Search results for: Analytic Network Process (ANP)
6988 Adaptive Pulse Coupled Neural Network Parameters for Image Segmentation
Authors: Thejaswi H. Raya, Vineetha Bettaiah, Heggere S. Ranganath
Abstract:
For over a decade, the Pulse Coupled Neural Network (PCNN) based algorithms have been successfully used in image interpretation applications including image segmentation. There are several versions of the PCNN based image segmentation methods, and the segmentation accuracy of all of them is very sensitive to the values of the network parameters. Most methods treat PCNN parameters like linking coefficient and primary firing threshold as global parameters, and determine them by trial-and-error. The automatic determination of appropriate values for linking coefficient, and primary firing threshold is a challenging problem and deserves further research. This paper presents a method for obtaining global as well as local values for the linking coefficient and the primary firing threshold for neurons directly from the image statistics. Extensive simulation results show that the proposed approach achieves excellent segmentation accuracy comparable to the best accuracy obtainable by trial-and-error for a variety of images.Keywords: Automatic Selection of PCNN Parameters, Image Segmentation, Neural Networks, Pulse Coupled Neural Network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22886987 Software Architecture and Support for Patient Tracking Systems in Critical Scenarios
Authors: Gianluca Cornetta, Abdellah Touhafi, David J. Santos, Jose Manuel Vazquez
Abstract:
In this work a new platform for mobile-health systems is presented. System target application is providing decision support to rescue corps or military medical personnel in combat areas. Software architecture relies on a distributed client-server system that manages a wireless ad-hoc networks hierarchy in which several different types of client operate. Each client is characterized for different hardware and software requirements. Lower hierarchy levels rely in a network of completely custom devices that store clinical information and patient status and are designed to form an ad-hoc network operating in the 2.4 GHz ISM band and complying with the IEEE 802.15.4 standard (ZigBee). Medical personnel may interact with such devices, that are called MICs (Medical Information Carriers), by means of a PDA (Personal Digital Assistant) or a MDA (Medical Digital Assistant), and transmit the information stored in their local databases as well as issue a service request to the upper hierarchy levels by using IEEE 802.11 a/b/g standard (WiFi). The server acts as a repository that stores both medical evacuation forms and associated events (e.g., a teleconsulting request). All the actors participating in the diagnostic or evacuation process may access asynchronously to such repository and update its content or generate new events. The designed system pretends to optimise and improve information spreading and flow among all the system components with the aim of improving both diagnostic quality and evacuation process.Keywords: IEEE 802.15.4 (ZigBee), IEEE 802.11 a/b/g (WiFi), distributed client-server systems, embedded databases, issue trackers, ad-hoc networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20396986 Smart Technology for Hygrothermal Performance of Low Carbon Material Using an Artificial Neural Network Model
Authors: Manal Bouasria, Mohammed-Hichem Benzaama, Valérie Pralong, Yassine El Mendili
Abstract:
Reducing the quantity of cement in cementitious composites can help to reduce the environmental effect of construction materials. Byproducts such as ferronickel slags (FNS), fly ash (FA), and waste as Crepidula fornicata shells (CR) are promising options for cement replacement. In this work, we investigated the relevance of substituting cement with FNS-CR and FA-CR on the mechanical properties of mortar and on the thermal properties of concrete. Foraging intervals ranging from 2 days to 28 days, the mechanical properties are obtained by 3-point bending and compression tests. The chosen mix is used to construct a prototype in order to study the material’s hygrothermal performance. The data collected by the sensors placed on the prototype were utilized to build an artificial neural network.
Keywords: Artificial neural network, cement, circular economy, concrete, byproducts.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3566985 Earth Station Neural Network Control Methodology and Simulation
Authors: Hanaa T. El-Madany, Faten H. Fahmy, Ninet M. A. El-Rahman, Hassen T. Dorrah
Abstract:
Renewable energy resources are inexhaustible, clean as compared with conventional resources. Also, it is used to supply regions with no grid, no telephone lines, and often with difficult accessibility by common transport. Satellite earth stations which located in remote areas are the most important application of renewable energy. Neural control is a branch of the general field of intelligent control, which is based on the concept of artificial intelligence. This paper presents the mathematical modeling of satellite earth station power system which is required for simulating the system.Aswan is selected to be the site under consideration because it is a rich region with solar energy. The complete power system is simulated using MATLAB–SIMULINK.An artificial neural network (ANN) based model has been developed for the optimum operation of earth station power system. An ANN is trained using a back propagation with Levenberg–Marquardt algorithm. The best validation performance is obtained for minimum mean square error. The regression between the network output and the corresponding target is equal to 96% which means a high accuracy. Neural network controller architecture gives satisfactory results with small number of neurons, hence better in terms of memory and time are required for NNC implementation. The results indicate that the proposed control unit using ANN can be successfully used for controlling the satellite earth station power system.
