Search results for: Degree of Adaptive
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1657

Search results for: Degree of Adaptive

727 Automatic Detection and Classification of Microcalcification, Mass, Architectural Distortion and Bilateral Asymmetry in Digital Mammogram

Authors: S. Shanthi, V. Muralibhaskaran

Abstract:

Mammography has been one of the most reliable methods for early detection of breast cancer. There are different lesions which are breast cancer characteristic such as microcalcifications, masses, architectural distortions and bilateral asymmetry. One of the major challenges of analysing digital mammogram is how to extract efficient features from it for accurate cancer classification. In this paper we proposed a hybrid feature extraction method to detect and classify all four signs of breast cancer. The proposed method is based on multiscale surrounding region dependence method, Gabor filters, multi fractal analysis, directional and morphological analysis. The extracted features are input to self adaptive resource allocation network (SRAN) classifier for classification. The validity of our approach is extensively demonstrated using the two benchmark data sets Mammographic Image Analysis Society (MIAS) and Digital Database for Screening Mammograph (DDSM) and the results have been proved to be progressive.

Keywords: Feature extraction, fractal analysis, Gabor filters, multiscale surrounding region dependence method, SRAN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2952
726 Scaling up Detection Rates and Reducing False Positives in Intrusion Detection using NBTree

Authors: Dewan Md. Farid, Nguyen Huu Hoa, Jerome Darmont, Nouria Harbi, Mohammad Zahidur Rahman

Abstract:

In this paper, we present a new learning algorithm for anomaly based network intrusion detection using improved self adaptive naïve Bayesian tree (NBTree), which induces a hybrid of decision tree and naïve Bayesian classifier. The proposed approach scales up the balance detections for different attack types and keeps the false positives at acceptable level in intrusion detection. In complex and dynamic large intrusion detection dataset, the detection accuracy of naïve Bayesian classifier does not scale up as well as decision tree. It has been successfully tested in other problem domains that naïve Bayesian tree improves the classification rates in large dataset. In naïve Bayesian tree nodes contain and split as regular decision-trees, but the leaves contain naïve Bayesian classifiers. The experimental results on KDD99 benchmark network intrusion detection dataset demonstrate that this new approach scales up the detection rates for different attack types and reduces false positives in network intrusion detection.

Keywords: Detection rates, false positives, network intrusiondetection, naïve Bayesian tree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2293
725 Estimation of Real Power Transfer Allocation Using Intelligent Systems

Authors: H. Shareef, A. Mohamed, S. A. Khalid, Aziah Khamis

Abstract:

This paper presents application artificial intelligent (AI) techniques, namely artificial neural network (ANN), adaptive neuro fuzzy interface system (ANFIS), to estimate the real power transfer between generators and loads. Since these AI techniques adopt supervised learning, it first uses modified nodal equation method (MNE) to determine real power contribution from each generator to loads. Then the results of MNE method and load flow information are utilized to estimate the power transfer using AI techniques. The 25-bus equivalent system of south Malaysia is utilized as a test system to illustrate the effectiveness of both AI methods compared to that of the MNE method. The mean squared error of the estimate of ANN and ANFIS power transfer allocation methods are 1.19E-05 and 2.97E-05, respectively. Furthermore, when compared to MNE method, ANN and ANFIS methods computes generator contribution to loads within 20.99 and 39.37msec respectively whereas the MNE method took 360msec for the calculation of same real power transfer allocation. 

Keywords: Artificial intelligence, Power tracing, Artificial neural network, ANFIS, Power system deregulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2591
724 Adaptive Pulse Coupled Neural Network Parameters for Image Segmentation

Authors: Thejaswi H. Raya, Vineetha Bettaiah, Heggere S. Ranganath

Abstract:

For over a decade, the Pulse Coupled Neural Network (PCNN) based algorithms have been successfully used in image interpretation applications including image segmentation. There are several versions of the PCNN based image segmentation methods, and the segmentation accuracy of all of them is very sensitive to the values of the network parameters. Most methods treat PCNN parameters like linking coefficient and primary firing threshold as global parameters, and determine them by trial-and-error. The automatic determination of appropriate values for linking coefficient, and primary firing threshold is a challenging problem and deserves further research. This paper presents a method for obtaining global as well as local values for the linking coefficient and the primary firing threshold for neurons directly from the image statistics. Extensive simulation results show that the proposed approach achieves excellent segmentation accuracy comparable to the best accuracy obtainable by trial-and-error for a variety of images.

