Search results for: Volume-of-Fluid; SGIP model; CSS model; CSF model; PCIL model; surface tension force; spurious currents.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9663

Search results for: Volume-of-Fluid; SGIP model; CSS model; CSF model; PCIL model; surface tension force; spurious currents.

363 Application of Recycled Tungsten Carbide Powder for Fabrication of Iron Based Powder Metallurgy Alloy

Authors: Yukinori Taniguchi, Kazuyoshi Kurita, Kohei Mizuta, Keigo Nishitani, Ryuichi Fukuda

Abstract:

Tungsten carbide is widely used as a tool material in metal manufacturing process. Since tungsten is typical rare metal, establishment of recycle process of tungsten carbide tools and restore into cemented carbide material bring great impact to metal manufacturing industry. Recently, recycle process of tungsten carbide has been developed and established gradually. However, the demands for quality of cemented carbide tool are quite severe because hardness, toughness, anti-wear ability, heat resistance, fatigue strength and so on should be guaranteed for precision machining and tool life. Currently, it is hard to restore the recycled tungsten carbide powder entirely as raw material for new processed cemented carbide tool. In this study, to suggest positive use of recycled tungsten carbide powder, we have tried to fabricate a carbon based sintered steel which shows reinforced mechanical properties with recycled tungsten carbide powder. We have made set of newly designed sintered steels. Compression test of sintered specimen in density ratio of 0.85 (which means 15% porosity inside) has been conducted. As results, at least 1.7 times higher in nominal strength in the amount of 7.0 wt.% was shown in recycled WC powder. The strength reached to over 600 MPa for the Fe-WC-Co-Cu sintered alloy. Wear test has been conducted by using ball-on-disk type friction tester using 5 mm diameter ball with normal force of 2 N in the dry conditions. Wear amount after 1,000 m running distance shows that about 1.5 times longer life was shown in designed sintered alloy. Since results of tensile test showed that same tendency in previous testing, it is concluded that designed sintered alloy can be used for several mechanical parts with special strength and anti-wear ability in relatively low cost due to recycled tungsten carbide powder.

Keywords: Tungsten carbide, recycle process, compression test, powder metallurgy, anti-wear ability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1442
362 Influence of the Flow Rate Ratio in a Jet Pump on the Size of Air Bubbles

Authors: L. Grinis, N. Lubashevsky, Y. Ostrovski

Abstract:

In wastewater treatment processes, aeration introduces air into a liquid. In these systems, air is introduced by different devices submerged in the wastewater. Smaller bubbles result in more bubble surface area per unit of volume and higher oxygen transfer efficiency. Jet pumps are devices that use air bubbles and are widely used in wastewater treatment processes. The principle of jet pumps is their ability to transfer energy of one fluid, called primary or motive, into a secondary fluid or gas. These pumps have no moving parts and are able to work in remote areas under extreme conditions. The objective of this work is to study experimentally the characteristics of the jet pump and the size of air bubbles in the laboratory water tank. The effect of flow rate ratio on pump performance is investigated in order to have a better understanding about pump behavior under various conditions, in order to determine the efficiency of receiving air bubbles different sizes. The experiments show that we should take care when increasing the flow rate ratio while seeking to decrease bubble size in the outlet flow. This study will help improve and extend the use of the jet pump in many practical applications.

Keywords: Jet pump, air bubbles size, retention time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2966
361 Thermoelastic Waves in Anisotropic Platesusing Normal Mode Expansion Method with Thermal Relaxation Time

Authors: K.L. Verma

Abstract:

Analysis for the generalized thermoelastic Lamb waves, which propagates in anisotropic thin plates in generalized thermoelasticity, is presented employing normal mode expansion method. The displacement and temperature fields are expressed by a summation of the symmetric and antisymmetric thermoelastic modes in the surface thermal stresses and thermal gradient free orthotropic plate, therefore the theory is particularly appropriate for waveform analyses of Lamb waves in thin anisotropic plates. The transient waveforms excited by the thermoelastic expansion are analyzed for an orthotropic thin plate. The obtained results show that the theory provides a quantitative analysis to characterize anisotropic thermoelastic stiffness properties of plates by wave detection. Finally numerical calculations have been presented for a NaF crystal, and the dispersion curves for the lowest modes of the symmetric and antisymmetric vibrations are represented graphically at different values of thermal relaxation time. However, the methods can be used for other materials as well

Keywords: Anisotropic, dispersion, frequency, normal, thermoelasticity, wave modes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1815
360 A Study of Grounding Grid Characteristics with Conductive Concrete

Authors: Chun-Yao Lee, Siang-Ren Wang

Abstract:

The purpose of this paper is to improve electromagnetic characteristics on grounding grid by applying the conductive concrete. The conductive concrete in this study is under an extra high voltage (EHV, 345kV) system located in a high-tech industrial park or science park. Instead of surrounding soil of grounding grid, the application of conductive concrete can reduce equipment damage and body damage caused by switching surges. The focus of the two cases on the EHV distribution system in a high-tech industrial park is presented to analyze four soil material styles. By comparing several soil material styles, the study results have shown that the conductive concrete can effectively reduce the negative damages caused by electromagnetic transient. The adoption of the style of grounding grid located 1.0 (m) underground and conductive concrete located from the ground surface to 1.25 (m) underground can obviously improve the electromagnetic characteristics so as to advance protective efficiency.

