Search results for: feature selection methods
4585 E-Learning Methodology Development using Modeling
Authors: Sarma Cakula, Maija Sedleniece
Abstract:
Simulation and modeling computer programs are concerned with construction of models for analyzing different perspectives and possibilities in changing conditions environment. The paper presents theoretical justification and evaluation of qualitative e-learning development model in perspective of advancing modern technologies. There have been analyzed principles of qualitative e-learning in higher education, productivity of studying process using modern technologies, different kind of methods and future perspectives of e-learning in formal education. Theoretically grounded and practically tested model of developing e-learning methods using different technologies for different type of classroom, which can be used in professor-s decision making process to choose the most effective e-learning methods has been worked out.Keywords: E-learning, modeling, E-learning methods development, personal knowledge management
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19904584 Reading Literacy and Methods of Improving Reading
Authors: Iva Košek Bartošová, Andrea Jokešová, Eva Kozlová, Helena Matějová
Abstract:
The paper presents results of a research team from Faculty of Education, University of Hradec Králové in the Czech Republic. It introduces with the most reading methods used in the 1st classes of a primary school and presents results of a pilot research focused on mastering reading techniques and the quality of reading comprehension of pupils in the first half of a school year during training in teaching reading by an analytic-synthetic method and by a genetic method. These methods of practicing reading skills are the most used ones in the Czech Republic. During the school year 2015/16 there has been a measurement made of two groups of pupils of the 1st year and monitoring of quantitative and qualitative parameters of reading pupils’ outputs by several methods. Both of these methods are based on different theoretical basis and each of them has a specific educational and methodical procedure. This contribution represents results during a piloting project and draws pilot conclusions which will be verified in the subsequent broader research at the end of the school year of the first class of primary school.
Keywords: Analytic-synthetic method of reading, genetic method of reading, reading comprehension, reading literacy, reading methods, reading speed.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10424583 On Preprocessing of Speech Signals
Authors: Ayaz Keerio, Bhargav Kumar Mitra, Philip Birch, Rupert Young, Chris Chatwin
Abstract:
Preprocessing of speech signals is considered a crucial step in the development of a robust and efficient speech or speaker recognition system. In this paper, we present some popular statistical outlier-detection based strategies to segregate the silence/unvoiced part of the speech signal from the voiced portion. The proposed methods are based on the utilization of the 3 σ edit rule, and the Hampel Identifier which are compared with the conventional techniques: (i) short-time energy (STE) based methods, and (ii) distribution based methods. The results obtained after applying the proposed strategies on some test voice signals are encouraging.
Keywords: STE based methods, Mahalanobis distance, 3 edit σ rule, Hampel Identifier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17094582 LSGENSYS - An Integrated System for Pattern Recognition and Summarisation
Authors: Hema Nair
Abstract:
This paper presents a new system developed in Java® for pattern recognition and pattern summarisation in multi-band (RGB) satellite images. The system design is described in some detail. Results of testing the system to analyse and summarise patterns in SPOT MS images and LANDSAT images are also discussed.Keywords: Pattern recognition, image analysis, feature extraction, blackboard component, linguistic summary.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15474581 Extraction of Craniofacial Landmarks for Preoperative to Intraoperative Registration
Authors: M. Gooroochurn, D. Kerr, K. Bouazza-Marouf, M. Vloeberghs
Abstract:
This paper presents the automated methods employed for extracting craniofacial landmarks in white light images as part of a registration framework designed to support three neurosurgical procedures. The intraoperative space is characterised by white light stereo imaging while the preoperative plan is performed on CT scans. The registration aims at aligning these two modalities to provide a calibrated environment to enable image-guided solutions. The neurosurgical procedures can then be carried out by mapping the entry and target points from CT space onto the patient-s space. The registration basis adopted consists of natural landmarks (eye corner and ear tragus). A 5mm accuracy is deemed sufficient for these three procedures and the validity of the selected registration basis in achieving this accuracy has been assessed by simulation studies. The registration protocol is briefly described, followed by a presentation of the automated techniques developed for the extraction of the craniofacial features and results obtained from tests on the AR and FERET databases. Since the three targeted neurosurgical procedures are routinely used for head injury management, the effect of bruised/swollen faces on the automated algorithms is assessed. A user-interactive method is proposed to deal with such unpredictable circumstances.Keywords: Face Processing, Craniofacial Feature Extraction, Preoperative to Intraoperative Registration, Registration Basis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14134580 Adaptation of State/Transition-Based Methods for Embedded System Testing
Authors: Abdelaziz Guerrouat, Harald Richter
Abstract:
In this paper test generation methods and appropriate fault models for testing and analysis of embedded systems described as (extended) finite state machines ((E)FSMs) are presented. Compared to simple FSMs, EFSMs specify not only the control flow but also the data flow. Thus, we define a two-level fault model to cover both aspects. The goal of this paper is to reuse well-known FSM-based test generation methods for automation of embedded system testing. These methods have been widely used in testing and validation of protocols and communicating systems. In particular, (E)FSMs-based specification and testing is more advantageous because (E)FSMs support the formal semantic of already standardised formal description techniques (FDTs) despite of their popularity in the design of hardware and software systems.