Keywords: Automatic Selection of PCNN Parameters, Image Segmentation, Neural Networks, Pulse Coupled Neural Network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2293
723 Bode Stability Analysis for Single Wall Carbon Nanotube Interconnects Used in 3D-VLSI Circuits

Authors: Saeed H. Nasiri, Rahim Faez, Bita Davoodi, Maryam Farrokhi

Abstract:

Bode stability analysis based on transmission line modeling (TLM) for single wall carbon nanotube (SWCNT) interconnects used in 3D-VLSI circuits is investigated for the first time. In this analysis, the dependence of the degree of relative stability for SWCNT interconnects on the geometry of each tube has been acquired. It is shown that, increasing the length and diameter of each tube, SWCNT interconnects become more stable.

Keywords: Bode stability criterion, Interconnects, Interlayer via, Single wall carbon nanotubes, Transmission line method, Time domain analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1840
722 Performance Comparison and Evaluation of AdaBoost and SoftBoost Algorithms on Generic Object Recognition

Authors: Doaa Hegazy, Joachim Denzler

Abstract:

SoftBoost is a recently presented boosting algorithm, which trades off the size of achieved classification margin and generalization performance. This paper presents a performance evaluation of SoftBoost algorithm on the generic object recognition problem. An appearance-based generic object recognition model is used. The evaluation experiments are performed using a difficult object recognition benchmark. An assessment with respect to different degrees of label noise as well as a comparison to the well known AdaBoost algorithm is performed. The obtained results reveal that SoftBoost is encouraged to be used in cases when the training data is known to have a high degree of noise. Otherwise, using Adaboost can achieve better performance.

Keywords: SoftBoost algorithm, AdaBoost algorithm, Generic object recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1834
721 Comparing the Quality of Service of Bus Companies Operating in two Cities in Brazil

Authors: D. I. De Souza, D. Kipper, G. P. Azevedo

Abstract:

The main objective of this work is to compare the quality of service of the bus companies operating in the city of Rio Branco, located in the state of Acre with the quality of service of the bus companies operating in the city of Campos, situated in the state of Rio de Janeiro, both cities in Brazil. This comparison, based on the opinion of the bus users, will determine their degree of satisfaction with the service available in both cities. The outcome of this evaluation shows the users unhappy with the quality of the service provided by the bus companies operating in both cities and the need to identify alternative solutions that may minimize the consequences caused by the main problems detected in this work. With these alternatives available, the bus companies will be able to better understand the needs of their customers in terms of manpower, service cost, time schedule, etc.

Keywords: PubicTransportation, Quality of Service, Riders' Opinion, Bus Companies

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1297
720 Estimation of Reconnaissance Drought Index (RDI) for Bhavnagar District, Gujarat, India

Authors: Ravi Shah, V. L. Manekar, R. A. Christian, N. J. Mistry

Abstract:

There are two types of drought as conceptual drought and operational drought. The three parameters as the beginning, the end and the degree of severity of the drought can be identifying in operational drought by average precipitation in the whole region. One of the methods classified to measure drought is Reconnaissance Drought Index (RDI). Evapotranspiration is calculated using Penman-Monteith method by analyzing thirty nine years prolong climatic data. The evapotranspiration is then utilized in RDI to classify normalized and standardized RDI. These RDI classifications led to what kind of drought faced in Bhavnagar region on 12 month time scale basis. The comparison between actual drought conditions and RDI method used to find out drought are also illustrated. It can be concluded that the index results of drought in a particular year are same in both methods but having different index values where as severity remain same.

Keywords: Drought, Drought index, Reconnaissance Drought Index (RDI), Precipitation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3500
719 Corporate Social Responsibility and Values in Innovation Management

Authors: J. Maksimainen, P. Saariluoma, P. Jokivuori

Abstract:

Corporate social responsibility (CSR) viewpoint have challenged the traditional perception to understand corporations position. Production- and managerial-centred views are expanding towards reference group-centred policies. Consequently, the significance of new kind of knowledge has emerged. In addition to management of the organisation, the idea of CSR emphasises the importance to recognise the value-expectations of operational environment. It is know that management is often well-aware of corporate social responsibilities, but it is less clear how well these high level goals are understood in practical product design and development work. In this study, the apprehension above proved to be real to some degree. While management was very aware of CSR it was less familiar to designers. The outcome shows that it is essential to raise ethical values and issues higher in corporate communication, if it is wished that they materialize also in products.