Keywords: Switching surges, grounding gird, electromagnetic transient, conductive concrete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1829
359 Current Developments in Flat-Plate Vacuum Solar Thermal Collectors

Authors: Farid Arya, Trevor Hyde, Paul Henshall, Phillip Eames, Roger Moss, Stan Shire

Abstract:

Vacuum flat plate solar thermal collectors offer several advantages over other collectors namely the excellent optical and thermal characteristics they exhibit due to a combination of their wide surface area and high vacuum thermal insulation. These characteristics can offer a variety of applications for industrial process heat as well as for building integration as they are much thinner than conventional collectors making installation possible in limited spaces. However, many technical challenges which need to be addressed to enable wide scale adoption of the technology still remain. This paper will discuss the challenges, expectations and requirements for the flat-plate vacuum solar collector development. In addition, it will provide an overview of work undertaken in Ulster University, Loughborough University, and the University of Warwick on flat-plate vacuum solar thermal collectors. Finally, this paper will present a detailed experimental investigation on the development of a vacuum panel with a novel sealing method which will be used to accommodate a novel slim hydroformed solar absorber.

Keywords: Hot box calorimeter, infrared thermography, solar thermal collector, vacuum insulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2373
358 The Role of Ionic Strength and Mineral Size to Zeta Potential for the Adhesion of P. putida to Mineral Surfaces

Authors: M. Z. Fathiah, R. G. Edyvean

Abstract:

Electrostatic interaction energy (ΔEEDL) is a part of the Extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory, which, together with van der Waals (ΔEVDW) and acid base (ΔEAB) interaction energies, has been extensively used to investigate the initial adhesion of bacteria to surfaces. Electrostatic or electrical double layer interaction energy is considerably affected by surface potential; however it cannot be determined experimentally and is usually replaced by zeta (ζ) potential via electrophoretic mobility. This paper focusses on the effect of ionic concentration as a function of pH and the effect of mineral grain size on ζ potential. It was found that both ionic strength and mineral grain size play a major role in determining the value of ζ potential for the adhesion of P. putida to hematite and quartz surfaces. Higher ζ potential values lead to higher electrostatic interaction energies and eventually to higher total XDLVO interaction energy resulting in bacterial repulsion.

Keywords: XDLVO, Electrostatic interaction energy, zeta potential, P. putida, mineral.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2575
357 Development of Recycled-Modified Asphalt Using Basalt Aggregate

Authors: Dong Wook Lee, Seung Hyun Kim, Jeongho Oh

Abstract:

With the strengthened regulation on the mandatory use of recycled aggregate, development of construction materials using recycled aggregate has recently increased. This study aimed to secure the performance of asphalt concrete mixture by developing recycled-modified asphalt using recycled basalt aggregate from the Jeju area. The strength of the basalt aggregate from the Jeju area used in this study was similar to that of general aggregate, while the specific surface area was larger due to the development of pores. Modified asphalt was developed using a general aggregate-recycled aggregate ratio of 7:3, and the results indicated that the Marshall stability increased by 27% compared to that of asphalt concrete mixture using only general aggregate, and the flow values showed similar levels. Also, the indirect tensile strength increased by 79%, and the toughness increased by more than 100%. In addition, the TSR for examining moisture resistance was 0.95 indicating that the reduction in the indirect tensile strength due to moisture was very low (5% level), and the developed recycled-modified asphalt could satisfy all the quality standards of asphalt concrete mixture.

