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Abstract—Deformable part models achieve high precision in
pedestrian recognition, but all publicly available implementations are
too slow for real-time applications. We implemented a deformable
part model algorithm fast enough for real-time use by exploiting
information about the camera position and orientation. This
implementation is both faster and more precise than alternative
DPM implementations. These results are obtained by computing
convolutions in the frequency domain and using lookup tables to
speed up feature computation. This approach is almost an order of
magnitude faster than the reference DPM implementation, with no
loss in precision. Knowing the position of the camera with respect to
horizon it is also possible prune many hypotheses based on their
size and location. The range of acceptable sizes and positions is
set by looking at the statistical distribution of bounding boxes in
labelled images. With this approach it is not needed to compute the
entire feature pyramid: for example higher resolution features are
only needed near the horizon. This results in an increase in mean
average precision of 5% and an increase in speed by a factor of
two. Furthermore, to reduce misdetections involving small pedestrians
near the horizon, input images are supersampled near the horizon.
Supersampling the image at 1.5 times the original scale, results in
an increase in precision of about 4%. The implementation was tested
against the public KITTI dataset, obtaining an 8% improvement in
mean average precision over the best performing DPM-based method.
By allowing for a small loss in precision computational time can be
easily brought down to our target of 100ms per image, reaching a
solution that is faster and still more precise than all publicly available
DPM implementations.

Keywords—Autonomous vehicles, deformable part model, dpm,
pedestrian recognition.

I. INTRODUCTION

PEDESTRIAN recognition is an important task in the

automotive field, both for driving assistance technologies

and completely autonomous vehicles. Several algorithms

achieve high precision in this task, but their execution time is

not suitable for realtime applications. In this paper, we survey

publicly available implementations of the ”Deformable Part

Model” algorithm and explore different methods to speed up

detection for realtime applications. We obtain our best results

using lookup tables, computing convolutions in the frequency

domain, limiting our search using perspective information, and

supersampling the original images near the horizon.

In Section II, we compare publicly available

implementations of DPM. In Section III, we describe

our implementation. We show our results in Section IV,

singling out how different features improve speed and

detection accuracy.
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Antonio Prioletti and Luca Castangia are with the University of Parma
(http://vislab.it).

All tests were run on a laptop equipped with an Intel Core

i7-4700MQ cpu, consisting of four cores @ 2.40 GHz with

6MB of cache memory.

II. STATE OF THE ART

There are many open source implementations of DPM

available online as a standalone executable or as part of

a library, most are implemented in Matlab or C++. We

tested most publicly available implementations of DPM

against the KITTI dataset, with a particular attention to

execution speed. The following sections describe these

different implementations and their relative results in terms

of speed.

A. Vanilla DPM

OpenCV 2.4.9 offers an implementation of a DPM

classifier in the class LatentSvmDetector. It is based

on Felzenszwalb’s original paper [1], but the training part is

not implemented. Models can be trained using Felzenszwalb’s

software [1], and imported as an xml file. We tested this

implementation using a model trained on the INRIA person

dataset. The results were very poor in terms of speed, OpenCV

takes on average 4.38 seconds (±168ms) to analyze a single

frame form the KITTI dataset, making it unusable in a realtime

scenario.

It is possible to increase the number of threads to use, but

there is no speed difference for single-class detection.

B. Cascade DPM

Many detectors can be accelerated using cascade techniques,

which allow pruning unpromising detection areas before

computing their score entirely. This technique can be applied

to DPM, as shown in [2]. We can evaluate root locations

hypotheses under a simpler model, and only evaluate the high

scoring ones with a richer model. These simplified models can

be generated starting with the sole root filter, and sequentially

adding parts.

For a model of n + 1 parts (n parts + 1 root filter), [2]

generated a hierarchy of 2(n + 1) models. The first n + 1
models are generated by sequentially adding simplified parts,

while the second n+ 1 models are generated by sequentially

replacing simplified parts with the full-resolution ones.