Keywords: Formal methods, testing and validation, finite state machines, formal description techniques.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20934579 Low-Cost Mechatronic Design of an Omnidirectional Mobile Robot
Authors: S. Cobos-Guzman
Abstract:
This paper presents the results of a mechatronic design based on a 4-wheel omnidirectional mobile robot that can be used in indoor logistic applications. The low-level control has been selected using two open-source hardware (Raspberry Pi 3 Model B+ and Arduino Mega 2560) that control four industrial motors, four ultrasound sensors, four optical encoders, a vision system of two cameras, and a Hokuyo URG-04LX-UG01 laser scanner. Moreover, the system is powered with a lithium battery that can supply 24 V DC and a maximum current-hour of 20Ah.The Robot Operating System (ROS) has been implemented in the Raspberry Pi and the performance is evaluated with the selection of the sensors and hardware selected. The mechatronic system is evaluated and proposed safe modes of power distribution for controlling all the electronic devices based on different tests. Therefore, based on different performance results, some recommendations are indicated for using the Raspberry Pi and Arduino in terms of power, communication, and distribution of control for different devices. According to these recommendations, the selection of sensors is distributed in both real-time controllers (Arduino and Raspberry Pi). On the other hand, the drivers of the cameras have been implemented in Linux and a python program has been implemented to access the cameras. These cameras will be used for implementing a deep learning algorithm to recognize people and objects. In this way, the level of intelligence can be increased in combination with the maps that can be obtained from the laser scanner.
Keywords: Autonomous, indoor robot, mechatronic, omnidirectional robot.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5864578 Novel Methods for Desulfurization of Fuel Oils
Authors: H. Hosseini
Abstract:
Because of the requirement for low sulfur content of fuel oils, it is necessary to develop alternative methods for desulfurization of heavy fuel oil. Due to the disadvantages of HDS technologies such as costs, safety and green environment, new methods have been developed. Among these methods is ultrasoundassisted oxidative desulfurization. Using ultrasound-assisted oxidative desulfurization, compounds such as benzothiophene and dibenzothiophene can be oxidized. As an alternative method is sulfur elimination of heavy fuel oil by using of activated carbon in a packed column in batch condition. The removal of sulfur compounds in this case to reach about 99%. The most important property of activated carbon is ability of it for adsorption, which is due to high surface area and pore volume of it.Keywords: Desulfurization, Fuel oil, Activated carbon, Ultrasound-assisted oxidative desulfurization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 44574577 Human Action Recognition Using Variational Bayesian HMM with Dirichlet Process Mixture of Gaussian Wishart Emission Model
Authors: Wanhyun Cho, Soonja Kang, Sangkyoon Kim, Soonyoung Park
Abstract:
In this paper, we present the human action recognition method using the variational Bayesian HMM with the Dirichlet process mixture (DPM) of the Gaussian-Wishart emission model (GWEM). First, we define the Bayesian HMM based on the Dirichlet process, which allows an infinite number of Gaussian-Wishart components to support continuous emission observations. Second, we have considered an efficient variational Bayesian inference method that can be applied to drive the posterior distribution of hidden variables and model parameters for the proposed model based on training data. And then we have derived the predictive distribution that may be used to classify new action. Third, the paper proposes a process of extracting appropriate spatial-temporal feature vectors that can be used to recognize a wide range of human behaviors from input video image. Finally, we have conducted experiments that can evaluate the performance of the proposed method. The experimental results show that the method presented is more efficient with human action recognition than existing methods.