Keywords: Asphalt Concrete Mixture, Performance Grade, Recycled Basalt Aggregate, Recycled-Modified Asphalt.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2023
356 Effect of Tube Materials and Special Coating on Coke Deposition in the Steam Cracking of Hydrocarbons

Authors: A. Niaei, D. Salari , N. Daneshvar, A. Chamandeh, R. Nabavi

Abstract:

The steam cracking reactions are always accompanied with the formation of coke which deposits on the walls of the tubular reactors. The investigation has attempted to control catalytic coking by the applying aluminum, zinc and ceramic coating like aluminum-magnesium by thermal spray and pack cementation method. Rate of coke formation during steam cracking of naphtha has been investigated both for uncoated stainless steel (with different alloys) and metal coating constructed with thermal Spray and pack cementation method with metal powders of Aluminum, Aluminum-Magnesium, zinc, silicon, nickel and chromium. The results of the study show that passivating the surface of SS321 with a coating of Aluminum and Aluminum-Magnesium can significantly reduce the rate of coke deposition during naphtha pyrolysis. SEM and EDAX techniques (Philips XL Series) were used to examine the coke deposits formed by the metal-hydrocarbon reactions. Our objective was to separate the different stages by identifying the characteristic morphologies.

Keywords: Steam Cracking, Pyrolysis, Coke deposition, thermalspray, Pack Cementation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2983
355 Thermal Resistance Analysis of Flexible Composites Based on Al2O3 Aerogels

Authors: Jianzheng Wei, Duo Zhen, Zhihan Yang, Huifeng Tan

Abstract:

The deployable descent technology is a lightweight entry method using an inflatable heat shield. The heatshield consists of a pressurized core which is covered by different layers of thermal insulation and flexible ablative materials in order to protect against the thermal loads. In this paper, both aluminum and silicon-aluminum aerogels were prepared by freeze-drying method. The latter material has bigger specific surface area and nano-scale pores. Mullite fibers are used as the reinforcing fibers to prepare the aerogel matrix to improve composite flexibility. The flexible composite materials were performed as an insulation layer to an underlying aramid fabric by a thermal shock test at a heat flux density of 120 kW/m2 and uniaxial tensile test. These results show that the aramid fabric with untreated mullite fibers as the thermal protective layer is completely carbonized at the heat of about 60 s. The aramid fabric as a thermal resistance layer of the composite material still has good mechanical properties at the same heat condition.

Keywords: Aerogel, aramid fabric, flexibility, thermal resistance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 761
354 Chemical Degradation of Dieldrin using Ferric Sulfide and Iron Powder

Authors: Junko Hara, Yoshishige Kawabe, Takeshi Komai, Chihiro Inoue

Abstract:

The chemical degradation of dieldrin in ferric sulfide and iron powder aqueous suspension was investigated in laboratory batch type experiments. To identify the reaction mechanism, reduced copper was used as reductant. More than 90% of dieldrin was degraded using both reaction systems after 29 days. Initial degradation rate of the pesticide using ferric sulfide was superior to that using iron powder. The reaction schemes were completely dissimilar even though the ferric ion plays an important role in both reaction systems. In the case of metallic iron powder, dieldrin undergoes partial dechlorination. This reaction proceeded by reductive hydrodechlorination with the generation of H+, which arise by oxidation of ferric iron. This reductive reaction was accelerated by reductant but mono-dechlorination intermediates were accumulated. On the other hand, oxidative degradation was observed in the reaction with ferric sulfide, and the stable chemical structure of dieldrin was decomposed into water-soluble intermediates. These reaction intermediates have no chemical structure of drin class. This dehalogenation reaction assumes to occur via the adsorbed hydroxyl radial generated on the surface of ferric sulfide.

Keywords: Dieldrin, kinetics, pesticide residue, soil remediation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2461
353 Investigation of Green Dye-Sensitized Solar Cells Based on Natural Dyes

Authors: M. Hosseinnezhad, K. Gharanjig

Abstract:

Natural dyes, extracted from black carrot and bramble, were utilized as photosensitizers to prepare dye-sensitized solar cells (DSSCs). Spectrophotometric studies of the natural dyes in solution and on a titanium dioxide substrate were carried out in order to assess changes in the status of the dyes. The results show that the bathochromic shift is seen on the photo-electrode substrate. The chemical binding of the natural dyes at the surface photo-electrode were increased by the chelating effect of the Ti(IV) ions. The cyclic voltammetry results showed that all extracts are suitable to be performed in DSSCs. Finally, photochemical performance and stability of DSSCs based on natural dyes were studied. The DSSCs sensitized by black carrot extract have been reported to achieve up to Jsc=1.17 mAcm-2, Voc= 0.55 V, FF= 0.52, η=0.34%, whereas Bramble extract can obtain up to Jsc=2.24 mAcm-2, Voc= 0.54 V, FF= 0.57, η=0.71%. The power conversion efficiency was obtained from the mixed dyes in DSSCs. The power conversion efficiency of dye-sensitized solar cells using mixed Black carrot and Bramble dye is the average of the their efficiency in single DSSCs.

