Search results for: discrete element method.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9151

Search results for: discrete element method.

8281 Backcalculation of HMA Stiffness Based On Finite Element Model

Authors: Md Rashadul Islam, Umme Amina Mannan, Rafiqul A. Tarefder

Abstract:

Stiffness of Hot Mix Asphalt (HMA) in flexible pavement is largely dependent of temperature, mode of testing and age of pavement. Accurate measurement of HMA stiffness is thus quite challenging. This study determines HMA stiffness based on Finite Element Model (FEM) and validates the results using field data. As a first step, stiffnesses of different layers of a pavement section on Interstate 40 (I-40) in New Mexico were determined by Falling Weight Deflectometer (FWD) test. Pavement temperature was not measured at that time due to lack of temperature probe. Secondly, a FE model is developed in ABAQUS. Stiffness of the base, subbase and subgrade were taken from the FWD test output obtained from the first step. As HMA stiffness largely varies with temperature it was assigned trial and error approach. Thirdly, horizontal strain and vertical stress at the bottom of the HMA and temperature at different depths of the pavement were measured with installed sensors on the whole day on December 25th, 2012. Fourthly, outputs of FEM were correlated with measured stress-strain responses. After a number of trials a relationship was developed between the trial stiffness of HMA and measured mid-depth HMA temperature. At last, the obtained relationship between stiffness and temperature is verified by further FWD test when pavement temperature was recorded. A promising agreement between them is observed. Therefore, conclusion can be drawn that linear elastic FEM can accurately predict the stiffness and the structural response of flexible pavement.

Keywords: Asphalt pavement, falling weight deflectometer test, field instrumentation, finite element model, horizontal strain, temperature probes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2421
8280 Numerical Analysis of Effect of Crack Location on the Crack Breathing Behavior

Authors: H. M. Mobarak, Helen Wu, Keqin Xiao

Abstract:

In this work, a three-dimensional finite element model was developed to investigate the crack breathing behavior at different crack locations considering the effect of unbalance force. A two-disk rotor with a crack is simulated using ABAQUS. The duration of each crack status (open, closed and partially open/closed) during a full shaft rotation was examined to analyse the crack breathing behavior. Unbalanced shaft crack breathing behavior was found to be different at different crack locations. The breathing behavior of crack along the shaft length is divided into different regions depending on the unbalance force and crack location. The simulated results in this work can be further utilised to obtain the time-varying stiffness matrix of the cracked shaft element under the influence of unbalance force.

Keywords: Crack breathing, crack location, slant crack, unbalance force, rotating shaft.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 906
8279 An Efficient Method for Solving Multipoint Equation Boundary Value Problems

Authors: Ampon Dhamacharoen, Kanittha Chompuvised

Abstract:

In this work, we solve multipoint boundary value problems where the boundary value conditions are equations using the Newton-Broyden Shooting method (NBSM).The proposed method is tested upon several problems from the literature and the results are compared with the available exact solution. The experiments are given to illustrate the efficiency and implementation of the method.

Keywords: Boundary value problem; Multipoint equation boundary value problems, Shooting Method, Newton-Broyden method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1791
8278 Performance Analysis of Chrominance Red and Chrominance Blue in JPEG

Authors: Mamta Garg

Abstract:

While compressing text files is useful, compressing still image files is almost a necessity. A typical image takes up much more storage than a typical text message and without compression images would be extremely clumsy to store and distribute. The amount of information required to store pictures on modern computers is quite large in relation to the amount of bandwidth commonly available to transmit them over the Internet and applications. Image compression addresses the problem of reducing the amount of data required to represent a digital image. Performance of any image compression method can be evaluated by measuring the root-mean-square-error & peak signal to noise ratio. The method of image compression that will be analyzed in this paper is based on the lossy JPEG image compression technique, the most popular compression technique for color images. JPEG compression is able to greatly reduce file size with minimal image degradation by throwing away the least “important" information. In JPEG, both color components are downsampled simultaneously, but in this paper we will compare the results when the compression is done by downsampling the single chroma part. In this paper we will demonstrate more compression ratio is achieved when the chrominance blue is downsampled as compared to downsampling the chrominance red in JPEG compression. But the peak signal to noise ratio is more when the chrominance red is downsampled as compared to downsampling the chrominance blue in JPEG compression. In particular we will use the hats.jpg as a demonstration of JPEG compression using low pass filter and demonstrate that the image is compressed with barely any visual differences with both methods.