Other than training the model itself, we also need to train

the pruning thresholds for each simplified model. Admissible

thresholds would not prune any partial hypothesis that leads to

a complete detection scoring above the global threshold. We
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can do this by looking at the statistics of partial hypotheses

scores over positive examples. This leads to a simple method

of picking thresholds depending on how big an error we are

willing to accept.

At any stage i of the partial score computation, we can

prune the hypothesis using two methods:

• Hypothesis pruning: We add to the current partial score

the score of additional part i, and if the result is lower

than a threshold ti we prune the hypothesis

• Deformation pruning: For each location of additional part

i, we calculate the deformation cost and subtract it form

the partial score. If the result is lower than a threshold t1i
then we avoid calculating the part score at that specific

location.

This means we can prune hypotheses earlier without

calculating part scores if the part would be too far away from

its ideal location, resulting in a lower score.

Felzenszwalb et al. [2] report an average time for person

recognition on the PASCAL dataset of 682ms (+459ms to

compute the HOG features), versus 8.5 seconds required by

their reference DPM implementation [3].

C. OpenCV’s Cascade DPM

Version 3.0 of the OpenCV library includes a faster version

of LatentSvmDetector, based on the cascade approach.

The new algorithm is the result of work by the NNSU team

and it is based on Felzenszwalb’s cascade DPM [2]. In theory

this, cascade approach could speed-up execution by about

one order of magnitude at a negligible loss of precision, as

shown in [2]. In our tests with the KITTI dataset execution

time was 1 second ±113ms, almost five times faster than

the previous openCV implementation, but still not enough for

realtime applications.

D. Vector Quantization

With a deformable part model, the majority of time during

detection is spent calculating convolutions of the filters with

the features of the input image. Much work has been done

trying to speed-up this process with different methods. Sadeghi

and Forsyth [4] achieved good results in speeding up template

evaluation using a technique called vector quantization. Vector

quantization offers speed-ups in situations where arithmetic

accuracy is not crucial, and it can offer a good increase in

speed at a negligible loss of precision.

Jegou et al. [5] first introduced vector quantization as

a technique to approximate nearest neighbour search. They

quantize space into a finite number of indexed regions and

represent any vector as a short code composed of a number of

subspace quantization indices. Based on this codification, they

can efficiently estimate the euclidean distance between two

vectors from their codes. This method can efficiently estimate

the score of a template at a certain location by looking-up a

number of tables, instead of multiplying vectors. Their work

has been very successful as it offers two orders of magnitude

speed-up with a reasonable accuracy.

In the case of DPM, if we have an m × n filter, the score

of the filter at location (x, y) is given by:

S(x, y) =

m∑

Δy=1

n∑

Δx=1

w(Δx,Δy) ·h(x+Δx− 1, y+Δy− 1)

where w and h are d dimentional vectors, containing

respectively a set of weights, and the features of the source

image at location (x,y). We want to compute an approximation

of this score where the accuracy of the approximation can

be easily manipulated, so that we can trade-off speed with

performance. To do so, we quantize the features in each cell

h(x,y) into c clusters, using a basic k-means procedure, and we

encode each quantized cell q(x,y), using its cluster ID (from 1

to c). In order to speed-up the scoring process, we pre-compute

the partial dot product of each template cell w(Δx,Δy) with

all possible c centroids and store them in a lookup table

T(Δx,Δy, i). We can then approximate the dot product by

looking up the table:

S(x, y) =

m∑

Δy=1

n∑

Δx=1

T(Δx,Δy, q(x+Δx− 1, y+Δy− 1))

This reduces the computational complexity of exhaustive

search from Θ(mnd) to Θ(mn), where d is typically 32.

In practice 32 multiplications and 32 additions are replaced

with one table lookup and one addition. This can potentially

speed-up the process by a factor of 32, although in practice,

table lookup is often slower than multiplication.

The vector quantization technique is compatible with a

cascade approach and can be easily incorporated into a

cascade detection algorithm to speed it up. While the time for

calculating convolutions is reduced (so testing a huge number

of templates is cheap), we pay a per-image penalty, because,

after computing the HOG features, we need an extra step to

compute the vector quantization.