Keywords: Satellite, neural network, MATLAB, power system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18686984 Enhancing the Connectedness in Ad–hoc Mesh Networks using the Terranet Technology
Authors: Obeidat I., Bsoul M., Khasawneh A., Kilani Y.
Abstract:
This paper simulates the ad-hoc mesh network in rural areas, where such networks receive great attention due to their cost, since installing the infrastructure for regular networks in these areas is not possible due to the high cost. The distance between the communicating nodes is the most obstacles that the ad-hoc mesh network will face. For example, in Terranet technology, two nodes can communicate if they are only one kilometer far from each other. However, if the distance between them is more than one kilometer, then each node in the ad-hoc mesh networks has to act as a router that forwards the data it receives to other nodes. In this paper, we try to find the critical number of nodes which makes the network fully connected in a particular area, and then propose a method to enhance the intermediate node to accept to be a router to forward the data from the sender to the receiver. Much work was done on technological changes on peer to peer networks, but the focus of this paper will be on another feature which is to find the minimum number of nodes needed for a particular area to be fully connected and then to enhance the users to switch on their phones and accept to work as a router for other nodes. Our method raises the successful calls to 81.5% out of 100% attempt calls.
Keywords: Adjacency matrix, Ad-hoc mesh network, Connectedness, Terranet technology
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16196983 A Multimedia Telemonitoring Network for Healthcare
Authors: Hariton N. Costin, Sorin Puscoci, Cristian Rotariu, Bogdan Dionisie, Marinela C. Cimpoesu
Abstract:
TELMES project aims to develop a securized multimedia system devoted to medical consultation teleservices. It will be finalized with a pilot system for a regional telecenters network that connects local telecenters, having as support multimedia platforms. This network will enable the implementation of complex medical teleservices (teleconsulations, telemonitoring, homecare, urgency medicine, etc.) for a broader range of patients and medical professionals, mainly for family doctors and those people living in rural or isolated regions. Thus, a multimedia, scalable network, based on modern IT&C paradigms, will result. It will gather two inter-connected regional telecenters, in Iaşi and Piteşti, Romania, each of them also permitting local connections of hospitals, diagnostic and treatment centers, as well as local networks of family doctors, patients, even educational entities. As communications infrastructure, we aim to develop a combined fixmobile- internet (broadband) links. Other possible communication environments will be GSM/GPRS/3G and radio waves. The electrocardiogram (ECG) acquisition, internet transmission and local analysis, using embedded technologies, was already successfully done for patients- telemonitoring.Keywords: Healthcare, telemedicine, telemonitoring, ECG analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18216982 Minimizing the Broadcast Traffic in the Jordanian Discovery Schools Network using PPPoE
Authors: Sameh H. Ghwanmeh
Abstract:
Discovery schools in Jordan are connected in one flat ATM bridge network. All Schools connected to the network will hear broadcast traffic. High percentage of unwanted traffic such as broadcast, consumes the bandwidth between schools and QRC. Routers in QRC have high CPU utilization. The number of connections on the router is very high, and may exceed recommend manufacturing specifications. One way to minimize number of connections to the routers in QRC, and minimize broadcast traffic is to use PPPoE. In this study, a PPPoE solution has been presented which shows high performance for the clients when accessing the school server resources. Despite the large number of the discovery schools at MoE, the experimental results show that the PPPoE solution is able to yield a satisfactory performance for each client at the school and noticeably reduce the traffic broadcast to the QRC.Keywords: Education, networking, performance, e-content.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16416981 Person Identification by Using AR Model for EEG Signals
Authors: Gelareh Mohammadi, Parisa Shoushtari, Behnam Molaee Ardekani, Mohammad B. Shamsollahi
Abstract:
A direct connection between ElectroEncephaloGram (EEG) and the genetic information of individuals has been investigated by neurophysiologists and psychiatrists since 1960-s; and it opens a new research area in the science. This paper focuses on the person identification based on feature extracted from the EEG which can show a direct connection between EEG and the genetic information of subjects. In this work the full EO EEG signal of healthy individuals are estimated by an autoregressive (AR) model and the AR parameters are extracted as features. Here for feature vector constitution, two methods have been proposed; in the first method the extracted parameters of each channel are used as a feature vector in the classification step which employs a competitive neural network and in the second method a combination of different channel parameters are used as a feature vector. Correct classification scores at the range of 80% to 100% reveal the potential of our approach for person classification/identification and are in agreement to the previous researches showing evidence that the EEG signal carries genetic information. The novelty of this work is in the combination of AR parameters and the network type (competitive network) that we have used. A comparison between the first and the second approach imply preference of the second one.Keywords: Person Identification, Autoregressive Model, EEG, Neural Network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17416980 Comparing Autoregressive Moving Average (ARMA) Coefficients Determination using Artificial Neural Networks with Other Techniques