Keywords: Anthocyanin, dye-sensitized solar cells, green energy, optical materials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1059
352 The Flexural Improvement of RC Beams Using an Inserted Plate between Concrete and FRP Bonding Surface

Authors: Woo Young Jung, Min Ho Kwon, Bu Seog Ju

Abstract:

The primary objective of this research is to improve the flexural capacity of FRP strengthened RC Beam structures with Aluminum and Titanium laminates. FRP rupture of flexural strengthened RC beams using FRP plates generally occurs at the interface between FRP plate and the beam. Therefore, in order to prevent brittle rupture and improve the ductility of the system, this research was performed by using Aluminum and Titanium materials between the two different structural systems. The research also aims to provide various strengthening/retrofitting methods for RC beam structures and to conduct a preliminary analysis of the demands on the structural systems. This was achieved by estimation using the experimental data from this research to identify a flexural capacity for the systems. Ultimately, the preliminary analysis of current study showed that the flexural capacity and system demand ductility was significantly improved by the systems inserted with Aluminum and Titanium anchor plates. Further verification of the experimental research is currently on its way to develop a new or reliable design guideline to retrofit/strengthen the concrete-FRP structural system can be evaluated.

Keywords: Reinforced Concrete, FRP Laminate, Flexural Capacity, Ductility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2591
351 Histological Structure of the Thyroid Gland in Duck: A Light and Electron Microscopic Study

Authors: Parchami A., Fatahian Dehkordi RF.

Abstract:

The present investigation aimed to study the histomorphometric characterizations of the thyroid gland of the duck. Five adult male and five adult female ducks were used in the experiment. Results showed that the overall histological structure of the thyroid gland of the duck were similar to those of the other vertebrae. The gland consisted of roughly spherical randomly distributed micro and macrofollicles with very little interstitial tissue between them. Each follicle is lined by a single layer of epithelial cells enclosing a cavity, the follicular cavity, which is filled with colloid. Ultrastructural findings showed that the apical surface of the follicular cells bears a variable number of short, irregularly distributed microvilli which are apparently more numerous on the columnar cells than on the lower, relatively inactive cells. Mitochondria and rough endoplasmic reticulum occupy the subnuclear region of the follicular cell, whereas the Golgi complex, free ribosomes and colloid droplets were found in the apical cytoplasm. At light or electron microscopic levels, there was no sex difference in histomorphometric characteristics of the thyroid glands.ls.

Keywords: Duck, Thyroid gland, Light microscopy, Electron microscopy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2521
350 Characterization of Electrospun Carbon Nanofiber Doped Polymer Composites

Authors: Atilla Evcin, Bahri Ersoy, Süleyman Akpınar, I. Sinan Atlı

Abstract:

Ceramic, polymer and composite nanofibers are nowadays begun to be utilized in many fields of nanotechnology. By the means of dimensions, these fibers are as small as nano scale but because of having large surface area and microstructural characteristics, they provide unique mechanic, optical, magnetic, electronic and chemical properties. In terms of nanofiber production, electrospinning has been the most widely used technique in recent years. In this study, carbon nanofibers have been synthesized from solutions of Polyacrylonitrile (PAN)/ N,N-dimethylformamide (DMF) by electrospinning method. The carbon nanofibers have been stabilized by oxidation at 250 °C for 2 h in air and carbonized at 750 °C for 1 h in H2/N2. Images of carbon nanofibers have been taken with scanning electron microscopy (SEM). The images have been analyzed to study the fiber morphology and to determine the distribution of the fiber diameter using FibraQuant 1.3 software. Then polymer composites have been produced from mixture of carbon nanofibers and silicone polymer. The final polymer composites have been characterized by X-ray diffraction method and scanning electron microscopy (SEM) energy dispersive X-ray (EDX) measurements. These results have been reported and discussed. At result, homogeneous carbon nanofibers with 100-167 nm of diameter were obtained with optimized electrospinning conditions.

Keywords: Electrospinning, characterization, composites, nanofiber.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 913
349 Numerical Analysis of Flow through Abrasive Water Suspension Jet: The Effect of Garnet, Aluminum Oxide and Silicon Carbide Abrasive on Skin Friction Coefficient Due To Wall Shear and Jet Exit Kinetic Energy

Authors: Deepak D, Anjaiah D, Yagnesh Sharma N.

Abstract:

It is well known that the abrasive particles in the abrasive water suspension has significant effect on the erosion characteristics of the inside surface of the nozzle. Abrasive particles moving with the flow cause severe skin friction effect, there by altering the nozzle diameter due to wear which in turn reflects on the life of the nozzle for effective machining. Various commercial abrasives are available for abrasive water jet machining. The erosion characteristic of each abrasive is different. In consideration of this aspect, in the present work, the effect of abrasive materials namely garnet, aluminum oxide and silicon carbide on skin friction coefficient due to wall shear stress and jet kinetic energy has been analyzed. It is found that the abrasive material of lower density produces a relatively higher skin friction effect and higher jet exit kinetic energy.