We tested Sadeghi and Forsyth’s implementation [4] against

images of the KITTI dataset, using a pyramid of features with

10 intervals. The average execution time for a frame from the

KITTI dataset is 1.24s divided as shown in Table I.

TABLE I
TIME SPENT IN EACH STEP OF THE DETECTION PROCESS FOR

VECTOR-QUANTIZED DPM

Task Time
HOG feature computation 854ms
Feature quantization 290ms
Detection (person) 10ms
Total: 1.24s

The detection time is really small thanks to the use of

lookup tables. This means this technique is very advantageous

if we are trying to score a lot of classes at the same time (or,

using many models for a single class). Unfortunately there is

a non-negligible increase in computational time required to

quantize the HOG features (almost 300 milliseconds). This

means that if we’re trying to detect a single class, like in

our case, this technique can be disadvantageous because it

introduces an additional overhead in the feature computation

phase.
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E. Fourier Accelerated DPM

The sliding window approach requires convolving a filter

in every possible position of the source image, and computing

all the convolutions is a major bottleneck for DPM. There

is an easy way to speed-up this process, considering that

convolutions are equivalent to products in the frequency

domain we can compute a Fourier Transform of the input

and afterwards calculate cheap dot products instead of

convolutions, as suggested by Doubout and Fleuret [6].

We do a Fourier Transform of both the feature planes, and

the filter planes. Then, these are pointwise multiplied, which

is equivalent to a convolution in the spatial domain. Finally,

instead of computing an inverse transform for every plane,

and later adding up the score of each plane, we can sum

these scores in the frequency domain, thanks to the linearity

of the Fourier Transform, and then compute only one inverse

transform. This saves a lot of computational time, especially

if the filters are big. The transform of the filters can be done

offline, so for each frame we only need L + 1 transforms,

where L is the number of HOG planes.

Charles Dubout’s implementation, without modifications,

takes 465± 33ms for an image of the KITTI dataset.

The computation of the HOG features is also faster

compared to OpenCV’s implementation, as it uses a lookup

table to calculate the gradient angles. This is based on the

fact that pixels of an image have a limited range of values,

from 0 to 255, therefore a gradient in the x or y direction

is limited to 511 integers [−255, 255]. We can therefore

precompute a lookup table of 511x511 elements, to speed-up

the computation of the gradient orientation.

The calculation of HOG features in openCV’s

implementation takes on average 85 ± 7ms. Using lookup

tables it takes 51± 14ms. If we parallelize the calculation of

features for different scales we can get it down to 38±12ms.

According to [7], it is possible to further speed-up HOG

features computation and get it down to about 7ms, by using

lookup tables also for additional steps of the computation (a

total of three lookup tables).

III. OUR IMPLEMENTATION

Our final implementation is largely based on Dubout’s

version [6], using Fourier transform to compute convolutions.

FFTW [8] is used to calculate Fast Fourier Transforms,

and the Eigen [9] library is used for basic math (mostly

matrix multiplications). The models are loaded from a file

and transformed into the frequency domain. This is done

only once, at startup. Then for every input frame we

detect pedestrians using this cached model. The per-frame

computation can be divided into 4 main steps:

1) Feature computation;

2) Patchwork convolution;

3) Scoring;

4) Output.

In the rest of this section we will analyze all the different

steps in detail.

A. Initialization

At start up, a function loads a model mixture from a file into

memory. The models in the mixture are then transformed with

a fast Fourier transform, and cached in memory. The models

are trained using Felzenszwalb’s code, release 4 [3].

A mixture is a group of models representing a specific

category (in our case pedestrians), because a single model is

usually not enough to capture the different ways an object can

appear. For our tests we used mixtures of 6 models, which is

a typical number for pedestrian recognition.

Lowering the number of models in the mixture alone

decreases computational time, but it does not affect the time

required to compute HOG features of the input images and

transform them.

An alternative approach, suggested by [10] is to increase

the number of models in order to have models at several

resolutions but compute HOG features of the source image

at fewer scales. This is more time efficient than calculating

a higher density feature pyramid but using fewer models.