Authors: Abiodun M. Aibinu, Momoh J. E. Salami, Amir A. Shafie, Athaur Rahman Najeeb
Abstract:
Autoregressive Moving average (ARMA) is a parametric based method of signal representation. It is suitable for problems in which the signal can be modeled by explicit known source functions with a few adjustable parameters. Various methods have been suggested for the coefficients determination among which are Prony, Pade, Autocorrelation, Covariance and most recently, the use of Artificial Neural Network technique. In this paper, the method of using Artificial Neural network (ANN) technique is compared with some known and widely acceptable techniques. The comparisons is entirely based on the value of the coefficients obtained. Result obtained shows that the use of ANN also gives accurate in computing the coefficients of an ARMA system.
Keywords: Autoregressive moving average, coefficients, back propagation, model parameters, neural network, weight.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22906979 Identifying Potential Partnership for Open Innovation by using Bibliographic Coupling and Keyword Vector Mapping
Authors: Inchae Park, Byungun Yoon
Abstract:
As open innovation has received increasingly attention in the management of innovation, the importance of identifying potential partnership is increasing. This paper suggests a methodology to identify the interested parties as one of Innovation intermediaries to enable open innovation with patent network. To implement the methodology, multi-stage patent citation analysis such as bibliographic coupling and information visualization method such as keyword vector mapping are utilized. This paper has contribution in that it can present meaningful collaboration keywords to identified potential partners in network since not only citation information but also patent textual information is used.Keywords: Open innovation, partner selection, bibliographic coupling, Keyword vector mapping, patent network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17956978 Analysis of Message Authentication in Turbo Coded Halftoned Images using Exit Charts
Authors: Andhe Dharani, P. S. Satyanarayana, Andhe Pallavi
Abstract:
Considering payload, reliability, security and operational lifetime as major constraints in transmission of images we put forward in this paper a steganographic technique implemented at the physical layer. We suggest transmission of Halftoned images (payload constraint) in wireless sensor networks to reduce the amount of transmitted data. For low power and interference limited applications Turbo codes provide suitable reliability. Ensuring security is one of the highest priorities in many sensor networks. The Turbo Code structure apart from providing forward error correction can be utilized to provide for encryption. We first consider the Halftoned image and then the method of embedding a block of data (called secret) in this Halftoned image during the turbo encoding process is presented. The small modifications required at the turbo decoder end to extract the embedded data are presented next. The implementation complexity and the degradation of the BER (bit error rate) in the Turbo based stego system are analyzed. Using some of the entropy based crypt analytic techniques we show that the strength of our Turbo based stego system approaches that found in the OTPs (one time pad).Keywords: Halftoning, Turbo codes, security, operationallifetime, Turbo based stego system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15086977 Optimization of the Transfer Molding Process by Implementation of Online Monitoring Techniques for Electronic Packages
Authors: Burcu Kaya, Jan-Martin Kaiser, Karl-Friedrich Becker, Tanja Braun, Klaus-Dieter Lang
Abstract:
Quality of the molded packages is strongly influenced by the process parameters of the transfer molding. To achieve a better package quality and a stable transfer molding process, it is necessary to understand the influence of the process parameters on the package quality. This work aims to comprehend the relationship between the process parameters, and to identify the optimum process parameters for the transfer molding process in order to achieve less voids and wire sweep. To achieve this, a DoE is executed for process optimization and a regression analysis is carried out. A systematic approach is represented to generate models which enable an estimation of the number of voids and wire sweep. Validation experiments are conducted to verify the model and the results are presented.Keywords: Epoxy molding compounds, optimization, regression analysis, transfer molding process, voids, wire sweep.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15306976 Neural Network Imputation in Complex Survey Design
Authors: Safaa R. Amer
Abstract:
Missing data yields many analysis challenges. In case of complex survey design, in addition to dealing with missing data, researchers need to account for the sampling design to achieve useful inferences. Methods for incorporating sampling weights in neural network imputation were investigated to account for complex survey designs. An estimate of variance to account for the imputation uncertainty as well as the sampling design using neural networks will be provided. A simulation study was conducted to compare estimation results based on complete case analysis, multiple imputation using a Markov Chain Monte Carlo, and neural network imputation. Furthermore, a public-use dataset was used as an example to illustrate neural networks imputation under a complex survey design
Keywords: Complex survey, estimate, imputation, neural networks, variance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19726975 A New Automatic System of Cell Colony Counting