Keywords: Human action recognition, Bayesian HMM, Dirichlet process mixture model, Gaussian-Wishart emission model, Variational Bayesian inference, Prior distribution and approximate posterior distribution, KTH dataset.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10054576 Identifying Corruption in Legislation using Risk Analysis Methods
Authors: Chvalkovska, J., Jansky, P., Mejstrik, M.
Abstract:
The objective of this article is to discuss the potential of economic analysis as a tool for identification and evaluation of corruption in legislative acts. We propose that corruption be perceived as a risk variable within the legislative process. Therefore we find it appropriate to employ risk analysis methods, used in various fields of economics, for the evaluation of corruption in legislation. Furthermore we propose the incorporation of these methods into the so called corruption impact assessment (CIA), the general framework for detection of corruption in legislative acts. The applications of the risk analysis methods are demonstrated on examples of implementation of proposed CIA in the Czech Republic. Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24664575 Project and Module Based Teaching and Learning
Authors: Jingyu Hou
Abstract:
This paper proposes a new teaching and learning approach-project and module based teaching and learning (PMBTL). The PMBTL approach incorporates the merits of project/problem based and module based learning methods, and overcomes the limitations of these methods. The correlation between teaching, learning, practice and assessment is emphasized in this approach, and new methods have been proposed accordingly. The distinct features of these new methods differentiate the PMBTL approach from conventional teaching approaches. Evaluation of this approach on practical teaching and learning activities demonstrates the effectiveness and stability of the approach in improving the performance and quality of teaching and learning. The approach proposed in this paper is also intuitive to the design of other teaching units.
Keywords: Computer science education, project and module based, software engineering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34524574 Pipelined Control-Path Effects on Area and Performance of a Wormhole-Switched Network-on-Chip
Authors: Faizal A. Samman, Thomas Hollstein, Manfred Glesner
Abstract:
This paper presents design trade-off and performance impacts of the amount of pipeline phase of control path signals in a wormhole-switched network-on-chip (NoC). The numbers of the pipeline phase of the control path vary between two- and one-cycle pipeline phase. The control paths consist of the routing request paths for output selection and the arbitration paths for input selection. Data communications between on-chip routers are implemented synchronously and for quality of service, the inter-router data transports are controlled by using a link-level congestion control to avoid lose of data because of an overflow. The trade-off between the area (logic cell area) and the performance (bandwidth gain) of two proposed NoC router microarchitectures are presented in this paper. The performance evaluation is made by using a traffic scenario with different number of workloads under 2D mesh NoC topology using a static routing algorithm. By using a 130-nm CMOS standard-cell technology, our NoC routers can be clocked at 1 GHz, resulting in a high speed network link and high router bandwidth capacity of about 320 Gbit/s. Based on our experiments, the amount of control path pipeline stages gives more significant impact on the NoC performance than the impact on the logic area of the NoC router.Keywords: Network-on-Chip, Synchronous Parallel Pipeline, Router Architecture, Wormhole Switching
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14834573 Face Authentication for Access Control based on SVM using Class Characteristics
Authors: SeHun Lim, Sanghoon Kim, Sun-Tae Chung, Seongwon Cho
Abstract:
Face authentication for access control is a face membership authentication which passes the person of the incoming face if he turns out to be one of an enrolled person based on face recognition or rejects if not. Face membership authentication belongs to the two class classification problem where SVM(Support Vector Machine) has been successfully applied and shows better performance compared to the conventional threshold-based classification. However, most of previous SVMs have been trained using image feature vectors extracted from face images of each class member(enrolled class/unenrolled class) so that they are not robust to variations in illuminations, poses, and facial expressions and much affected by changes in member configuration of the enrolled class In this paper, we propose an effective face membership authentication method based on SVM using class discriminating features which represent an incoming face image-s associability with each class distinctively. These class discriminating features are weakly related with image features so that they are less affected by variations in illuminations, poses and facial expression. Through experiments, it is shown that the proposed face membership authentication method performs better than the threshold rule-based or the conventional SVM-based authentication methods and is relatively less affected by changes in member size and membership.Keywords: Face Authentication, Access control, member ship authentication, SVM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15084572 A Comparison of Recent Methods for Solving a Model 1D Convection Diffusion Equation
Authors: Ashvin Gopaul, Jayrani Cheeneebash, Kamleshsing Baurhoo
Abstract:
In this paper we study some numerical methods to solve a model one-dimensional convection–diffusion equation. The semi-discretisation of the space variable results into a system of ordinary differential equations and the solution of the latter involves the evaluation of a matrix exponent. Since the calculation of this term is computationally expensive, we study some methods based on Krylov subspace and on Restrictive Taylor series approximation respectively. We also consider the Chebyshev Pseudospectral collocation method to do the spatial discretisation and we present the numerical solution obtained by these methods.