Keywords: Corporate social responsibility, management, engineering, values.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1824
718 Information Fusion as a Means of Forecasting Expenditures for Regenerating Complex Investment Goods

Authors: Steffen C. Eickemeyer, Tim Borcherding, Peter Nyhuis, Hannover

Abstract:

Planning capacities when regenerating complex investment goods involves particular challenges in that the planning is subject to a large degree of uncertainty regarding load information. Using information fusion – by applying Bayesian Networks – a method is being developed for forecasting the anticipated expenditures (human labor, tool and machinery utilization, time etc.) for regenerating a good. The generated forecasts then later serve as a tool for planning capacities and ensure a greater stability in the planning processes.

Keywords: Bayesian networks, capacity planning, complex investment goods, damages library, forecasting, information fusion, regeneration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1641
717 Relaxation Dynamics of Quantum Emitters Resonantly Coupled to a Localized Surface Plasmon

Authors: Khachatur V. Nerkararyan, Sergey I. Bozhevolnyi

Abstract:

We investigate relaxation dynamics of a quantum dipole emitter (QDE), e.g., a molecule or quantum dot, located near a metal nanoparticle (MNP) exhibiting a dipolar localized surface plasmon (LSP) resonance at the frequency of the QDE radiative transition. It is shown that under the condition of the QDE-MNP characteristic relaxation time being much shorter than that of the QDE in free-space but much longer than the LSP lifetime. It is also shown that energy dissipation in the QDE-MNP system is relatively weak with the probability of the photon emission being about 0.75, a number which, rather surprisingly, does not explicitly depend on the metal absorption characteristics. The degree of entanglement measured by the concurrency takes the maximum value, while the distances between the QDEs and metal ball approximately are equal.

Keywords: Metal nanoparticle, Localized surface plasmon, Quantum dipole emitter, Relaxation dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2356
716 Novel SNC-NN-MRAS Based Speed Estimator for Sensor-Less Vector Controlled IM Drives

Authors: A.Venkadesan, S.Himavathi, A.Muthuramalingam

Abstract:

Rotor Flux based Model Reference Adaptive System (RF-MRAS) is the most popularly used conventional speed estimation scheme for sensor-less IM drives. In this scheme, the voltage model equations are used for the reference model. This encounters major drawbacks at low frequencies/speed which leads to the poor performance of RF-MRAS. Replacing the reference model using Neural Network (NN) based flux estimator provides an alternate solution and addresses such drawbacks. This paper identifies an NN based flux estimator using Single Neuron Cascaded (SNC) Architecture. The proposed SNC-NN model replaces the conventional voltage model in RF-MRAS to form a novel MRAS scheme named as SNC-NN-MRAS. Through simulation the proposed SNC-NN-MRAS is shown to be promising in terms of all major issues and robustness to parameter variation. The suitability of the proposed SNC-NN-MRAS based speed estimator and its advantages over RF-MRAS for sensor-less induction motor drives is comprehensively presented through extensive simulations.

Keywords: Sensor-less operation, vector-controlled IM drives, SNC-NN-MRAS, single neuron cascaded architecture, RF-MRAS, artificial neural network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1882
715 Employee Aggression, Labeling and Emotional Intelligence

Authors: Martin Popescu D. Dana Maria

Abstract:

The aims of this research are to broaden the study on the relationship between emotional intelligence and counterproductive work behavior (CWB). The study sample consisted in 441 Romanian employees from companies all over the country. Data has been collected through web surveys and processed with SPSS. The results indicated an average correlation between the two constructs and their sub variables, employees with a high level of emotional intelligence tend to be less aggressive. In addition, labeling was considered an individual difference which has the power to influence the level of employee aggression. A regression model was used to underline the importance of emotional intelligence together with labeling as predictors of CWB. Results have shown that this regression model enforces the assumption that labeling and emotional intelligence, taken together, predict CWB. Employees, who label themselves as victims and have a low degree of emotional intelligence, have a higher level of CWB.