Keywords: JPEG, Discrete Cosine Transform, Quantization, Color Space Conversion, Image Compression, Peak Signal to Noise Ratio & Compression Ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1681
8277 Spatial Interpolation of Intermediate Soil Properties to Enhance Geotechnical Surveying for Foundation Design

Authors: Yelbek B. Utepov, Assel T. Mukhamejanova, Aliya K. Aldungarova, Aida G. Nazarova, Sabit A. Karaulov, Nurgul T. Alibekova, Aigul K. Kozhas, Dias Kazhimkanuly, Akmaral K. Tleubayeva

Abstract:

This research focuses on enhancing geotechnical surveying for foundation design through the spatial interpolation of intermediate soil properties. Traditional geotechnical practices rely on discrete data from borehole drilling, soil sampling, and laboratory analyses, often neglecting the continuous nature of soil properties and disregarding values in intermediate locations. This study challenges these omissions by emphasizing interpolation techniques such as kriging, inverse distance weighting, and spline interpolation to capture the nuanced spatial variations in soil properties. The methodology is applied to geotechnical survey data from two construction sites in Astana, Kazakhstan, revealing continuous representations of Young's modulus, cohesion, and friction angle. The spatial heatmaps generated through interpolation offered valuable insights into the subsurface environment, highlighting heterogeneity and aiding in more informed foundation design decisions for considered cites. Moreover, intriguing patterns of heterogeneity, as well as visual clusters and transitions between soil classes, were explored within seemingly uniform layers. The study bridges the gap between discrete borehole samples and the continuous subsurface, contributing to the evolution of geotechnical engineering practices. The proposed approach, utilizing open-source software geographic information systems, provides a practical tool for visualizing soil characteristics and may pave the way for future advancements in geotechnical surveying and foundation design.

Keywords: Soil mechanical properties, spatial interpolation, Inverse Distance Weighting, heatmaps.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10
8276 The Differential Transform Method for Advection-Diffusion Problems

Authors: M. F. Patricio, P. M. Rosa

Abstract:

In this paper a class of numerical methods to solve linear and nonlinear PDEs and also systems of PDEs is developed. The Differential Transform method associated with the Method of Lines (MoL) is used. The theory for linear problems is extended to the nonlinear case, and a recurrence relation is established. This method can achieve an arbitrary high-order accuracy in time. A variable stepsize algorithm and some numerical results are also presented.

Keywords: Method of Lines, Differential Transform Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1755
8275 Transportation Under the Threat of Influenza

Authors: Yujun Zheng, Qin Song, Haihe Shi, and Jinyun Xue

Abstract:

There are a number of different cars for transferring hundreds of close contacts of swine influenza patients to hospital, and we need to carefully assign the passengers to those cars in order to minimize the risk of influenza spreading during transportation. The paper presents an approach to straightforward obtain the optimal solution of the relaxed problems, and develops two iterative improvement algorithms to effectively tackle the general problem.