Keywords: Chebyshev Pseudospectral collocation method, convection-diffusion equation, restrictive Taylor approximation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16804571 Watermark-based Counter for Restricting Digital Audio Consumption
Authors: Mikko Löytynoja, Nedeljko Cvejic, Tapio Seppänen
Abstract:
In this paper we introduce three watermarking methods that can be used to count the number of times that a user has played some content. The proposed methods are tested with audio content in our experimental system using the most common signal processing attacks. The test results show that the watermarking methods used enable the watermark to be extracted under the most common attacks with a low bit error rate.
Keywords: Digital rights management, restricted usage, content protection, spread spectrum, audio watermarking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14664570 Tariff as a Determining Factor in Choosing Mobile Operators: A Case Study from Higher Learning Institution in Dodoma Municipality in Tanzania
Authors: Justinian Anatory, Ekael Stephen Manase
Abstract:
In recent years, the adoption of mobile phones has been exceptionally rapid in many parts of the world, and Tanzania is not exceptional. We are witnessing a number of new mobile network operators being licensed from time to time by Tanzania Communications Regulatory Authority (TCRA). This makes competition in the telecommunications market very stiff. All mobile phone companies are struggling to earn more new customers into their networks. This trend courses a stiff competition. The various measures are being taken by different companies including, lowering tariff, and introducing free short messages within and out of their networks, and free calls during off-peak periods. This paper is aimed at investigating the influence of tariffs on students’ mobile customers in selecting their mobile network operators. About seventy seven students from high learning institutions in Dodoma Municipality, Tanzania, participated in responding to the prepared questionnaires. The sought information was aimed at determining if tariffs influenced students into selection of their current mobile operators. The results indicate that tariffs were the major driving factor in selection of mobile operators. However, female mobile customers were found to be more easily attracted into subscribing to a mobile operator due to low tariffs, a bigger number of free short messages or discounted call charges than their fellow male customers.
Keywords: Consumer Buying, mobile operators, tariff.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22394569 Iris Recognition Based On the Low Order Norms of Gradient Components
Authors: Iman A. Saad, Loay E. George
Abstract:
Iris pattern is an important biological feature of human body; it becomes very hot topic in both research and practical applications. In this paper, an algorithm is proposed for iris recognition and a simple, efficient and fast method is introduced to extract a set of discriminatory features using first order gradient operator applied on grayscale images. The gradient based features are robust, up to certain extents, against the variations may occur in contrast or brightness of iris image samples; the variations are mostly occur due lightening differences and camera changes. At first, the iris region is located, after that it is remapped to a rectangular area of size 360x60 pixels. Also, a new method is proposed for detecting eyelash and eyelid points; it depends on making image statistical analysis, to mark the eyelash and eyelid as a noise points. In order to cover the features localization (variation), the rectangular iris image is partitioned into N overlapped sub-images (blocks); then from each block a set of different average directional gradient densities values is calculated to be used as texture features vector. The applied gradient operators are taken along the horizontal, vertical and diagonal directions. The low order norms of gradient components were used to establish the feature vector. Euclidean distance based classifier was used as a matching metric for determining the degree of similarity between the features vector extracted from the tested iris image and template features vectors stored in the database. Experimental tests were performed using 2639 iris images from CASIA V4-Interival database, the attained recognition accuracy has reached up to 99.92%.