Keywords: Aggression, CWB, emotional intelligence, labeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2070
714 An Efficient Hamiltonian for Discrete Fractional Fourier Transform

Authors: Sukrit Shankar, Pardha Saradhi K., Chetana Shanta Patsa, Jaydev Sharma

Abstract:

Fractional Fourier Transform, which is a generalization of the classical Fourier Transform, is a powerful tool for the analysis of transient signals. The discrete Fractional Fourier Transform Hamiltonians have been proposed in the past with varying degrees of correlation between their eigenvectors and Hermite Gaussian functions. In this paper, we propose a new Hamiltonian for the discrete Fractional Fourier Transform and show that the eigenvectors of the proposed matrix has a higher degree of correlation with the Hermite Gaussian functions. Also, the proposed matrix is shown to give better Fractional Fourier responses with various transform orders for different signals.

Keywords: Fractional Fourier Transform, Hamiltonian, Eigen Vectors, Discrete Hermite Gaussians.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1542
713 A Comparison of Adaline and MLP Neural Network based Predictors in SIR Estimation in Mobile DS/CDMA Systems

Authors: Nahid Ardalani, Ahmadreza Khoogar, H. Roohi

Abstract:

In this paper we compare the response of linear and nonlinear neural network-based prediction schemes in prediction of received Signal-to-Interference Power Ratio (SIR) in Direct Sequence Code Division Multiple Access (DS/CDMA) systems. The nonlinear predictor is Multilayer Perceptron MLP and the linear predictor is an Adaptive Linear (Adaline) predictor. We solve the problem of complexity by using the Minimum Mean Squared Error (MMSE) principle to select the optimal predictors. The optimized Adaline predictor is compared to optimized MLP by employing noisy Rayleigh fading signals with 1.8 GHZ carrier frequency in an urban environment. The results show that the Adaline predictor can estimates SIR with the same error as MLP when the user has the velocity of 5 km/h and 60 km/h but by increasing the velocity up-to 120 km/h the mean squared error of MLP is two times more than Adaline predictor. This makes the Adaline predictor (with lower complexity) more suitable than MLP for closed-loop power control where efficient and accurate identification of the time-varying inverse dynamics of the multi path fading channel is required.

Keywords: Power control, neural networks, DS/CDMA mobilecommunication systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2524
712 Object Tracking System Using Camshift, Meanshift and Kalman Filter

Authors: Afef Salhi, Ameni Yengui Jammaoussi

Abstract:

This paper presents a implementation of an object tracking system in a video sequence. This object tracking is an important task in many vision applications. The main steps in video analysis are two: detection of interesting moving objects and tracking of such objects from frame to frame. In a similar vein, most tracking algorithms use pre-specified methods for preprocessing. In our work, we have implemented several object tracking algorithms (Meanshift, Camshift, Kalman filter) with different preprocessing methods. Then, we have evaluated the performance of these algorithms for different video sequences. The obtained results have shown good performances according to the degree of applicability and evaluation criteria.

Keywords: Tracking, meanshift, camshift, Kalman filter, evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8261
711 Adaptive Non-linear Filtering Technique for Image Restoration

Authors: S. K. Satpathy, S. Panda, K. K. Nagwanshi, S. K. Nayak, C. Ardil

Abstract:

Removing noise from the any processed images is very important. Noise should be removed in such a way that important information of image should be preserved. A decisionbased nonlinear algorithm for elimination of band lines, drop lines, mark, band lost and impulses in images is presented in this paper. The algorithm performs two simultaneous operations, namely, detection of corrupted pixels and evaluation of new pixels for replacing the corrupted pixels. Removal of these artifacts is achieved without damaging edges and details. However, the restricted window size renders median operation less effective whenever noise is excessive in that case the proposed algorithm automatically switches to mean filtering. The performance of the algorithm is analyzed in terms of Mean Square Error [MSE], Peak-Signal-to-Noise Ratio [PSNR], Signal-to-Noise Ratio Improved [SNRI], Percentage Of Noise Attenuated [PONA], and Percentage Of Spoiled Pixels [POSP]. This is compared with standard algorithms already in use and improved performance of the proposed algorithm is presented. The advantage of the proposed algorithm is that a single algorithm can replace several independent algorithms which are required for removal of different artifacts.