Dollar et al. [11] propose a method to generate a dense

feature pyramid in a fraction of the time, by interpolating

HOG features computed at few different resolutions. The same

approach could be applied to models, generating a higher

number of interpolated models at different resolutions.

B. Feature Computation

The parameter interval defines the number of scales at each

octave of our feature pyramid as shown in Fig. 1. The scale

of the i-th level of the pyramid is given by:

scale(i) = 21−(i/interval)

Fig. 1 A pyramid of features with interval set to 3. This means we will
have three levels for each octave. Every octave is halved in size compared

to the previous one

Because part filters are double the resolution of root filters,

when we are calculating the score of the model at level

i, we will compute the part scores at level i − interval.
Therefore, the first octave of the pyramid (the one at the

highest resolution) is only used for part scoring and not for root

filters. We compute this first octave, at double resolution, not

by doubling the image in size, but computing the HOG features

in cells of 4x4 instead of 8x8. Other octaves are calculated
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resizing the original image with a bilinear interpolation, and

using 8x8 cells.

The total number of octaves depends on the dimension of

the original image. We keep creating smaller levels as long as

the image is at least 40 pixels wide (5 cells). For RGB images,

the gradients are calculated for each of the three channels,

and the one with the highest magnitude is used for the feature

computation.

HOG features are normalized in 4x4 blocks with the same

normalization described by Dalal-Triggs [12]. Additionally, in

order to speed-up the feature computation, we use a lookup

table as described in [7]. The lookup table is calculated the

first time a feature pyramid is created, then stored in memory

and reused for every feature computation.

C. Patchwork Convolution

The FFTW library is optimized to compute Fourier

transforms of planes of a predefined size. Because of this,

instead of transforming every scale of the feature pyramid on

its own, we pack them into bigger planes of the same size,

making the computation faster. Fitting the pyramid scales into

a single patchwork layer is an optimization problem known

in the literature as the packing problem. In our case we use

a simple Bottom-Left algorithm [13] (complexity of O(n2)).
Each rectangle, starting from the biggest, is placed as close

to the bottom as will fit, and as closed to the left as possible,

without overlapping with previously placed rectangles. If not

enough space is available, a new patchwork plane is created.

Fig. 2 Patchwork creation with a BLF algorithm. The pyramid layers are
inserted from the biggest to the smallest, as low as it will fit and as close to

left as possible

Fig. 3 An actual patchwork created by the program, ready for
transformation. We create the minimum number of planes necessary to store
all pyramid layers (in this case 6 planes were required). Plane size is fixed

at initialization because the FFTW class is initialized and optimized to
transform images of a specific size for maximum speed

D. Scoring

At this point, we take the matrices representing the

transformed patchwork planes (p) and pointwise multiply them

with each transformed root and part filter (f ). The results

of these Hadamard products is then transformed back into

the spacial domain and stored in a (p ∗ f ) vector named

convolutions, which is used to calculate the score of each

model. For each model, in the mixture we loop over all parts

to calculate deformation costs. At the end of this phase we

have two vectors: Scores and positions. Scores will be used

to find out the highest scoring points of the original image,

and, for each of these points, positions will tell us the optimal

part positions given a certain root position (x, y).
Fig. 4 shows the scores vector at each scale of the

pyramid. A maximum can be easily seen at many scales,

in correspondence to the pedestrian in the source image.

This goes to show that the part-based representation does not

require an extremely dense feature pyramid. Even if the root

filter is not exactly equal in size to the pedestrian, pedestrians

will still score highly. But to obtain detection windows that

are as precise as possible, it is good to use a high number of

scales.

E. Output

Once the scores and positions vectors have been

populated, we scan the scores vector for each level of

the pyramid, looking for detections above the user-defined

threshold. Overlapping detections are removed (the detection

with the lower score is removed). The overlap criteria is

the same used for the PASCAL and KITTI challenges: Two

boxes are considered overlapping if the area of the intersection

over the area of the union is greater than 50% (or another

user-defined threshold).
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Fig. 4 (a) Response of the filter (root+parts) at various levels of the pyramid
generated from (a). We can see that the size of the filter does not have to
match precisely the size of the pedestrian to obtain a high filter response.