Keywords: Iris recognition, contrast stretching, gradient features, texture features, Euclidean metric.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19654568 Automated Transformation of 3D Point Cloud to Building Information Model: Leveraging Algorithmic Modeling for Efficient Reconstruction
Authors: Radul Shishkov, Petar Penchev
Abstract:
The digital era has revolutionized architectural practices, with Building Information Modeling (BIM) emerging as a pivotal tool for architects, engineers, and construction professionals. However, the transition from traditional methods to BIM-centric approaches poses significant challenges, particularly in the context of existing structures. This research presents a technical approach to bridge this gap through the development of algorithms that facilitate the automated transformation of 3D point cloud data into detailed BIM models. The core of this research lies in the application of algorithmic modeling and computational design methods to interpret and reconstruct point cloud data — a collection of data points in space, typically produced by 3D scanners — into comprehensive BIM models. This process involves complex stages of data cleaning, feature extraction, and geometric reconstruction, which are traditionally time-consuming and prone to human error. By automating these stages, our approach significantly enhances the efficiency and accuracy of creating BIM models for existing buildings. The proposed algorithms are designed to identify key architectural elements within point clouds, such as walls, windows, doors, and other structural components, and to translate these elements into their corresponding BIM representations. This includes the integration of parametric modeling techniques to ensure that the generated BIM models are not only geometrically accurate but also embedded with essential architectural and structural information. This research contributes significantly to the field of architectural technology by providing a scalable and efficient solution for the integration of existing structures into the BIM framework. It paves the way for more seamless and integrated workflows in renovation and heritage conservation projects, where the accuracy of existing conditions plays a critical role. The implications of this study extend beyond architectural practices, offering potential benefits in urban planning, facility management, and historical preservation.
Keywords: Algorithmic modeling, Building Information Modeling, point cloud, reconstruction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 204567 The Effect of Cooperation Teaching Method on Learning of Students in Primary Schools
Authors: Fereshteh Afkari, Davood Bagheri
Abstract:
The effect of teaching method on learning assistance Dunn Review .The study, to compare the effects of collaboration on teaching mathematics learning courses, including writing, science, experimental girl students by other methods of teaching basic first paid and the amount of learning students methods have been trained to cooperate with other students with other traditional methods have been trained to compare. The survey on 100 students in Tehran that using random sampling ¬ cluster of girl students between the first primary selections was performed. Considering the topic of semi-experimental research methods used to practice the necessary information by questionnaire, examination questions by the researcher, in collaboration with teachers and view authority in this field and related courses that teach these must have been collected. Research samples to test and control groups were divided. Experimental group and control group collaboration using traditional methods of mathematics courses, including writing and experimental sciences were trained. Research results using statistical methods T is obtained in two independent groups show that, through training assistance will lead to positive results and student learning in comparison with traditional methods, will increase also led to collaboration methods increase skills to solve math lesson practice, better understanding and increased skill level of students in practical lessons such as science and has been writing.Keywords: method of teaching, learning, collaboration
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16374566 A Framework for Improving Trade Contractors’ Productivity Tracking Methods
Authors: Sophia Hayes, Kenny L. Liang, Sahil Sharma, Austin Shema, Mahmoud Bader, Mohamed Elbarkouky
Abstract:
Despite being one of the most significant economic contributors of the country, Canada’s construction industry is lagging behind other sectors when it comes to labor productivity improvements. The construction industry is very collaborative as a general contractor, will hire trade contractors to perform most of a project’s work; meaning low productivity from one contractor can have a domino effect on the shared success of a project. To address this issue and encourage trade contractors to improve their productivity tracking methods, an investigative study was done on the productivity views and tracking methods of various trade contractors. Additionally, an in-depth review was done on four standard tracking methods used in the construction industry: cost codes, benchmarking, the job productivity measurement (JPM) standard, and WorkFace Planning (WFP). The four tracking methods were used as a baseline in comparing the trade contractors’ responses, determining gaps within their current tracking methods, and for making improvement recommendations. 15 interviews were conducted with different trades to analyze how contractors value productivity. The results of these analyses indicated that there seem to be gaps within the construction industry when it comes to an understanding of the purpose and value in productivity tracking. The trade contractors also shared their current productivity tracking systems; which were then compared to the four standard tracking methods used in the construction industry. Gaps were identified in their various tracking methods and using a framework; recommendations were made based on the type of trade on how to improve how they track productivity.