Authors: U. Bottigli, M.Carpinelli, P.L. Fiori, B. Golosio, A. Marras, G. L. Masala, P. Oliva
Abstract:
The counting process of cell colonies is always a long and laborious process that is dependent on the judgment and ability of the operator. The judgment of the operator in counting can vary in relation to fatigue. Moreover, since this activity is time consuming it can limit the usable number of dishes for each experiment. For these purposes, it is necessary that an automatic system of cell colony counting is used. This article introduces a new automatic system of counting based on the elaboration of the digital images of cellular colonies grown on petri dishes. This system is mainly based on the algorithms of region-growing for the recognition of the regions of interest (ROI) in the image and a Sanger neural net for the characterization of such regions. The better final classification is supplied from a Feed-Forward Neural Net (FF-NN) and confronted with the K-Nearest Neighbour (K-NN) and a Linear Discriminative Function (LDF). The preliminary results are shown.Keywords: Automatic cell counting, neural network, region growing, Sanger net.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14616974 Latency-Based Motion Detection in Spiking Neural Networks
Authors: Mohammad Saleh Vahdatpour, Yanqing Zhang
Abstract:
Understanding the neural mechanisms underlying motion detection in the human visual system has long been a fascinating challenge in neuroscience and artificial intelligence. This paper presents a spiking neural network model inspired by the processing of motion information in the primate visual system, particularly focusing on the Middle Temporal (MT) area. In our study, we propose a multi-layer spiking neural network model to perform motion detection tasks, leveraging the idea that synaptic delays in neuronal communication are pivotal in motion perception. Synaptic delay, determined by factors like axon length and myelin insulation, affects the temporal order of input spikes, thereby encoding motion direction and speed. Overall, our spiking neural network model demonstrates the feasibility of capturing motion detection principles observed in the primate visual system. The combination of synaptic delays, learning mechanisms, and shared weights and delays in SMD provides a promising framework for motion perception in artificial systems, with potential applications in computer vision and robotics.
Keywords: Neural networks, motion detection, signature detection, convolutional neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1716973 Software Tools for System Identification and Control using Neural Networks in Process Engineering
Authors: J. Fernandez de Canete, S. Gonzalez-Perez, P. del Saz-Orozco
Abstract:
Neural networks offer an alternative approach both for identification and control of nonlinear processes in process engineering. The lack of software tools for the design of controllers based on neural network models is particularly pronounced in this field. SIMULINK is properly a widely used graphical code development environment which allows system-level developers to perform rapid prototyping and testing. Such graphical based programming environment involves block-based code development and offers a more intuitive approach to modeling and control task in a great variety of engineering disciplines. In this paper a SIMULINK based Neural Tool has been developed for analysis and design of multivariable neural based control systems. This tool has been applied to the control of a high purity distillation column including non linear hydrodynamic effects. The proposed control scheme offers an optimal response for both theoretical and practical challenges posed in process control task, in particular when both, the quality improvement of distillation products and the operation efficiency in economical terms are considered.Keywords: Distillation, neural networks, software tools, identification, control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27076972 Representation of Power System for Electromagnetic Transient Calculation
Authors: P. Sowa
Abstract:
The new idea of analyze of power system failure with use of artificial neural network is proposed. An analysis of the possibility of simulating phenomena accompanying system faults and restitution is described. It was indicated that the universal model for the simulation of phenomena in whole analyzed range does not exist. The main classic method of search of optimal structure and parameter identification are described shortly. The example with results of calculation is shown.Keywords: Dynamic equivalents, Network reduction, Neural networks, Power system analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18976971 Principal Component Analysis-Ranking as a Variable Selection Method for the Simultaneous Spectrophotometric Determination of Phenol, Resorcinol and Catechol in Real Samples
Authors: Nahid Ghasemi, Mohammad Goodarzi, Morteza Khosravi
Abstract:
Simultaneous determination of multicomponents of phenol, resorcinol and catechol with a chemometric technique a PCranking artificial neural network (PCranking-ANN) algorithm is reported in this study. Based on the data correlation coefficient method, 3 representative PCs are selected from the scores of original UV spectral data (35 PCs) as the original input patterns for ANN to build a neural network model. The results obtained by iterating 8000 .The RMSEP for phenol, resorcinol and catechol with PCranking- ANN were 0.6680, 0.0766 and 0.1033, respectively. Calibration matrices were 0.50-21.0, 0.50-15.1 and 0.50-20.0 μg ml-1 for phenol, resorcinol and catechol, respectively. The proposed method was successfully applied for the determination of phenol, resorcinol and catechol in synthetic and water samples.
