for Skin Cancer
Authors: S. Zith Dey Babu, S. Kour, S. Verma, C. Verma, V. Pathania, A. Agrawal, V. Chaudhary, A. Manoj Puthur, R. Goyal, A. Pal, T. Danti Dey, A. Kumar, K. Wadhwa, O. Ved
Abstract:
Background: Skin cancer is now is the buzzing button in the field of medical science. The cyst's pandemic is drastically calibrating the body and well-being of the global village. Methods: The extracted image of the skin tumor cannot be used in one way for diagnosis. The stored image contains anarchies like the center. This approach will locate the forepart of an extracted appearance of skin. Partitioning image models has been presented to sort out the disturbance in the picture. Results: After completing partitioning, feature extraction has been formed by using genetic algorithm and finally, classification can be performed between the trained and test data to evaluate a large scale of an image that helps the doctors for the right prediction. To bring the improvisation of the existing system, we have set our objectives with an analysis. The efficiency of the natural selection process and the enriching histogram is essential in that respect. To reduce the false-positive rate or output, GA is performed with its accuracy. Conclusions: The objective of this task is to bring improvisation of effectiveness. GA is accomplishing its task with perfection to bring down the invalid-positive rate or outcome. The paper's mergeable portion conflicts with the composition of deep learning and medical image processing, which provides superior accuracy. Proportional types of handling create the reusability without any errors.
Keywords: Computer-aided system, detection, image segmentation, morphology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 546226 A Strategy for Scaling-Up Vitamin A Supplementation in a Remote Rural Setting
Authors: Wisdom G. Dube, Talent Makoni, Tasiana K. Nyadzayo, Namukolo M. Covic
Abstract:
Vitamin A deficiency is a public health problem in Zimbabwe. Addressing vitamin A deficiency has the potential of enhancing resistance to disease and reducing mortality especially in children less than 5 years. We implemented and adapted vitamin A outreach supplementation strategy within the National Immunization Days and Extended Programme of Immunization in a rural district in Zimbabwe. Despite usual operational challenges faced this approach enabled the district to increase delivery of supplementation coverage. This paper describes the outreach strategy that was implemented in the remote rural district. The strategy covered 63 outreach sites with 2 sites being covered per day and visited once per month for the whole year. Coverage reached 71% in an area of previous coverage rates of around less than 50%. We recommend further exploration of this strategy by others working in similar circumstances. This strategy can be a potential way for use by Scaling-Up-Nutrition member states.Keywords: Coverage, Strategy, Supplementation, Vitamin A.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1668225 Automatic Detection and Classification of Diabetic Retinopathy Using Retinal Fundus Images
Authors: A. Biran, P. Sobhe Bidari, A. Almazroe V. Lakshminarayanan, K. Raahemifar
Abstract:
Diabetic Retinopathy (DR) is a severe retinal disease which is caused by diabetes mellitus. It leads to blindness when it progress to proliferative level. Early indications of DR are the appearance of microaneurysms, hemorrhages and hard exudates. In this paper, an automatic algorithm for detection of DR has been proposed. The algorithm is based on combination of several image processing techniques including Circular Hough Transform (CHT), Contrast Limited Adaptive Histogram Equalization (CLAHE), Gabor filter and thresholding. Also, Support Vector Machine (SVM) Classifier is used to classify retinal images to normal or abnormal cases including non-proliferative or proliferative DR. The proposed method has been tested on images selected from Structured Analysis of the Retinal (STARE) database using MATLAB code. The method is perfectly able to detect DR. The sensitivity specificity and accuracy of this approach are 90%, 87.5%, and 91.4% respectively.Keywords: Diabetic retinopathy, fundus images, STARE, Gabor filter, SVM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1673224 The Influences of Marketplace Knowledge, General Product Class Knowledge, and Knowledge in Meat Product with Traceability on Trust in Meat Traceability
Authors: Kawpong Polyorat
Abstract:
Since the outbreak of mad cow disease and bird flu, consumers have become more concerned with meat quality and safety. As a result, meat traceability is adopted as one approach to handle consumers’ concern in this issue. Nevertheless, in Thailand, meat traceability is rarely used as a marketing tool to persuade consumers. As a consequence, the present study attempts to understand consumer trust in the meat traceability system by conducting a study in this country to examine the impact of three types of consumer knowledge on this trust. The study results reveal that out of three types of consumer knowledge, marketplace knowledge was the sole predictor of consumer trust in meat traceability and it has a positive influence. General product class knowledge and knowledge in meat products with traceability, however, did not significantly influence consumer trust. The research results provide several implications and directions for future study.Keywords: Consumer knowledge, marketing, product knowledge, traceability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1092223 A Probability based Pair Extension Method in Protein 2-DE Gel Image Analysis
Authors: Yanhua Jin, Won Suk Lee