Keywords: Filtering, Decision Based Algorithm, noise, imagerestoration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2164
710 New Coordinate System for Countries with Big Territories

Authors: Mohammed Sabri Ali Akresh

Abstract:

The modern technologies and developments in computer and Global Positioning System (GPS) as well as Geographic Information System (GIS) and total station TS. This paper presents a new proposal for coordinates system by a harmonic equations “United projections”, which have five projections (Mercator, Lambert, Russell, Lagrange, and compound of projection) in one zone coordinate system width 14 degrees, also it has one degree for overlap between zones, as well as two standards parallels for zone from 10 S to 45 S. Also this paper presents two cases; first case is to compare distances between a new coordinate system and UTM, second case creating local coordinate system for the city of Sydney to measure the distances directly from rectangular coordinates using projection of Mercator, Lambert and UTM.

Keywords: Harmonic equations, coordinate system, projections, algorithms and parallels.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1852
709 Attitude of University Students in the Use of Artificial Intelligence

Authors: R. Merlo, M. González, Z. Rivero, L. González

Abstract:

This exploratory work aimed to understand university students’ perceptions of the use of artificial intelligence (AI) during their time in the classroom. The significance of using AI in education, the degree of interest, knowledge acquisition, and how it would influence an interactive resource for acquiring skills were explored. Within this framework, a test with 30 items was designed and administered to 800 volunteer first-year university students of natural and exact sciences. Based on a randomized pilot test, it was validated with Cronbach's alpha coefficient. Descriptive statistics of the sample used allowed us to observe the preponderance of the dimensions that constitute the attitude construct. Subsequently, factor analysis by dimensions provided insights into the students' habits, according to the knowledge acquired and the emotions engaged during the topics developed in the classroom.

Keywords: Attitude, artificial intelligence, didactics, teaching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31
708 Environmentally Adaptive Acoustic Echo Suppression for Barge-in Speech Recognition

Authors: Jong Han Joo, Jeong Hun Lee, Young Sun Kim, Jae Young Kang, Seung Ho Choi

Abstract:

In this study, we propose a novel technique for acoustic echo suppression (AES) during speech recognition under barge-in conditions. Conventional AES methods based on spectral subtraction apply fixed weights to the estimated echo path transfer function (EPTF) at the current signal segment and to the EPTF estimated until the previous time interval. However, the effects of echo path changes should be considered for eliminating the undesired echoes. We describe a new approach that adaptively updates weight parameters in response to abrupt changes in the acoustic environment due to background noises or double-talk. Furthermore, we devised a voice activity detector and an initial time-delay estimator for barge-in speech recognition in communication networks. The initial time delay is estimated using log-spectral distance measure, as well as cross-correlation coefficients. The experimental results show that the developed techniques can be successfully applied in barge-in speech recognition systems.

Keywords: Acoustic echo suppression, barge-in, speech recognition, echo path transfer function, initial delay estimator, voice activity detector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2326
707 Complex Flow Simulation Using a Partially Lagging One-Equation Turbulence Model

Authors: M. Elkhoury

Abstract:

A recently developed one-equation turbulence model has been successfully applied to simulate turbulent flows with various complexities. The model, which is based on the transformation of the k-ε closure, is wall-distance free and equipped with lagging destruction/dissipation terms. Test cases included shockboundary- layer interaction flows over the NACA 0012 airfoil, an axisymmetric bump, and the ONERA M6 wing. The capability of the model to operate in a Scale Resolved Simulation (SRS) mode is demonstrated through the simulation of a massive flow separation over a circular cylinder at Re= 1.2 x106. An assessment of the results against available experiments Menter (k-ε)1Eq and the Spalart- Allmaras model that belongs to the single equation closure family is made.

Keywords: Turbulence modeling, complex flow simulation, scale adaptive simulation, one-equation turbulence model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1477
706 A Character Detection Method for Ancient Yi Books Based on Connected Components and Regressive Character Segmentation

Authors: Xu Han, Shanxiong Chen, Shiyu Zhu, Xiaoyu Lin, Fujia Zhao, Dingwang Wang

Abstract:

Character detection is an important issue for character recognition of ancient Yi books. The accuracy of detection directly affects the recognition effect of ancient Yi books. Considering the complex layout, the lack of standard typesetting and the mixed arrangement between images and texts, we propose a character detection method for ancient Yi books based on connected components and regressive character segmentation. First, the scanned images of ancient Yi books are preprocessed with nonlocal mean filtering, and then a modified local adaptive threshold binarization algorithm is used to obtain the binary images to segment the foreground and background for the images. Second, the non-text areas are removed by the method based on connected components. Finally, the single character in the ancient Yi books is segmented by our method. The experimental results show that the method can effectively separate the text areas and non-text areas for ancient Yi books and achieve higher accuracy and recall rate in the experiment of character detection, and effectively solve the problem of character detection and segmentation in character recognition of ancient books.