Keywords: Phenol, Resorcinol, Catechol, Principal componentrankingArtificial Neural Network, Chemometrics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14276970 Design and Implementation of Client Server Network Management System for Ethernet LAN
Authors: May Paing Paing Zaw, Su Myat Marlar Soe
Abstract:
Network Management Systems have played a great important role in information systems. Management is very important and essential in any fields. There are many managements such as configuration management, fault management, performance management, security management, accounting management and etc. Among them, configuration, fault and security management is more important than others. Because these are essential and useful in any fields. Configuration management is to monitor and maintain the whole system or LAN. Fault management is to detect and troubleshoot the system. Security management is to control the whole system. This paper intends to increase the network management functionalities including configuration management, fault management and security management. In configuration management system, this paper specially can support the USB ports and devices to detect and read devices configuration and solve to detect hardware port and software ports. In security management system, this paper can provide the security feature for the user account setting and user management and proxy server feature. And all of the history of the security such as user account and proxy server history are kept in the java standard serializable file. So the user can view the history of the security and proxy server anytime. If the user uses this system, the user can ping the clients from the network and the user can view the result of the message in fault management system. And this system also provides to check the network card and can show the NIC card setting. This system is used RMI (Remote Method Invocation) and JNI (Java Native Interface) technology. This paper is to implement the client/server network management system using Java 2 Standard Edition (J2SE). This system can provide more than 10 clients. And then this paper intends to show data or message structure of client/server and how to work using TCP/IP protocol.
Keywords: TCP/ IP based client server application
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36026969 On-line Identification of Continuous-time Hammerstein Systems via RBF Networks and Immune Algorithm
Authors: Tomohiro Hachino, Kengo Nagatomo, Hitoshi Takata
Abstract:
This paper deals with an on-line identification method of continuous-time Hammerstein systems by using the radial basis function (RBF) networks and immune algorithm (IA). An unknown nonlinear static part to be estimated is approximately represented by the RBF network. The IA is efficiently combined with the recursive least-squares (RLS) method. The objective function for the identification is regarded as the antigen. The candidates of the RBF parameters such as the centers and widths are coded into binary bit strings as the antibodies and searched by the IA. On the other hand, the candidates of both the weighting parameters of the RBF network and the system parameters of the linear dynamic part are updated by the RLS method. Simulation results are shown to illustrate the proposed method.Keywords: Continuous-time System, Hammerstein System, OnlineIdentification, Immune Algorithm, RBF network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13636968 An Approach for the Integration of the Existing Wireless Networks
Authors: Rajkumar Samanta, Abhishek Pal
Abstract:
The demand of high quality services has fueled dimensional research and development in wireless communications and networking. As a result, different wireless technologies like Wireless LAN, CDMA, GSM, UMTS, MANET, Bluetooth and satellite networks etc. have emerged in the last two decades. Future networks capable of carrying multimedia traffic need IP convergence, portability, seamless roaming and scalability among the existing networking technologies without changing the core part of the existing communications networks. To fulfill these goals, the present networking systems are required to work in cooperation to ensure technological independence, seamless roaming, high security and authentication, guaranteed Quality of Services (QoS). In this paper, a conceptual framework for a cooperative network (CN) is proposed for integration of heterogeneous existing networks to meet out the requirements of the next generation wireless networks.