Abstract:
The two-dimensional gel electrophoresis method (2-DE) is widely used in Proteomics to separate thousands of proteins in a sample. By comparing the protein expression levels of proteins in a normal sample with those in a diseased one, it is possible to identify a meaningful set of marker proteins for the targeted disease. The major shortcomings of this approach involve inherent noises and irregular geometric distortions of spots observed in 2-DE images. Various experimental conditions can be the major causes of these problems. In the protein analysis of samples, these problems eventually lead to incorrect conclusions. In order to minimize the influence of these problems, this paper proposes a partition based pair extension method that performs spot-matching on a set of gel images multiple times and segregates more reliable mapping results which can improve the accuracy of gel image analysis. The improved accuracy of the proposed method is analyzed through various experiments on real 2-DE images of human liver tissues.Keywords: Proteomics, spot-matching, two-dimensionalelectrophoresis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1488222 A Neural Network Approach in Predicting the Blood Glucose Level for Diabetic Patients
Authors: Zarita Zainuddin, Ong Pauline, C. Ardil
Abstract:
Diabetes Mellitus is a chronic metabolic disorder, where the improper management of the blood glucose level in the diabetic patients will lead to the risk of heart attack, kidney disease and renal failure. This paper attempts to enhance the diagnostic accuracy of the advancing blood glucose levels of the diabetic patients, by combining principal component analysis and wavelet neural network. The proposed system makes separate blood glucose prediction in the morning, afternoon, evening and night intervals, using dataset from one patient covering a period of 77 days. Comparisons of the diagnostic accuracy with other neural network models, which use the same dataset are made. The comparison results showed overall improved accuracy, which indicates the effectiveness of this proposed system.Keywords: Diabetes Mellitus, principal component analysis, time-series, wavelet neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2990221 Biometrical Comparison of Artemia urmiana Günther, 1899 (Crustacea: Anostraca) Cysts between Rainy and Drought Years (1994-2003/4) from Urmia Lake, Iran
Authors: A. Asem, N. Rastegar-Pouyani, P. De Los Rios, R. Manaffar, F. Mohebbi
Abstract:
Nowadays, biometrical characterizations of Artemia cysts are used as one of the most important factors in the study of Artemia populations and intraspecific particularity; meanwhile these characters can be used as economical indices. For example, typically high hatching efficiency is possible due to the small diameter of cysts (high number per gram); therefore small diameter of cysts show someway high quality of cysts. This study was performed during a ten year period, including two different ecological conditions: rainy and drought. It is important from two different aspects because it covers alteration of A. urmiana during ten years also its variation in the best and worst environmental situations in which salinity increased from 173.8 ppt in 1994 to 280.8 ppt in 2003/4. In this study the biometrical raw data of Artemia urmiana cysts at seven stations from the Urmia Lake in 1994 and their seven identical locations at 26 studied stations in 2003/4 were reanalyzed again and compared together. Biometrical comparison of untreated and decapsulated cysts in each of the seven similar stations showed a highly significant variation between 1994 and 2003/4. Based on this study, in whole stations the untreated and decapsulated cysts from 1994 were larger than cysts of 2003/4 without any exception. But there was no logical relationship between salinity and chorion thickness in the Urmia Lake. With regard to PCA analyses the stations of two different studied years certainly have been separated with factor 1 from each other. In conclusion, the interaction between genetic and environmental factors can determine and explain variation in the range of cysts diameter in Artemia.Keywords: Artemia urmiana, Biometry, Cyst, Urmia Lake
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3686220 A Prediction Model for Dynamic Responses of Building from Earthquake Based on Evolutionary Learning
Authors: Kyu Jin Kim, Byung Kwan Oh, Hyo Seon Park
Abstract:
The seismic responses-based structural health monitoring system has been performed to prevent seismic damage. Structural seismic damage of building is caused by the instantaneous stress concentration which is related with dynamic characteristic of earthquake. Meanwhile, seismic response analysis to estimate the dynamic responses of building demands significantly high computational cost. To prevent the failure of structural members from the characteristic of the earthquake and the significantly high computational cost for seismic response analysis, this paper presents an artificial neural network (ANN) based prediction model for dynamic responses of building considering specific time length. Through the measured dynamic responses, input and output node of the ANN are formed by the length of specific time, and adopted for the training. In the model, evolutionary radial basis function neural network (ERBFNN), that radial basis function network (RBFN) is integrated with evolutionary optimization algorithm to find variables in RBF, is implemented. The effectiveness of the proposed model is verified through an analytical study applying responses from dynamic analysis for multi-degree of freedom system to training data in ERBFNN.