Keywords: Abrasive water suspension jet, Skin friction coefficient, Jet kinetic energy, Particulate loading, Stokes number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2160
348 Numerical Investigation of Embankment Settlement Improved by Method of Preloading by Vertical Drains

Authors: Seyed Abolhasan Naeini, Saeideh Mohammadi

Abstract:

Time dependent settlement due to loading on soft saturated soils produces many problems such as high consolidation settlements and low consolidation rates. Also, long term consolidation settlement of soft soil underlying the embankment leads to unpredicted settlements and cracks on soil surface. Preloading method is an effective improvement method to solve this problem. Using vertical drains in preloading method is an effective method for improving soft soils. Applying deep soil mixing method on soft soils is another effective method for improving soft soils. There are little studies on using two methods of preloading and deep soil mixing simultaneously. In this paper, the concurrent effect of preloading with deep soil mixing by vertical drains is investigated through a finite element code, Plaxis2D. The influence of parameters such as deep soil mixing columns spacing, existence of vertical drains and distance between them, on settlement and stability factor of safety of embankment embedded on soft soil is investigated in this research.

Keywords: Preloading, soft soil, vertical drains, deep soil mixing, consolidation settlement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 694
347 Roller Guide Design and Manufacturing for Spatial Cylindrical Cams

Authors: Yuan L. Lai, Jui P. Hung, Jian H. Chen

Abstract:

This paper was aimed at developing a computer aided design and manufacturing system for spatial cylindrical cams. In the proposed system, a milling tool with a diameter smaller than that of the roller, instead of the standard cutter for traditional machining process, was used to generate the tool path for spatial cams. To verify the feasibility of the proposed method, a multi-axis machining simulation software was further used to simulate the practical milling operation of spatial cams. It was observed from computer simulation that the tool path of small-sized cutter were within the motion range of a standard cutter, no occurrence of overcutting. Examination of a finished cam component clearly verifies the accuracy of the tool path generated for small-sized milling tool. It is believed that the use of small-sized cutter for the machining of the spatial cylindrical cams can generate a better surface morphology with higher accuracy. The improvement in efficiency and cost for the manufacturing of the spatial cylindrical cam can be expected through the proposed method.

Keywords: Cylindrical cams, Computer-aided manufacturing, Tool path.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3416
346 Oxidation of Selected Pharmaceuticals in Water Matrices by Bromine and Chlorine

Authors: Juan L. Acero, F. Javier Benitez, Francisco J. Real, Gloria Roldan, Francisco Casas

Abstract:

The bromination of five selected pharmaceuticals (metoprolol, naproxen, amoxicillin, hydrochlorotiazide and phenacetin) in ultrapure water and in three water matrices (a groundwater, a surface water from a public reservoir and a secondary effluent from a WWTP) was investigated. The apparent rate constants for the bromination reaction were determined as a function of the pH, and the sequence obtained for the reaction rate was amoxicillin > naproxen >> hydrochlorotiazide ≈ phenacetin ≈ metoprolol. The proposal of a kinetic mechanism, which specifies the dissociation of bromine and each pharmaceutical according to their pKa values and the pH allowed the determination of the intrinsic rate constants for every elementary reaction. The influence of the main operating conditions (pH, initial bromine dose, and the water matrix) on the degradation of pharmaceuticals was established. In addition, the presence of bromide in chlorination experiments was investigated. The presence of bromide in wastewaters and drinking waters in the range of 10 to several hundred μg L-1 accelerated slightly the oxidation of the selected pharmaceuticals during chorine disinfection.

Keywords: Pharmaceuticals, bromine, chlorine, apparent andintrinsic rate constants, water matrices, degradation rates

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2307
345 Experimental Study on the Creep Characteristics of FRC Base for Composite Pavement System

Authors: Woo-tai Jung, Sung-yong Choi, Young-hwan Park

Abstract:

The composite pavement system considered in this paper is composed of a functional surface layer, a fiber reinforced asphalt middle layer and a fiber reinforced lean concrete base layer. The mix design of the fiber reinforced lean concrete corresponds to the mix composition of conventional lean concrete but reinforced by fibers. The quasi-absence of research on the durability or long-term performances (fatigue, creep, etc.) of such mix design stresses the necessity to evaluate experimentally the long-term characteristics of this layer composition. This study tests the creep characteristics as one of the long-term characteristics of the fiber reinforced lean concrete layer for composite pavement using a new creep device. The test results reveal that the lean concrete mixed with fiber reinforcement and fly ash develops smaller creep than the conventional lean concrete. The results of the application of the CEB-FIP prediction equation indicate that a modified creep prediction equation should be developed to fit with the new mix design of the layer.