The pedestrian represents a maximum at most scales of the pyramid

F. Search Ranges

We manage to further speed-up and improve the precision

of our classifier by making some considerations regarding

perspective. With the method explained so far, we are

searching for pedestrians of all sizes in every possible position

of the source image. If we know where the horizon of the

image is, it is possible to discard many hypotheses based on

their size. This not only allows us to speed-up computation,

but also to decrease false positives.

Using perspective information as an additional constraint

is useful for any multi-scale, sliding-window approach, and

it can reduce execution time considerably, depending on how

strict the constraint is.

Our objective is to avoid calculating the filter convolution in

areas of the image where the filter size is not congruent with

perspective information. In our case, different considerations

must be made, as we calculate convolutions in the frequency

domain, and we use different resolutions for the root and part

features.

We use the details of the camera lens and its position to

learn the perspective center, and use two parameters, W0 and

W1, defining the minimum and maximum pedestrian width

in meters. From these parameters, for each line of the source

image, we can compute the minimum and maximum plausible

width of a pedestrian laying on that specific line, as shown in

Fig. 5.

Fig. 5 Given the information about the horizon position (u0), for each
scanline of the image we can estimate a minimum (W01) and maximum

(W11) plausible width of a pedestrian laying on that line, based on absolute
parameters W0 and W1 representing the minimum and maximum width of

pedestrians in meters

In our case, the filter size is constant, but we operate on a

pyramid of features at different scales, so higher resolution

scales are used to detect smaller pedestrians, while lower

resolution scales are used to detect pedestrians near the

camera. With this information, for every level of the feature

pyramid we compute features only in the area of the image

where pedestrians of that specific size can be found.

Given a specific filter, we can find out its size in the image

space by multiplying the filter width with the width of HOG

cells (8 in our case). For every scale of the pyramid we find

out which rows are useful according to parameters w0 and

w1 (for example, the highest resolution features will only be

needed near the horizon, to look for small pedestrians in the

distance). Now for each layer of the pyramid we have two

values minRow and maxRow, limiting our search at that level

of the feature pyramid. It is important to remember that every

layer of the pyramid is also used to search for parts when the

root filter is placed an octave above, because part filters have

double the resolution of root filters. So when using a root filter

at layer i, we will scan for parts at layer i− interval.
The useful area at level i, A(i) only represents the area for

root filters placed at that level, but we will also need features at
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that resolution to score the part filters at level i+interval. For

this reason at level i, the area for which we compute features

F (i) is:

F (i) = A(i) ∪A(i+ interval)

This is true for all layers except the first interval layers, which

are only used for part scoring, so the area needed is only

A(i + interval). Pruning detections that are not congruent

with perspective information gives an increase in mean average

precision of 5%. They also allow us to further reduce the total

computational time to about 105ms, which is an acceptable

speed for a real time scenario.

IV. RESULTS

We tested our algorithm on the KITTI dataset, which

provides labeled images as well as c++ code to calculate

precision/recall performance. Pedestrian from the KITTI

dataset are divided into three categories:

• Easy: Min. bounding box height: 40 Px, Max. occlusion

level: Fully visible, Max. truncation: 15%

• Moderate: Min. bounding box height: 25 Px, Max.

occlusion level: Partly occluded, Max. truncation: 30%

• Hard: Min. bounding box height: 25 Px, Max. occlusion

level: Difficult to see, Max. truncation: 50%

In Sections IV-A to IV-E we describe the tuning we applied

in different areas in order to obtain the best results.

A. Scaling

While resizing the source image to calculate HOG features

at different scales of the pyramid we noticed that using bilinear

interpolation instead of a simple nearest neighbour approach

gave us an increase in mAP from 23% to 27% for the moderate

pedestrian class.

B. Training

Training a model on a different dataset can make a huge

difference in detector performance and, as shown in Fig. 6, the

best results are achieved when training a model on a dataset

similar to the one used for testing.