Keywords: Trade contractors’ productivity, productivity tracking, cost codes, benchmarking, job productivity measurement, JPM, workface planning WFP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8884565 Financing Decision and Productivity Growth for the Venture Capital Industry Using High-Order Fuzzy Time Series
Authors: Shang-En Yu
Abstract:
Human society, there are many uncertainties, such as economic growth rate forecast of the financial crisis, many scholars have, since the the Song Chissom two scholars in 1993 the concept of the so-called fuzzy time series (Fuzzy Time Series)different mode to deal with these problems, a previous study, however, usually does not consider the relevant variables selected and fuzzy process based solely on subjective opinions the fuzzy semantic discrete, so can not objectively reflect the characteristics of the data set, in addition to carrying outforecasts are often fuzzy rules as equally important, failed to consider the importance of each fuzzy rule. For these reasons, the variable selection (Factor Selection) through self-organizing map (Self-Organizing Map, SOM) and proposed high-end weighted multivariate fuzzy time series model based on fuzzy neural network (Fuzzy-BPN), and using the the sequential weighted average operator (Ordered Weighted Averaging operator, OWA) weighted prediction. Therefore, in order to verify the proposed method, the Taiwan stock exchange (Taiwan Stock Exchange Corporation) Taiwan Weighted Stock Index (Taiwan Stock Exchange Capitalization Weighted Stock Index, TAIEX) as experimental forecast target, in order to filter the appropriate variables in the experiment Finally, included in other studies in recent years mode in conjunction with this study, the results showed that the predictive ability of this study further improve.
Keywords: Heterogeneity, residential mortgage loans, foreclosure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13884564 Faster Pedestrian Recognition Using Deformable Part Models
Authors: Alessandro Preziosi, Antonio Prioletti, Luca Castangia
Abstract:
Deformable part models achieve high precision in pedestrian recognition, but all publicly available implementations are too slow for real-time applications. We implemented a deformable part model algorithm fast enough for real-time use by exploiting information about the camera position and orientation. This implementation is both faster and more precise than alternative DPM implementations. These results are obtained by computing convolutions in the frequency domain and using lookup tables to speed up feature computation. This approach is almost an order of magnitude faster than the reference DPM implementation, with no loss in precision. Knowing the position of the camera with respect to horizon it is also possible prune many hypotheses based on their size and location. The range of acceptable sizes and positions is set by looking at the statistical distribution of bounding boxes in labelled images. With this approach it is not needed to compute the entire feature pyramid: for example higher resolution features are only needed near the horizon. This results in an increase in mean average precision of 5% and an increase in speed by a factor of two. Furthermore, to reduce misdetections involving small pedestrians near the horizon, input images are supersampled near the horizon. Supersampling the image at 1.5 times the original scale, results in an increase in precision of about 4%. The implementation was tested against the public KITTI dataset, obtaining an 8% improvement in mean average precision over the best performing DPM-based method. By allowing for a small loss in precision computational time can be easily brought down to our target of 100ms per image, reaching a solution that is faster and still more precise than all publicly available DPM implementations.Keywords: Autonomous vehicles, deformable part model, dpm, pedestrian recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13974563 Comparison among Various Question Generations for Decision Tree Based State Tying in Persian Language
Authors: Nasibeh Nasiri, Dawood Talebi Khanmiri
Abstract:
Performance of any continuous speech recognition system is highly dependent on performance of the acoustic models. Generally, development of the robust spoken language technology relies on the availability of large amounts of data. Common way to cope with little data for training each state of Markov models is treebased state tying. This tying method applies contextual questions to tie states. Manual procedure for question generation suffers from human errors and is time consuming. Various automatically generated questions are used to construct decision tree. There are three approaches to generate questions to construct HMMs based on decision tree. One approach is based on misrecognized phonemes, another approach basically uses feature table and the other is based on state distributions corresponding to context-independent subword units. In this paper, all these methods of automatic question generation are applied to the decision tree on FARSDAT corpus in Persian language and their results are compared with those of manually generated questions. The results show that automatically generated questions yield much better results and can replace manually generated questions in Persian language.
Keywords: Decision Tree, Markov Models, Speech Recognition, State Tying.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17224562 Two Iterative Algorithms to Compute the Bisymmetric Solution of the Matrix Equation A1X1B1 + A2X2B2 + ... + AlXlBl = C
Authors: A.Tajaddini
Abstract:
In this paper, two matrix iterative methods are presented to solve the matrix equation A1X1B1 + A2X2B2 + ... + AlXlBl = C the minimum residual problem l i=1 AiXiBi−CF = minXi∈BRni×ni l i=1 AiXiBi−CF and the matrix nearness problem [X1, X2, ..., Xl] = min[X1,X2,...,Xl]∈SE [X1,X2, ...,Xl] − [X1, X2, ..., Xl]F , where BRni×ni is the set of bisymmetric matrices, and SE is the solution set of above matrix equation or minimum residual problem. These matrix iterative methods have faster convergence rate and higher accuracy than former methods. Paige’s algorithms are used as the frame method for deriving these matrix iterative methods. The numerical example is used to illustrate the efficiency of these new methods.