Keywords: Creep, Lean concrete, Pavement, Fiber reinforced concrete, Base.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2179
344 Experimental Study on the Creep Characteristics of FRC Base for Composite Pavement System

Authors: Woo-Tai Jung, Sung-Yong Choi, Young-Hwan Park

Abstract:

The composite pavement system considered in this paper is composed of a functional surface layer, a fiber reinforced asphalt middle layer and a fiber reinforced lean concrete base layer. The mix design of the fiber reinforced lean concrete corresponds to the mix composition of conventional lean concrete but reinforced by fibers. The quasi-absence of research on the durability or long-term performances (fatigue, creep, etc.) of such mix design stresses the necessity to evaluate experimentally the long-term characteristics of this layer composition. This study tests the creep characteristics as one of the long-term characteristics of the fiber reinforced lean concrete layer for composite pavement using a new creep device. The test results reveal that the lean concrete mixed with fiber reinforcement and fly ash develops smaller creep than the conventional lean concrete. The results of the application of the CEB-FIP prediction equation indicate that a modified creep prediction equation should be developed to fit with the new mix design of the layer.

Keywords: Creep, Lean concrete, Pavement, Fiber reinforced concrete, Base.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1334
343 Wind-tunnel Measurement of the Drag-reducing Effect of Compliant Coating

Authors: Inwon Lee, Victor M. Kulik, Andrey V. Boiko, Ho Hwan Chun

Abstract:

A specially designed flat plate was mounted vertically over the axial line in the wind tunnel of the Aerospace Department of the Pusan National University. The plate is 2 m long, 0.8 m high and 8 cm thick. The measurements were performed in velocity range from 15 to 60 m/s. A sand paper turbulizer was placed close to the plate nose to provide fully developed turbulent boundary layer over the most part of the plate. Strain balances were mounted in the trailing part of the plate to measure the skin friction drag over removable insertions of 0.55×0.25m2 size. A set of the insertions was designed and manufactured: 3mm thick polished metal surface and three compliant surfaces. The compliant surfaces were manufactured of a silicone rubber Silastic® S2 (Dow Corning company). To modify the viscoelastic properties of the rubber, its composition was varied: 90% of the rubber + 10% catalyst (standard), 92.5% + 7.5% (weak), 85% + 15% (strong). Modulus of elasticity and the loss tangent were measured accurately for these materials in the frequency range from 40 Hz to 3 KHz using the unique proposed technique.

Keywords: boundary layer, compliant coating, drag reduction, hot wire, wind tunnel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1655
342 MHD Non-Newtonian Nanofluid Flow over a Permeable Stretching Sheet with Heat Generation and Velocity Slip

Authors: Rama Bhargava, Mania Goyal

Abstract:

The problem of magnetohydrodynamics boundary layer flow and heat transfer on a permeable stretching surface in a second grade nanofluid under the effect of heat generation and partial slip is studied theoretically. The Brownian motion and thermophoresis effects are also considered. The boundary layer equations governed by the PDE’s are transformed into a set of ODE’s with the help of local similarity transformations. The differential equations are solved by variational finite element method. The effects of different controlling parameters on the flow field and heat transfer characteristics are examined. The numerical results for the dimensionless velocity, temperature and nanoparticle volume fraction as well as the reduced Nusselt and Sherwood number have been presented graphically. The comparison confirmed excellent agreement. The present study is of great interest in coating and suspensions, cooling of metallic plate, oils and grease, paper production, coal water or coal-oil slurries, heat exchangers technology, materials processing exploiting.

Keywords: Viscoelastic nanofluid, partial slip, stretching sheet, heat generation/absorption, MHD flow, FEM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3252
341 Objective Assessment of Psoriasis Lesion Thickness for PASI Scoring using 3D Digital Imaging

Authors: M.H. Ahmad Fadzil, Hurriyatul Fitriyah, Esa Prakasa, Hermawan Nugroho, S.H. Hussein, Azura Mohd. Affandi

Abstract:

Psoriasis is a chronic inflammatory skin condition which affects 2-3% of population around the world. Psoriasis Area and Severity Index (PASI) is a gold standard to assess psoriasis severity as well as the treatment efficacy. Although a gold standard, PASI is rarely used because it is tedious and complex. In practice, PASI score is determined subjectively by dermatologists, therefore inter and intra variations of assessment are possible to happen even among expert dermatologists. This research develops an algorithm to assess psoriasis lesion for PASI scoring objectively. Focus of this research is thickness assessment as one of PASI four parameters beside area, erythema and scaliness. Psoriasis lesion thickness is measured by averaging the total elevation from lesion base to lesion surface. Thickness values of 122 3D images taken from 39 patients are grouped into 4 PASI thickness score using K-means clustering. Validation on lesion base construction is performed using twelve body curvature models and show good result with coefficient of determinant (R2) is equal to 1.