Fig. 6 Effect of training set on the detection quality (lower is better for
INRIA, Caltech-USA and ETH, higher is better for KITTI). Bold indicates

the best result using a different training set

For our initial tests, we used a DPM mixture trained on

the Pascal dataset, we then switched to training out models

on the KITTI dataset, leading to a huge improvement in

precision-recall rates. We train mixtures of six models, three of

which are generated by the latent SVM training, the remaining

three are generated by mirroring the first three with respect to

the vertical axis.

Fig, 7 shows two mixtures, the one on the top row was

trained on the KITTI dataset, while the one on the bottom

row was trained on the Pascal 2007 dataset. Models trained

on the KITTI dataset give much better results in our tests,

because the images in the dataset are all captured from a

car-mounted camera, in urban settings. The Pascal challenge

includes images of humans in many different settings (on

a beach, at a restaurant, on a motorcycle, and so on) so,

the models trained on this dataset are more generic, but less

performing for our use case.

Fig. 7 A mixture trained on the KITTI dataset (first row) and one trained on
the more generic PASCAL dataset (second row). Models (a) and (d)

represent a pedestrian walking left and right. Models (b) and (e) represent a
pedestrian walking towards the camera. Model (c) represents an upright

pedestrian, while model (f) represents a person sitting at a table (where only
the chest and head are showing). The mixture in the first row is much more

effective in our case

Training a 6 models mixture gives us a pretty generic model,

and there is no sign of overfitting. In fact, even if we train

the mixture on the same images used for testing, there is

no improvement in precision-recall. We also tried training a

12-component mixture, without any improvement in results,

on the contrary, we experienced a small increase in false

positives. By training a model on the KITTI dataset (different

images than the ones used for testing) we obtain a big increase

in performance. Mean average precision for the moderate
class goes from 27% to 46,89%. Fig. 8 shows the difference

in precision-recall for moderate pedestrians using a model

trained on Pascal versus one trained on KITTI.

C. Optimal Search Ranges

Search ranges can greatly speed-up computation and prune

false positive detections, but it is important to choose them

carefully to avoid pruning useful detections.

The best analytical approach to choose the minimum and

maximum pedestrian width W0 and W1, is to take the ground

truth labels and analyze their distribution.

For all the labeled images in the dataset we stored, for each

row of the source image, the width of pedestrians that can be
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Fig. 8 Improvement in precision-recall for the moderate class using a model
trained on KITTI. Light green curve is trained on KITTI, dark green is

trained on Pascal

Fig. 9 Scatter plot of pedestrian width versus the row of the source image
where they lay

found at that row. Fig. 9 shows the results of this analysis as

a scatter plot.

We can clearly see from the plot that that no pedestrians

are positioned above the horizon (rows 0-150), and for each

row of the source image we know what size of pedestrians to

expect. Detections outside this range are likely false positives.

From the statistics of pedestrian width at different distances

extrapolated from labelled KITTI data, we can safely choose

the search ranges parameters W0 and W1. The exact values

maximizing average precision are W0 = 0.346m and W1 =
1.39m.

D. Detecting Small Pedestrians

As we can see from Fig. 10, the majority of pedestrians that

we miss are the small ones, placed near the horizon. This is

not surprising given that the minimum width of our root filters

is 4 HOG cells, corresponding to 4× 8 = 32 pixels (see Fig.

7). Most of the pedestrians that we do not detect are below 35

pixels in width, as shown from Fig. 10. In order to allow us to

detect these smaller instances we introduce a new parameter

called scale.

Fig. 10 Undetected (in red) and detected (in green) pedestrian instances, for
each image row and pedestrian width

Before creating the HOG pyramid, the source image

is scaled based on the scale parameter (using bilinear

interpolation). If we use a a scale parameter of 2.0 our 32

pixels filter will effectively work as a 16 pixels filter.

Using a scale parameter of 1.5 brings a good improvement

in average precision. Fig. 11 shows our precision-recall results

using a scale of 1.5, for the Moderate class we obtain an

increased mean average precision of 0.52% versus 0.478%.

Fig. 11 Precision-recall using scale=1.5, 10 intervals, search ranges disabled

This increase in precision comes at a cost in computational

time, but the increase is not linear, because by using search

ranges the highest resolution image is only used to search for

pedestrians on a small strip near the horizon.