Keywords: Cooperative Network, Wireless Network, Integration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23656967 Optimal Sizing of SSSC Controllers to Minimize Transmission Loss and a Novel Model of SSSC to Study Transient Response
Authors: A. M. El-Zonkoly
Abstract:
In this paper, based on steady-state models of Flexible AC Transmission System (FACTS) devices, the sizing of static synchronous series compensator (SSSC) controllers in transmission network is formed as an optimization problem. The objective of this problem is to reduce the transmission losses in the network. The optimization problem is solved using particle swarm optimization (PSO) technique. The Newton-Raphson load flow algorithm is modified to consider the insertion of the SSSC devices in the network. A numerical example, illustrating the effectiveness of the proposed algorithm, is introduced. In addition, a novel model of a 3- phase voltage source converter (VSC) that is suitable for series connected FACTS a controller is introduced. The model is verified by simulation using Power System Blockset (PSB) and Simulink software.Keywords: FACTS, Modeling, PSO, SSSC, Transmission lossreduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22776966 Taxonomy of Threats and Vulnerabilities in Smart Grid Networks
Authors: Faisal Al Yahmadi, Muhammad R. Ahmed
Abstract:
Electric power is a fundamental necessity in the 21st century. Consequently, any break in electric power is probably going to affect the general activity. To make the power supply smooth and efficient, a smart grid network is introduced which uses communication technology. In any communication network, security is essential. It has been observed from several recent incidents that adversary causes an interruption to the operation of networks. In order to resolve the issues, it is vital to understand the threats and vulnerabilities associated with the smart grid networks. In this paper, we have investigated the threats and vulnerabilities in Smart Grid Networks (SGN) and the few solutions in the literature. Proposed solutions showed developments in electricity theft countermeasures, Denial of services attacks (DoS) and malicious injection attacks detection model, as well as malicious nodes detection using watchdog like techniques and other solutions.
Keywords: Smart grid network, security, threats, vulnerabilities.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5976965 Performance Analysis of Artificial Neural Network with Decision Tree in Prediction of Diabetes Mellitus
Authors: J. K. Alhassan, B. Attah, S. Misra
Abstract:
Human beings have the ability to make logical decisions. Although human decision - making is often optimal, it is insufficient when huge amount of data is to be classified. Medical dataset is a vital ingredient used in predicting patient’s health condition. In other to have the best prediction, there calls for most suitable machine learning algorithms. This work compared the performance of Artificial Neural Network (ANN) and Decision Tree Algorithms (DTA) as regards to some performance metrics using diabetes data. WEKA software was used for the implementation of the algorithms. Multilayer Perceptron (MLP) and Radial Basis Function (RBF) were the two algorithms used for ANN, while RegTree and LADTree algorithms were the DTA models used. From the results obtained, DTA performed better than ANN. The Root Mean Squared Error (RMSE) of MLP is 0.3913 that of RBF is 0.3625, that of RepTree is 0.3174 and that of LADTree is 0.3206 respectively.Keywords: Artificial neural network, classification, decision tree, diabetes mellitus.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24176964 A Genetic Algorithm Approach Considering Zero Injection Bus Constraint Modeling for Optimal Phasor Measurement Unit Placement
Authors: G. Chandana Sushma, T. R. Jyothsna
Abstract:
This paper presents optimal Phasor Measurement Unit (PMU) Placement in network using a genetic algorithm approach as it is infeasible and require high installation cost to place PMUs at every bus in network. This paper proposes optimal PMU allocation considering observability and redundancy utilizing Genetic Algorithm (GA) approach. The nonlinear constraints of buses are modeled to give accurate results. Constraints associated with Zero Injection (ZI) buses and radial buses are modeled to optimize number of locations for PMU placement. GA is modeled with ZI bus constraints to minimize number of locations without losing complete observability. Redundancy of every bus in network is computed to show optimum redundancy of complete system network. The performance of method is measured by Bus Observability Index (BOI) and Complete System Observability Performance Index (CSOPI). MATLAB simulations are carried out on IEEE -14, -30 and -57 bus-systems and compared with other methods in literature survey to show the effectiveness of the proposed approach.
