Fungal Disinfection by Nanofiltration in Tomato Soilless Culture
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32799
Fungal Disinfection by Nanofiltration in Tomato Soilless Culture

Authors: R. Amooaghaie


Principally, plants grown in soilless culture may be attacked by the same pests and diseases as cultivated traditionally in soil. The most destructive phytopathogens are fungi, such as Phythium, Phytophthora and Fusarium, followed by viruses, bacteria and nematodes. We investigated effect of carbon nanotube filters on disease management of soilless culture. Tomato seedlings transplant in plastic pots filled with a soilless media of vermiculite. The crop irrigated and fertilized using a hydroponic nutrient solution. We used carbon nanotube filters for nutrient solution disinfection. Our results show that carbon nanotube filtration significantly reduces pathogens on tomato plants. Fungal elimination (Fusarium oxysporum and Pythium spp.) was usually successful at about 96 to 99.9% all over the cultural season. It is seem that in tomato soilless culture, nanofiltration constitutes a reliable method that allows control of the development of diseases caused by pathogenic fungi

Keywords: Fusarium oxysporum, Nanofilteration, Pythium spp., Soilless culture, Tomato

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1952


[1] P. Armitage. Chemical control of Phytophthora cinnamomi in irrigation water. Australian Hort., vol. 91, pp. 30-36.1993
[2] F. Benoit, and N. Ceustermans,. Low pressure UV disinfection also effective for NFT-lettuce. European Vegetable, R.D. centre, Sint- Katelijne-Waver, Belgium, 1993. pp.9
[3] P. Biswas, and C. Y. Wu. Critical review: nanoparticles and the environment. J. Air waste Manag. Assoc., vol. 55, pp. 708-764. 2005
[4] T. J. Brunner, P. Wick, P. Manser, P. Spohn, R. N. Grass, L. K. Limbach, Bruinink and W. J. Stark. In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica and the effect of particle solubility. Environ. Sci. Technol. vol. 40, pp. 4374-4381. 2006
[5] R. J. Bull, C. Gerba, and R. Rhodes Trussel. Evaluation of the health risks associated with disinfection. Crit. Rev. Environ. Contr., vol. 20, pp. 77-113. 1990
[6] S. Date, T. Hataya, and T. Namiki. Effects of nutrient and environmental pretreatments on the occurrence of root injury of lettuce caused by chloramines. Acta Hort., vol 481, pp. 553-559. 1999
[7] F. Déniel, P. Rey, M. Chérif, A. Guillou, and Y. Tirilly. Indigenous bacteria with antagonistic- and plant growth promoting-activities improve slow filtration efficiency in soilless culture. Can. J. Microbiol., vol. 50, pp. 499-508. 2004
[8] D. L. Ehret, B. Alsanius, W. Hohanka, J. G. Menzies and R. Utkhede. Disinfestation of recirculating nutrient solutions in greenhouse horticulture. Agronomie, vol. 21, 323-339. 2001
[9] B. Jarvis. Does Hydroponic Production Solve Soilborne Problems? American Vegetable Grower, vol. 10, pp. 54-57.1991
[10] G. Jia, H. F. Wang, L. Yan, X. Wang, R. J. Pei, L. Yan, Y. L. Zhao, and X. B. Guo.. Cytotoxicity of carbon nanomaterials: single wall nanotube, multiwall nanotube and flluerene. Environ. Sci. Technol. vol. 39 pp.1378-1383. 2005
[11] C. W. Lam, J. T. James, R. McCluskey, S. Arepalli,. and R. L. Hunter. A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit. Rev. Toxicol., vol. 36 pp. 189-217. 2006
[12] G. M. McPherson, M. R. Harriman, and D. Pattisson, The potential for spread of root diseases in recirculating hydroponic systems and their control with disinfection. Meded. Fac. Landbouww. Univ. Gent., vol 60/2b, pp. 371-379.1995
[13] A. Nel, T. Xia, L. Madler. and N. Li.. Toxic potential of materials at the nano level. Science. Vol. 311, pp. 622-627. 2006
[14] J. Postma, M. J. E .I. M. Willemsen-de Klein, and J. D. van Elsas. Effect of the indigenous microflora on the development of root and crown rot caused by Pythium apanidermatum in cucumber grown on rockwool. Phytopathology, vol. 90, pp. 125-133. 2000
[15] J. Sawai, H. Igarashi, A. Hashimoto, T. Kokugan, and M. Shimizu.Evaluation of growth inhibitory effect of ceramics powder slurry on bacteria by conductance method. J. Chem. Eng. Jpn., vol. 28, pp. 288-293. 1995
[16] K. T. Soto, A. Carrasco., T. G. Powell, L. E. Murr. and K. M. Garza. Biological effects of nanoparticulite materials. Mater. Sci. Eng., vol. 26, pp.1421-1427. 2006
[17] H. Rattink. Epidemiology of Fusarium crown and root rot in artificial substrate systems. Meded. Fac. Landbouwwet. Rijksuniv. Gent, vol. 56/2b, pp. 423-430.1991
[18] W. T. Runia, Disinfection of recirculation water from closed cultivation systems with iodine. Meded. Fac. Landbouwwet. Univ. Gent., vol. 59/3a: 1065-1070. 1994.
[19] W. T. Runia.. A review of possibilities for disinfection of recirculation water from soilless culture. Acta Hort., vol. 382, pp. 221-229.1995.
[20] M. E. Stanghellini, D. H. Kim, S. L. Rasmussen, and P. A. Rorabaugh. Control of root rot of peppers caused by Phytophthora capsici with a non-ionic surfactant. Plant Dis., vol. 80, pp. 1113-1116. 1996
[21] E. A. Van. Closed soilless growing systems in the Notherlands the finishing touch. Acta Hort., vol. 458, pp. 279-291.1998.
[22] A. Vanachter. Development of Olpidium and Pythium in the nutrient solutions of NFT grown lettuce, and possible control methods. Acta Hort., vol. 382, pp. 187-196. 1995
[23] A. Vanachter, L. Thys, E. Van Wambeke, and C. Van Assche. Possible use of ozone for disinfestation of plant nutrient solutions. Acta Hort., vol. 221, pp. 295-300. 1998
[24] W. Wohanka, H. Luedtke, H. Ahlers, and M. Luebke. Optimization of slow filtration as a means for disinfecting nutrient solutions. Acta Hort., vol. 481, pp. 539-544. 1999