E. Overlap

As described in Section III-E, we use an overlap parameter

for the final non-maximum suppression step.

To understand which overlap value gives the best results,

we calculated mean average precision over overlap values from

0.1 to 0.9, the results are shown in Fig. 12

A value of 0.4 gives the best results for the easy and

moderate class. For the hard class, while 0.4 is a local

maximum, slightly better results are obtained using higher

overlap values. This could be explained by the fact that

the hard class is constituted by smaller and sometimes

overlapping pedestrians, therefore, using a smaller overlap
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Fig. 12 Change in mean average precision for the easy, moderate and
hard class, when changing the overlap parameter. (tests were done with

interval = 2 and search ranges disabled)

value would lead to the elimination of some detections that

were correct, but overlapping (in that case the less visible

detection with the smaller score is eliminated).

A lower overlap value decreases the number of false

positives, leading to better mean average precision. But, as

shown in figure, if we want high recall and do not care too

much about precision, then using a higher overlap value can

be a better choice (increasing value over 0.6 does not lead to

better results).

F. Comparison with the State of the Art

We obtained our best results using 10 pyramid intervals, a

scale of 1.5 and search ranges. Enabling search ranges gives

us an additional improvement in precision-recall, allowing us

to obtain an average precision of 54.79% on the moderate
class. As we can see from Table II, our method outperforms

all other DPM-based methods on the KITTI dataset, even

those exploiting additional information, such as fusion-DPM,

which uses dense point clouds generated by a lidar sensor, or

DPM-C8B1, which uses stereo information.

TABLE II
MEAN AVERAGE PRECISION ON THE KITTI DATASET FOR PEDESTRIAN

CLASS OF METHODS BASED ON DPM

Method Moderate Easy Hard
Ours 54.79 % 66.76 % 46.55 %

Fusion-DPM 46.67 % 59.51 % 42.05 %
DA-DPM 45.51 % 56.36 % 41.08 %

LSVM-MDPM-sv 39.36 % 47.74 % 35.95 %
LSVM-MDPM-us 38.35 % 45.50 % 34.78 %

DPM-C8B1 29.03 % 38.96 % 25.61 %

Fusion-DPM [14] uses lidar data in addition to RGB information. DA-DPM
[15] uses Domain Adaptation. DPM-C8B1 [16] uses stereo information.

G. Speed

Computing convolutions in the frequency domain as in

[6] makes our algorithm faster than most state-of-the-art

DPM implementations, without any loss in precision. Using

a 10 interval pyramid and no search ranges, the average

computational time for a frame in the KITTI dataset is

520 ± 26ms. This is good for a DPM detector, but not

enough for our use case. By allowing for a small loss in

precision we can further speed-up our algorithm. The norm

for challenges that only require high precision, but have no

speed requirements, is to construct a feature pyramid with

10 intervals. The problem is that this requires calculating

the HOG features many times, and in our case also doing

many Fourier transforms. As explored in [10], for real time

detection, it is more efficient to use fewer scales of the

input image, and use a greater number of filters representing

multiple scales. This reduces the computational time required

for feature extraction.

Increasing the number of intervals allows us to produce

more precise bounding boxes which is desirable to score

highly on challenges, but not necessary for all applications.

As shown in Fig. 13, there are diminishing returns in terms

of average precision when using additional pyramid levels,

while time increases linearly.

Fig. 13 Change in average precision and computational time when
increasing the number of pyramid intervals

Lowering the number of pyramid intervals does not lower

average precision too much as long as we use more than

1 interval. The decrease in precision from using 2 intervals

instead of 10 is about 3%, while computational time is

more than halved (we go from 550ms to 180ms), the

precision-recall curves are very similar.

Even with pedestrians of many different scales, an interval

value of 2 is usually enough to detect all pedestrians in the

image, as shown in Fig. 14.

The introduction of search ranges allows us to further

speed-up the algorithm. For our test data we found W0 =
0.346 and W1 = 1.39 to be the optimal parameters

maximizing average precision. There is a tradeoff between

speed and average precision when choosing these parameters.