Keywords: 3D digital imaging, base construction, PASI, psoriasis lesion thickness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2425
340 On the Variability of Tool Wear and Life at Disparate Operating Parameters

Authors: S. E. Oraby, A.M. Alaskari

Abstract:

The stochastic nature of tool life using conventional discrete-wear data from experimental tests usually exists due to many individual and interacting parameters. It is a common practice in batch production to continually use the same tool to machine different parts, using disparate machining parameters. In such an environment, the optimal points at which tools have to be changed, while achieving minimum production cost and maximum production rate within the surface roughness specifications, have not been adequately studied. In the current study, two relevant aspects are investigated using coated and uncoated inserts in turning operations: (i) the accuracy of using machinability information, from fixed parameters testing procedures, when variable parameters situations are emerged, and (ii) the credibility of tool life machinability data from prior discrete testing procedures in a non-stop machining. A novel technique is proposed and verified to normalize the conventional fixed parameters machinability data to suit the cases when parameters have to be changed for the same tool. Also, an experimental investigation has been established to evaluate the error in the tool life assessment when machinability from discrete testing procedures is employed in uninterrupted practical machining.

Keywords: Machinability, tool life, tool wear, wear variability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1768
339 Analysis of Thermal Deformation of a Rough Slider and Its Asperities and Its Impact on Load Generation in Parallel Sliders

Authors: Prawal Sinha, Getachew Adamu

Abstract:

Heating is inevitable in any bearing operation. This leads to not only the thinning of the lubricant but also could lead to a thermal deformation of the bearing. The present work is an attempt to analyze the influence of thermal deformation on the thermohydrodynamic lubrication of infinitely long tilted pad slider rough bearings. As a consequence of heating the slider is deformed and is assumed to take a parabolic shape. Also the asperities expand leading to smaller effective film thickness. Two different types of surface roughness are considered: longitudinal roughness and transverse roughness. Christensen-s stochastic approach is used to derive the Reynolds-type equations. Density and viscosity are considered to be temperature dependent. The modified Reynolds equation, momentum equation, continuity equation and energy equation are decoupled and solved using finite difference method to yield various bearing characteristics. From the numerical simulations it is observed that the performance of the bearing is significantly affected by the thermal distortion of the slider and asperities and even the parallel sliders seem to carry some load.

Keywords: Thermal Deformation, Tilted pad slider bearing, longitudinal roughness, transverse roughness, load capacity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1846
338 Malpractice, Even in Conditions of Compliance with the Rules of Dental Ethics

Authors: Saimir Heta, Kers Kapa, Rialda Xhizdari, Ilma Robo

Abstract:

Despite the existence of different dental specialties, the dentist-patient relationship is unique, in the very fact that the treatment is performed by one doctor and the patient identifies the malpractice presented as part of that doctor's practice; this is in complete contrast to cases of medical treatments where the patient can be presented to a team of doctors, to treat a specific pathology. The rules of dental ethics are almost the same as the rules of medical ethics. The appearance of dental malpractice affects exactly this two-party relationship, created on the basis of professionalism, without deviations in this direction, between the dentist and the patient, but with very narrow individual boundaries, compared to cases of medical malpractice. Malpractice can have different reasons for its appearance, starting from professional negligence, but also from the lack of professional knowledge of the dentist who undertakes the dental treatment. It should always be seen in perspective that we are not talking about the individual - the dentist who goes to work with the intention of harming their patients. Malpractice can also be a consequence of the impossibility, for anatomical or physiological reasons of the tooth under dental treatment, to realize the predetermined dental treatment plan. On the other hand, the dentist himself is an individual who can be affected by health conditions, or have vices that affect the systemic health of the dentist as an individual, which in these conditions can cause malpractice. So, depending on the reason that led to the appearance of malpractice, the method of treatment from a legal point of view also varies, for the dentist who committed the malpractice, evaluating the latter if the malpractice came under the conditions of applying the rules of dental ethics. The deviation from the predetermined dental plan is the minimum sign of malpractice and the latter should not be definitively related only to cases of difficult dental treatments. The identification of the reason for the appearance of malpractice is the initial element, which makes the difference in the way of its treatment, from a legal point of view, and the involvement of the dentist in the assessment of the malpractice committed, must be based on the legislation in force, which must be said to have their specific changes in different states. Malpractice should be referred to, or included in the lectures or in the continuing education of professionals, because it serves as a method of obtaining professional experience in order not to repeat the same thing several times, by different professionals.