Keywords: Constraints, genetic algorithm, observability, phasor measurement units, redundancy, synchrophasors, zero injection bus.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7846963 Neural Network Models for Actual Cost and Actual Duration Estimation in Construction Projects: Findings from Greece
Authors: Panagiotis Karadimos, Leonidas Anthopoulos
Abstract:
Predicting the actual cost and duration in construction projects concern a continuous and existing problem for the construction sector. This paper addresses this problem with modern methods and data available from past public construction projects. 39 bridge projects, constructed in Greece, with a similar type of available data were examined. Considering each project’s attributes with the actual cost and the actual duration, correlation analysis is performed and the most appropriate predictive project variables are defined. Additionally, the most efficient subgroup of variables is selected with the use of the WEKA application, through its attribute selection function. The selected variables are used as input neurons for neural network models through correlation analysis. For constructing neural network models, the application FANN Tool is used. The optimum neural network model, for predicting the actual cost, produced a mean squared error with a value of 3.84886e-05 and it was based on the budgeted cost and the quantity of deck concrete. The optimum neural network model, for predicting the actual duration, produced a mean squared error with a value of 5.89463e-05 and it also was based on the budgeted cost and the amount of deck concrete.
Keywords: Actual cost and duration, attribute selection, bridge projects, neural networks, predicting models, FANN TOOL, WEKA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12396962 Persian Printed Numerals Classification Using Extended Moment Invariants
Authors: Hamid Reza Boveiri
Abstract:
Classification of Persian printed numeral characters has been considered and a proposed system has been introduced. In representation stage, for the first time in Persian optical character recognition, extended moment invariants has been utilized as characters image descriptor. In classification stage, four different classifiers namely minimum mean distance, nearest neighbor rule, multi layer perceptron, and fuzzy min-max neural network has been used, which first and second are traditional nonparametric statistical classifier. Third is a well-known neural network and forth is a kind of fuzzy neural network that is based on utilizing hyperbox fuzzy sets. Set of different experiments has been done and variety of results has been presented. The results showed that extended moment invariants are qualified as features to classify Persian printed numeral characters.Keywords: Extended moment invariants, optical characterrecognition, Persian numerals classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19196961 Active Control Improvement of Smart Cantilever Beam by Piezoelectric Materials and On-Line Differential Artificial Neural Networks
Authors: P. Karimi, A. H. Khedmati Bazkiaei
Abstract:
The main goal of this study is to test differential neural network as a controller of smart structure and is to enumerate its advantages and disadvantages in comparison with other controllers. In this study, the smart structure has been considered as a Euler Bernoulli cantilever beam and it has been tried that it be under control with the use of vibration neural network resulting from movement. Also, a linear observer has been considered as a reference controller and has been compared its results. The considered vibration charts and the controlled state have been recounted in the final part of this text. The obtained result show that neural observer has better performance in comparison to the implemented linear observer.Keywords: Smart material, on-line differential artificial neural network, active control, finite element method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8156960 Performance Analysis of Artificial Neural Network Based Land Cover Classification
Authors: Najam Aziz, Nasru Minallah, Ahmad Junaid, Kashaf Gul
Abstract:
Landcover classification using automated classification techniques, while employing remotely sensed multi-spectral imagery, is one of the promising areas of research. Different land conditions at different time are captured through satellite and monitored by applying different classification algorithms in specific environment. In this paper, a SPOT-5 image provided by SUPARCO has been studied and classified in Environment for Visual Interpretation (ENVI), a tool widely used in remote sensing. Then, Artificial Neural Network (ANN) classification technique is used to detect the land cover changes in Abbottabad district. Obtained results are compared with a pixel based Distance classifier. The results show that ANN gives the better overall accuracy of 99.20% and Kappa coefficient value of 0.98 over the Mahalanobis Distance Classifier.Keywords: Landcover classification, artificial neural network, remote sensing, SPOT-5.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16076959 The Strategy of the Innovation Alliance in Higher Education
Authors: Juha Kettunen
Abstract:
The purpose of this study is to visualize the strategic network of higher education institutions and its strategic directions. The strategy map of the balanced scorecard approach is developed to describe the strategic objectives and their causal relationships in higher education. The empirical part of the study presents the survey results of the desired strategic directions of the network obtained from the teachers and other staff of the member institutions. Research and development projects are the most important form of activity in the network, but education and many other forms also turn out to be important. The results of this study support the argument that a strategic innovation alliance is a suitable and useful way to promote collaboration among European higher education institutions. The results of the study can be used by those who wish to promote such international collaboration among higher education institutions.
Keywords: Balanced scorecard, higher education, social networking, strategic planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1836