Keywords: Structural health monitoring, dynamic response, artificial neural network, radial basis function network, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 420219 The Effects of Weather Anomalies on the Quantitative and Qualitative Parameters of Maize Hybrids of Different Genetic Traits in Hungary
Authors: Zs. J. Becze, Á. Krivián, M. Sárvári
Abstract:
Hybrid selection and the application of hybrid specific production technologies are important in terms of the increase of the yield and crop safety of maize. The main explanation for this is climate change, since weather extremes are going on and seem to accelerate in Hungary too.
The biological bases, the selection of appropriate hybrids will be of greater importance in the future. The issue of the adaptability of hybrids will be considerably appreciated. Its good agronomical traits and stress bearing against climatic factors and agrotechnical elements (e.g. different types of herbicides) will be important. There have been examples of 3-4 consecutive droughty years in the past decades, e.g. 1992-1993-1994 or 2009-2011-2012, which made the results of crop production critical. Irrigation cannot be the solution for the problem since currently only the 2% of the arable land is irrigated. Temperatures exceeding the multi-year average are characteristic mainly to the July and August in Hungary, which significantly increase the soil surface evaporation, thus further enhance water shortage. In terms of the yield and crop safety of maize, the weather of these two months is crucial, since the extreme high temperature in July decreases the viability of the pollen and the pistil of maize, decreases the extent of fertilization and makes grain-filling tardy. Consequently, yield and crop safety decrease.
Keywords: Abiotic factors, drought, nutrition content, yield.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1902218 Budget Optimization for Maintenance of Bridges in Egypt
Authors: Hesham Abd Elkhalek, Sherif M. Hafez, Yasser M. El Fahham
Abstract:
Allocating limited budget to maintain bridge networks and selecting effective maintenance strategies for each bridge represent challenging tasks for maintenance managers and decision makers. In Egypt, bridges are continuously deteriorating. In many cases, maintenance works are performed due to user complaints. The objective of this paper is to develop a practical and reliable framework to manage the maintenance, repair, and rehabilitation (MR&R) activities of Bridges network considering performance and budget limits. The model solves an optimization problem that maximizes the average condition of the entire network given the limited available budget using Genetic Algorithm (GA). The framework contains bridge inventory, condition assessment, repair cost calculation, deterioration prediction, and maintenance optimization. The developed model takes into account multiple parameters including serviceability requirements, budget allocation, element importance on structural safety and serviceability, bridge impact on network, and traffic. A questionnaire is conducted to complete the research scope. The proposed model is implemented in software, which provides a friendly user interface. The framework provides a multi-year maintenance plan for the entire network for up to five years. A case study of ten bridges is presented to validate and test the proposed model with data collected from Transportation Authorities in Egypt. Different scenarios are presented. The results are reasonable, feasible and within acceptable domain.Keywords: Bridge Management Systems (BMS), cost optimization condition assessment, fund allocation, Markov chain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1959