Keywords: Computing methodologies, interest point, salient region detections, image segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 879
705 Factors Affecting Low Back Pain during Breastfeeding of Thai Women

Authors: N. Klinpikul, P. Srichandr, N. Poolthong, N. Thavarungkul

Abstract:

Breastfeeding has been receiving much attention of late. Prolonged sitting for breastfeeding often results in back pain of the mothers. This paper reports the findings of a study on the effect of some factors, especially lumbar support, on back pain of breastfeeding mothers. The results showed that the use of lumbar support can reduce back pain of breastfeeding mothers significantly. Back pain was found to increase with breastfeeding time and the rate of increase was lower when lumbar supports were used. When lumbar support thickness was increased gradually from zero (no support) to 11 cm., the degree of low back pain decreased; rapidly at first, then slowly, and leveled off when the thickness reached 9 cm. Younger mothers were less prone to back pain than older mothers. The implications of the findings are discussed.

Keywords: back pain, breastfeeding, lumbar support

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1992
704 Role of Feedbacks in Simulation-Based Learning

Authors: Usman Ghani

Abstract:

Feedback is a vital element for improving student learning in a simulation-based training as it guides and refines learning through scaffolding. A number of studies in literature have shown that students’ learning is enhanced when feedback is provided with personalized tutoring that offers specific guidance and adapts feedback to the learner in a one-to-one environment. Thus, emulating these adaptive aspects of human tutoring in simulation provides an effective methodology to train individuals. This paper presents the results of a study that investigated the effectiveness of automating different types of feedback techniques such as Knowledge-of-Correct-Response (KCR) and Answer-Until- Correct (AUC) in software simulation for learning basic information technology concepts. For the purpose of comparison, techniques like simulation with zero or no-feedback (NFB) and traditional hands-on (HON) learning environments are also examined. The paper presents the summary of findings based on quantitative analyses which reveal that the simulation based instructional strategies are at least as effective as hands-on teaching methodologies for the purpose of learning of IT concepts. The paper also compares the results of the study with the earlier studies and recommends strategies for using feedback mechanism to improve students’ learning in designing and simulation-based IT training.

Keywords: Simulation, feedback, training, hands-on, labs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1575
703 Progressive Watershed Management Approaches in Iran

Authors: S. H. R. Sadeghi, A. Sadoddin, A. Najafinejad

Abstract:

Expansionism and ever-increasing population menace all different resources worldwide. The issue, hence, is critical in developing countries like Iran where new technologies are rapidly luxuriated and unguardedly applied, resulting in unexpected outcomes. However, uncommon and comprehensive approaches are introduced to take all the different aspects involved into consideration. In the last decade, few approaches such as community-based, stakeholders-oriented, adaptive and ultimately integrated management, have emerged and are developing for efficient, Co-management or best management, economic and sustainable development and management of watershed resources in Iran. In the present paper, an attempt has been made to focus on state-of-the-art approaches for the management of watershed resources applied in Iran. The study has been then supported by reports of some case studies conducted throughout the country involving previously mentioned approaches. Scrutinizing results of the researches verified a progressive tendency of the managerial approaches in watershed management strategies leading to a general approaching balance situation. The approaches are firmly rooted in educational, research, executive, legal and policy-making sectors leading to some recuperation at different levels. However, there is a long way ahead to naturalize detrimental effects of unscientific, illegal and over exploitation of the watershed resources in Iran.