Keywords: Bisymmetric matrices, Paige’s algorithms, Least square.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13934561 Cloud Enterprise Application Provider Selection Model for the Small and Medium Enterprise: A Pilot Study
Authors: Rowland R. Ogunrinde, Yusmadi Y. Jusoh, Noraini Che Pa, Wan Nurhayati W. Rahman, Azizol B. Abdullah
Abstract:
Enterprise Applications (EAs) aid the organizations achieve operational excellence and competitive advantage. Over time, most Small and Medium Enterprises (SMEs), which are known to be the major drivers of most thriving global economies, use the costly on-premise versions of these applications thereby making business difficult to competitively thrive in the same market environment with their large enterprise counterparts. The advent of cloud computing presents the SMEs an affordable offer and great opportunities as such EAs can be cloud-hosted and rented on a pay-per-use basis which does not require huge initial capital. However, as there are numerous Cloud Service Providers (CSPs) offering EAs as Software-as-a-Service (SaaS), there is a challenge of choosing a suitable provider with Quality of Service (QoS) that meet the organizations’ customized requirements. The proposed model takes care of that and goes a step further to select the most affordable among a selected few of the CSPs. In the earlier stage, before developing the instrument and conducting the pilot test, the researchers conducted a structured interview with three experts to validate the proposed model. In conclusion, the validity and reliability of the instrument were tested through experts, typical respondents, and analyzed with SPSS 22. Results confirmed the validity of the proposed model and the validity and reliability of the instrument.
Keywords: Cloud service provider, enterprise applications, quality of service, selection criteria, small and medium enterprise.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7904560 A Simple and Empirical Refraction Correction Method for UAV-Based Shallow-Water Photogrammetry
Authors: I GD Yudha Partama, A. Kanno, Y. Akamatsu, R. Inui, M. Goto, M. Sekine
Abstract:
The aerial photogrammetry of shallow water bottoms has the potential to be an efficient high-resolution survey technique for shallow water topography, thanks to the advent of convenient UAV and automatic image processing techniques Structure-from-Motion (SfM) and Multi-View Stereo (MVS)). However, it suffers from the systematic overestimation of the bottom elevation, due to the light refraction at the air-water interface. In this study, we present an empirical method to correct for the effect of refraction after the usual SfM-MVS processing, using common software. The presented method utilizes the empirical relation between the measured true depth and the estimated apparent depth to generate an empirical correction factor. Furthermore, this correction factor was utilized to convert the apparent water depth into a refraction-corrected (real-scale) water depth. To examine its effectiveness, we applied the method to two river sites, and compared the RMS errors in the corrected bottom elevations with those obtained by three existing methods. The result shows that the presented method is more effective than the two existing methods: The method without applying correction factor and the method utilizes the refractive index of water (1.34) as correction factor. In comparison with the remaining existing method, which used the additive terms (offset) after calculating correction factor, the presented method performs well in Site 2 and worse in Site 1. However, we found this linear regression method to be unstable when the training data used for calibration are limited. It also suffers from a large negative bias in the correction factor when the apparent water depth estimated is affected by noise, according to our numerical experiment. Overall, the good accuracy of refraction correction method depends on various factors such as the locations, image acquisition, and GPS measurement conditions. The most effective method can be selected by using statistical selection (e.g. leave-one-out cross validation).Keywords: Bottom elevation, multi-view stereo, river, structure-from-motion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15804559 Different Teaching Methods for Program Design and Algorithmic Language
Authors: Yue Zhao, Jianping Li
Abstract:
This paper covers the present situation and problem of experimental teaching of mathematics specialty in recent years, puts forward and demonstrates experimental teaching methods for different education. From the aspects of content and experimental teaching approach, uses as an example the course “Experiment for Program Designing & Algorithmic Language" and discusses teaching practice and laboratory course work. In addition a series of successful methods and measures are introduced in experimental teaching.Keywords: Differentiated teaching, experimental teaching, program design and algorithmic language, teaching method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16324558 Design and Implementation of Client Server Network Management System for Ethernet LAN
Authors: May Paing Paing Zaw, Su Myat Marlar Soe
Abstract:
Network Management Systems have played a great important role in information systems. Management is very important and essential in any fields. There are many managements such as configuration management, fault management, performance management, security management, accounting management and etc. Among them, configuration, fault and security management is more important than others. Because these are essential and useful in any fields. Configuration management is to monitor and maintain the whole system or LAN. Fault management is to detect and troubleshoot the system. Security management is to control the whole system. This paper intends to increase the network management functionalities including configuration management, fault management and security management. In configuration management system, this paper specially can support the USB ports and devices to detect and read devices configuration and solve to detect hardware port and software ports. In security management system, this paper can provide the security feature for the user account setting and user management and proxy server feature. And all of the history of the security such as user account and proxy server history are kept in the java standard serializable file. So the user can view the history of the security and proxy server anytime. If the user uses this system, the user can ping the clients from the network and the user can view the result of the message in fault management system. And this system also provides to check the network card and can show the NIC card setting. This system is used RMI (Remote Method Invocation) and JNI (Java Native Interface) technology. This paper is to implement the client/server network management system using Java 2 Standard Edition (J2SE). This system can provide more than 10 clients. And then this paper intends to show data or message structure of client/server and how to work using TCP/IP protocol.
Keywords: TCP/ IP based client server application
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36024557 Hybridization and Evaluation of Jatropha (Jatropha curcas L.) to Improve High Yield Varieties in Indonesia
Authors: Rully D. Purwati, Tantri D. A. Anggraeni, Bambang Heliyanto, M. Machfud, Joko Hartono
Abstract:
Jatropha curcas L. is one of the crops producing non edible oil which is potential for bio-energy. Jatropha cultivation and development program in Indonesia is facing several problems especially low seed yield resulting in inefficient crop cultivation cost. To cope with the problem, development of high yielding varieties is necessary. Development of varieties to improve seed yield was conducted by hybridization and selection, and resulted in 14 potential genotypes. The yield potential of the 14 genotypes were evaluated and compared with two check varieties. The objective of the evaluation was to find Jatropha hybrids with some characters i.e. productivity higher than check varieties, oil content > 40% and harvesting age ≤ 110 days. Hybridization and individual plant selection were carried out from 2010 to 2014. Evaluation of high yield was conducted in Asembagus experimental station, Situbondo, East Java in three years (2015-2017). The experimental designed was Randomized Complete Block Design with three replication and plot size of 10 m x 8 m. The characters observed were number of capsules per plant, dry seed yield (kg/ha) and seed oil content (%). The results of this experiment indicated that all the hybrids evaluated have higher productivity than check variety IP-3A. There were two superior hybrids i.e. HS-49xSP-65/32 and HS-49xSP-19/28 with highest seed yield per hectare and number of capsules per plant during three years.
Keywords: Jatropha, biodiesel, hybrid, high seed yield.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7654556 Behavioral Analysis of Team Members in Virtual Organization based on Trust Dimension and Learning
Authors: Indiramma M., K. R. Anandakumar
Abstract:
Trust management and Reputation models are becoming integral part of Internet based applications such as CSCW, E-commerce and Grid Computing. Also the trust dimension is a significant social structure and key to social relations within a collaborative community. Collaborative Decision Making (CDM) is a difficult task in the context of distributed environment (information across different geographical locations) and multidisciplinary decisions are involved such as Virtual Organization (VO). To aid team decision making in VO, Decision Support System and social network analysis approaches are integrated. In such situations social learning helps an organization in terms of relationship, team formation, partner selection etc. In this paper we focus on trust learning. Trust learning is an important activity in terms of information exchange, negotiation, collaboration and trust assessment for cooperation among virtual team members. In this paper we have proposed a reinforcement learning which enhances the trust decision making capability of interacting agents during collaboration in problem solving activity. Trust computational model with learning that we present is adapted for best alternate selection of new project in the organization. We verify our model in a multi-agent simulation where the agents in the community learn to identify trustworthy members, inconsistent behavior and conflicting behavior of agents.Keywords: Collaborative Decision making, Trust, Multi Agent System (MAS), Bayesian Network, Reinforcement Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1893