For example, if we increase W0 execution time decreases

linearly, but precision will decrease as well, as we are going to

miss some of the smallest pedestrians. If we are not interested

in detecting small pedestrians far away and prefer a faster

detection this kind of tradeoff can be taken into consideration,

depending on the application. For our results, we used the

optimal W0 and W1 parameters, as the increase in speed by

using stricter limits did not seem enough to justify the loss in

precision.

H. Speed Results

Calculating convolutions in the frequency domain allows

us to decrease computational time from about 3 seconds to
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Fig. 14 Detections using interval=1,2,10. Increasing interval from 2 to 10
does not lead to any additional detection

550ms, with no loss in average precision. Decreasing the

pyramid intervals from 10 to 2 allows us to bring execution

time down to 180ms per image, with a loss in average

precision of about 2%. Enabling search ranges allows us to

further reduce execution time to 105ms, with no decrease in

average precision. By using different W0 and W1 parameters

we can bring execution time even further down, but at a loss

of average precision. Fig. 15 shows our precision-recall results

using this fast configuration. We achieve an average precision

of 49.6%, which is still better than all DPM-based solutions

published on the KITTI benchmark website.

Fig. 15 Precision-recall results using our fast configuration (runtime =
0.1s)

Our execution time is divided as shown in Table III.

TABLE III
TIME SPENT IN EACH STEP OF THE DETECTION PROCESS

Task Time
HOG feature computation 51ms
Patchwork creation and transformation 11ms
Convolution and distance transform 43ms

About 25% of the time is spent in the function calculating

the matrix pointwise product between the transformed filters

and the transformed patchwork planes. It could be possible to

speed-up this part of the process by calculating products on

the GPU. In Table IV, we compare our timing results with

alternative DPM implementations tested by us and results of

DPM based methods published on KITTI’s evaluation website.

TABLE IV
EXECUTION TIME OF DIFFERENT DPM BASED METHODS FOR ONE

IMAGE OF THE KITTI DATASET (*OBTAINED FROM [17])

Method Time Environment
Fusion DPM * 30s 1 core @ 3.5 Ghz
DA-DPM * 21s 1 core @ 3.5 Ghz
LSVM-DPM * 10s 4 cores @ 3.0 Ghz
OpenCV vanilla 4.38s 4 cores @ 2.4 Ghz
OpenCV cascade 1.00s 4 cores @ 2.4 Ghz
FTVQ 1.24s 4 cores @ 2.4 Ghz
FFT 0.55s 4 cores @ 2.4 Ghz
Ours (best settings) 0.41s 4 cores @ 2.4 Ghz
Ours (fast settings) 0.10s 4 cores @ 2.4 Ghz

Our implementation is faster than all the alternative

DPM-based methods that we tested on the KITTI dataset.

Images from the KITTI dataset are 1242 × 375, for smaller

images (e.g. 640 × 480) our method can perform at 20 or

more frames per second. This results are compatible with a

real-time usage scenario, which is our main concern. It may be

possible to further speed-up our method by computing matrix

multiplications on a GPU, or using a cascade method to avoid

computing all the distance transforms for parts in unpromising

areas.

V. CONCLUSIONS

We implemented a fast deformable part model detector

based on the work by Dubout et al. [6], which speeds

up the process by computing convolutions in the frequency

domain. We managed to increase average precision by pruning

false positives based on perspective information (+2.8%), and

supersampling images using bilinear interpolation (+4%). We

reach a mean average precision of 55% for the moderate
pedestrian class on the KITTI dataset, outperforming all

DPM-based methods, including those using extra information

such as lidar point clouds.

By lowering the number of pyramid intervals and exploiting

prospective information, we can bring down computational

time for an image in the KITTI dataset to about 100

milliseconds. Our implementation is suitable for real-time

applications and it is faster than all publicly available DPM

implementations.

Most of our missed detections are occluded or very small

pedestrians. For future work, finding a method to model

occlusions could decrease miss rate. In order to increase

execution speed pointwise matrix multiplications could be

computed on a GPU, and a cascade approach may be

implemented to avoid scoring part deformation costs for all

points of the image.
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