Keywords: Comprehensive management, ecosystem balance, integrated watershed management, land resources optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1034
702 An Images Monitoring System based on Multi-Format Streaming Grid Architecture

Authors: Yi-Haur Shiau, Sun-In Lin, Shi-Wei Lo, Hsiu-Mei Chou, Yi-Hsuan Chen

Abstract:

This paper proposes a novel multi-format stream grid architecture for real-time image monitoring system. The system, based on a three-tier architecture, includes stream receiving unit, stream processor unit, and presentation unit. It is a distributed computing and a loose coupling architecture. The benefit is the amount of required servers can be adjusted depending on the loading of the image monitoring system. The stream receive unit supports multi capture source devices and multi-format stream compress encoder. Stream processor unit includes three modules; they are stream clipping module, image processing module and image management module. Presentation unit can display image data on several different platforms. We verified the proposed grid architecture with an actual test of image monitoring. We used a fast image matching method with the adjustable parameters for different monitoring situations. Background subtraction method is also implemented in the system. Experimental results showed that the proposed architecture is robust, adaptive, and powerful in the image monitoring system.

Keywords: Motion detection, grid architecture, image monitoring system, and background subtraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1599
701 A Multi-objective Fuzzy Optimization Method of Resource Input Based on Genetic Algorithm

Authors: Tao Zhao, Xin Wang

Abstract:

With the increasing complexity of engineering problems, the traditional, single-objective and deterministic optimization method can not meet people-s requirements. A multi-objective fuzzy optimization model of resource input is built for M chlor-alkali chemical eco-industrial park in this paper. First, the model is changed into the form that can be solved by genetic algorithm using fuzzy theory. And then, a fitness function is constructed for genetic algorithm. Finally, a numerical example is presented to show that the method compared with traditional single-objective optimization method is more practical and efficient.

Keywords: Fitness function, genetic algorithm, multi-objectivefuzzy optimization, satisfaction degree membership function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1360
700 Study and Enhancement of Flash Evaporation Desalination Utilizing the Ocean Thermocline and Discharged heat

Authors: Sami Mutair, Yasuyuki Ikegami

Abstract:

This paper reports on the results of experimental investigations of flash evaporation from superheated jet issues vertically upward from a round straight nozzle of 81.3 mm diameter. For the investigated range of jet superheat degree and velocity, it was shown that flash evaporation enhances with initial temperature increase. Due to the increase of jet inertia and subsequently the delay of jet shattering, increase of jet velocity was found to result in increase of evaporation "delay period". An empirical equation predicts the jet evaporation completion height was developed, this equation is thought to be useful in designing the flash evaporation chamber. In attempts for enhancement of flash evaporation, use of steel wire mesh located at short distance downstream was found effective with no consequent pressure drop.

Keywords: Enhancement; Flash Evaporation; OTEC; superheated jet

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3051
699 Impact of Grade Sensitivity on Learning Motivation and Academic Performance

Authors: Salwa Aftab, Sehrish Riaz

Abstract:

The objective of this study was to check the impact of grade sensitivity on learning motivation and academic performance of students and to remove the degree of difference that exists among students regarding the cause of their learning motivation and also to gain knowledge about this matter since it has not been adequately researched. Data collection was primarily done through the academic sector of Pakistan and was depended upon the responses given by students solely. A sample size of 208 university students was selected. Both paper and online surveys were used to collect data from respondents. The results of the study revealed that grade sensitivity has a positive relationship with the learning motivation of students and their academic performance. These findings were carried out through systematic correlation and regression analysis.

Keywords: Academic performance, correlation, grade sensitivity, learning motivation, regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2789
698 Adaptation Learning Speed Control for a High- Performance Induction Motor using Neural Networks

Authors: M. Zerikat, S. Chekroun

Abstract:

This paper proposes an effective adaptation learning algorithm based on artificial neural networks for speed control of an induction motor assumed to operate in a high-performance drives environment. The structure scheme consists of a neural network controller and an algorithm for changing the NN weights in order that the motor speed can accurately track of the reference command. This paper also makes uses a very realistic and practical scheme to estimate and adaptively learn the noise content in the speed load torque characteristic of the motor. The availability of the proposed controller is verified by through a laboratory implementation and under computation simulations with Matlab-software. The process is also tested for the tracking property using different types of reference signals. The performance and robustness of the proposed control scheme have evaluated under a variety of operating conditions of the induction motor drives. The obtained results demonstrate the effectiveness of the proposed control scheme system performances, both in steady state error in speed and dynamic conditions, was found to be excellent and those is not overshoot.

Keywords: Electric drive, Induction motor, speed control, Adaptive control, neural network, High Performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2033