Keywords: Dental ethics, malpractice, negligence, legal basis, continuing education, dental treatments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 91
337 Optimizing Electrospinning Parameters for Finest Diameter of Nano Fibers

Authors: M. Maleki, M. Latifi, M. Amani-Tehran

Abstract:

Nano fibers produced by electrospinning are of industrial and scientific attention due to their special characteristics such as long length, small diameter and high surface area. Applications of electrospun structures in nanotechnology are included tissue scaffolds, fibers for drug delivery, composite reinforcement, chemical sensing, enzyme immobilization, membrane-based filtration, protective clothing, catalysis, solar cells, electronic devices and others. Many polymer and ceramic precursor nano fibers have been successfully electrospun with diameters in the range from 1 nm to several microns. The process is complex so that fiber diameter is influenced by various material, design and operating parameters. The objective of this work is to apply genetic algorithm on the parameters of electrospinning which have the most significant effect on the nano fiber diameter to determine the optimum parameter values before doing experimental set up. Effective factors including initial polymer concentration, initial jet radius, electrical potential, relaxation time, initial elongation, viscosity and distance between nozzle and collector are considered to determine finest diameter which is selected by user.

Keywords: Electrospinning, genetic algorithm, nano fiber diameter, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1999
336 Experimental Investigation on the Effects of Electroless Nickel Phosphorus Deposition, pH and Temperature with the Varying Coating Bath Parameters on Impact Energy by Taguchi Method

Authors: D. Kari Basavaraja, M. G. Skanda, C. Soumya, V. Ramesh

Abstract:

This paper discusses the effects of sodium hypophosphite concentration, pH, and temperature on deposition rate. This paper also discusses the evaluation of coating strength, surface, and subsurface by varying the bath parameters, percentage of phosphate, plating temperature, and pH of the plating solution. Taguchi technique has been used for the analysis. In the experiment, nickel chloride which is a source of nickel when mixed with sodium hypophosphite has been used as the reducing agent and the source of phosphate and sodium hydroxide has been used to vary the pH of the coating bath. The coated samples are tested for impact energy by conducting impact test. Finally, the effects of coating bath parameters on the impact energy absorbed have been plotted, and analysis has been carried out. Further, percentage contribution of coating bath parameters using Design of Experiments approach (DOE) has been analysed. Finally, it can be concluded that the bath parameters of the Ni-P coating will certainly influence on the strength of the specimen.

Keywords: Bath parameters, coatings, design of experiment, fracture toughness, impact strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1276
335 Cyber Security Enhancement via Software-Defined Pseudo-Random Private IP Address Hopping

Authors: Andre Slonopas, Warren Thompson, Zona Kostic

Abstract:

Obfuscation is one of the most useful tools to prevent network compromise. Previous research focused on the obfuscation of the network communications between external-facing edge devices. This work proposes the use of two edge devices, external and internal facing, which communicates via private IPv4 addresses in a software-defined pseudo-random IP hopping. This methodology does not require additional IP addresses and/or resources to implement. Statistical analyses demonstrate that the hopping surface must be at least 1e3 IP addresses in size with a broad standard deviation to minimize the possibility of coincidence of monitored and communication IPs. The probability of breaking the hopping algorithm requires a collection of at least 1e6 samples, which for large hopping surfaces will take years to collect. The probability of dropped packets is controlled via memory buffers and the frequency of hops and can be reduced to levels acceptable for video streaming. This methodology provides an impenetrable layer of security ideal for information and supervisory control and data acquisition systems.

Keywords: Moving Target Defense, cybersecurity, network security, hopping randomization, software defined network, network security theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 553
334 Design of Coherent Thermal Emission Source by Excitation of Magnetic Polaritons between Metallic Gratings and an Opaque Metallic Film

Authors: Samah G. Babiker, Yong Shuai, Mohamed Osman Sid-Ahmed, Ming Xie, Mu Lei

Abstract:

The present paper studies a structure consisting of a periodic metallic grating, coated on a dielectric spacer atop an opaque metal substrate, using coherent thermal emission source in the infrared region. It has been theoretically demonstrated that by exciting surface magnetic polaritons between metallic gratings and an opaque metallic film, separated by a dielectric spacer, large emissivity peaks are almost independent of the emission angle and they can be achieved at the resonance frequencies. The reflectance spectrum of the proposed structure shows two resonances dip, which leads to a sharp emissivity peak. The relations of the reflection and absorption properties and the influence of geometric parameters on the radiative properties are investigated by rigorous coupled-wave analysis (RCWA). The proposed structure can be easily constructed, using micro/nanofabrication and can be used as the coherent thermal emission source.

Keywords: Coherent thermal emission, Polartons, Reflectance, Resonance frequency, Rigorous coupled wave analysis (RCWA).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2147