Keywords: Influenza spread, discrete optimization, stationary point, iterative improvement

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1181
8274 Examination of the Effect of Air Viscosity on Narrow Acoustic Tubes Using FEM Involving Complex Effective Density and Complex Bulk Modulus

Authors: M. Watanabe, T. Yamaguchi, M. Sasajima, Y. Kurosawa, Y. Koike

Abstract:

Earphones and headphones, which are compact electro-acoustic transducers, tend to have a lot of acoustic absorption materials and porous materials known as dampers, which often have a large number of extremely small holes and narrow slits to inhibit the resonance of the vibrating system, because the air viscosity significantly affects the acoustic characteristics in such acoustic paths. In order to perform simulations using the finite element method (FEM), it is necessary to be aware of material characteristics such as the impedance and propagation constants of sound absorbing materials and porous materials. The transfer function is widely known as a measurement method for an acoustic tube with such physical properties, but literature describing the measurements at the upper limits of the audible range is yet to be found. The acoustic tube, which is a measurement instrument, must be made narrow, and the distance between the two sets of microphones must be shortened in order to take measurements of acoustic characteristics at higher frequencies. When such a tube is made narrow, however, the characteristic impedance has been observed to become lower than the impedance of air. This paper considers the cause of this phenomenon to be the effect of the air viscosity and describes an FEM analysis of an acoustic tube considering air viscosity to compare to the theoretical formula by including the effect of air viscosity in the theoretical formula for an acoustic tube.

Keywords: Acoustic tube, air viscosity, earphones, FEM, porous materials, sound absorbing materials, transfer function method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1786
8273 HPL-TE Method for Determination of Coatings Relative Total Emissivity Sensitivity Analysis of the Influences of Method Parameters

Authors: Z. Veselý, M. Honner

Abstract:

High power laser – total emissivity method (HPL-TE method) for determination of coatings relative total emissivity dependent on the temperature is introduced. Method principle, experimental and evaluation parts of the method are described. Computer model of HPL-TE method is employed to perform the sensitivity analysis of the effect of method parameters on the sample surface temperature in the positions where the surface temperature and radiation heat flux are measured.

Keywords: High temperature laser testing, measurement ofthermal properties, emissivity, coatings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1337
8272 Valorization of the Algerian Plaster and Dune Sand in the Building Sector

Authors: S. Dorbani, F. Kharchi, F. Salem, K. Arroudj, N. Chioukh

Abstract:

The need for thermal comfort of buildings, with the aim of saving energy, has always generated a big interest during the development of methods, to improve the mode of construction. In the present paper, which is concerned by the valorization of locally abundant materials, mixtures of plaster and dune sand have been studied. To point out the thermal performances of these mixtures, a comparative study has been established between this product and the two materials most commonly used in construction, the concrete and hollow brick. The results showed that optimal mixture is made with 1/3 plaster and 2/3 dune sand. This mortar achieved significant increases in the mechanical strengths, which allow it to be used as a carrier element for buildings, of up to two levels. The element obtained offers an acceptable thermal insulation, with a decrease the outer-wall construction thickness.

Keywords: Local materials, mortar, plaster, dune sand, compaction, mechanical performance, thermal performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 816
8271 A New Iterative Method for Solving Nonlinear Equations

Authors: Ibrahim Abu-Alshaikh

Abstract:

In this study, a new root-finding method for solving nonlinear equations is proposed. This method requires two starting values that do not necessarily bracketing a root. However, when the starting values are selected to be close to a root, the proposed method converges to the root quicker than the secant method. Another advantage over all iterative methods is that; the proposed method usually converges to two distinct roots when the given function has more than one root, that is, the odd iterations of this new technique converge to a root and the even iterations converge to another root. Some numerical examples, including a sine-polynomial equation, are solved by using the proposed method and compared with results obtained by the secant method; perfect agreements are found.

Keywords: Iterative method, root-finding method, sine-polynomial equations, nonlinear equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1702
8270 Design of Compliant Mechanism Based Microgripper with Three Finger Using Topology Optimization

Authors: R. Bharanidaran, B. T. Ramesh

Abstract:

High precision in motion is required to manipulate the micro objects in precision industries for micro assembly, cell manipulation etc. Precision manipulation is achieved based on the appropriate mechanism design of micro devices such as microgrippers. Design of a compliant based mechanism is the better option to achieve a highly precised and controlled motion. This research article highlights the method of designing a compliant based three fingered microgripper suitable for holding asymmetric objects. Topological optimization technique, a systematic method is implemented in this research work to arrive a topologically optimized design of the mechanism needed to perform the required micro motion of the gripper. Optimization technique has a drawback of generating senseless regions such as node to node connectivity and staircase effect at the boundaries. Hence, it is required to have post processing of the design to make it manufacturable. To reduce the effect of post processing stage and to preserve the edges of the image, a cubic spline interpolation technique is introduced in the MATLAB program. Structural performance of the topologically developed mechanism design is tested using finite element method (FEM) software. Further the microgripper structure is examined to find its fatigue life and vibration characteristics.

Keywords: Compliant mechanism, Cubic spline interpolation, FEM, Topology optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3582
8269 Robust Adaptive ELS-QR Algorithm for Linear Discrete Time Stochastic Systems Identification

Authors: Ginalber L. O. Serra

Abstract:

This work proposes a recursive weighted ELS algorithm for system identification by applying numerically robust orthogonal Householder transformations. The properties of the proposed algorithm show it obtains acceptable results in a noisy environment: fast convergence and asymptotically unbiased estimates. Comparative analysis with others robust methods well known from literature are also presented.

Keywords: Stochastic Systems, Robust Identification, Parameter Estimation, Systems Identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1494
8268 Application of Artificial Neural Network in the Investigation of Bearing Defects

Authors: S. Sendhil Kumar, M. Senthil Kumar

Abstract:

Maintenance and design engineers have great concern for the functioning of rotating machineries due to the vibration phenomenon. Improper functioning in rotating machinery originates from the damage to rolling element bearings. The status of rolling element bearings require advanced technologies to monitor their health status efficiently and effectively. Avoiding vibration during machine running conditions is a complicated process. Vibration simulation should be carried out using suitable sensors/ transducers to recognize the level of damage on bearing during machine operating conditions. Various issues arising in rotating systems are interlinked with bearing faults. This paper presents an approach for fault diagnosis of bearings using neural networks and time/frequencydomain vibration analysis.

Keywords: Bearing vibration, Condition monitoring, Fault diagnosis, Frequency domain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2524
8267 Static Study of Piezoelectric Bimorph Beams with Delamination Zone

Authors: A. Zemirline, M. Ouali, A. Mahieddine

Abstract:

The FOSDT (the First Order Shear Deformation Theory) is taking into consideration to study the static behavior of a bimorph beam, with a delamination zone between the upper and the lower layer. The effect of limit conditions and lengths of the delamination zone are presented in this paper, with a PVDF piezoelectric material application. A FEM “Finite Element Method” is used to discretize the beam. In the axial displacement, a displacement field appears in the debonded zone with inverse effect between the upper and the lower layer was observed.

Keywords: Beam, Delamination, Piezoelectricity, Static.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2014
8266 The Effect of Press Fit on Osseointegration of Acetabular Cup

Authors: Nor Azali Azmir, Iskhrizat Taib, Mohammed Rafiq Abdul Kadir

Abstract:

The primary cause of Total Hip Replacement (THR) failure for younger patients is aseptic loosening. This complication is twice more likely to happen in acetabular cup than in femoral stem. Excessive micromotion between bone and implant will cause loosening and it depends in patient activities, age and bone. In this project, the effects of different metal back design of press fit on osseointegration of the acetabular cup are carried out. Commercial acetabular cup designs, namely Spiked, Superfix and Quadrafix are modelled and analyzed using commercial finite element software. The diameter of acetabular cup is based on the diameter of acetabular rim to make sure the component fit to the acetabular cavity. A new design of acetabular cup are proposed and analyzed to get better osseointegration between the bones and implant interface. Results shows that the proposed acetabular cup designs are more stable compared to other designs with respect to stress and displacement aspects.

Keywords: Finite element analysis, total hip replacement, acetabular cup, loosening.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1994
8265 What is the Key Element for the Territory's State of Development?

Authors: J. Lonska, V. Boronenko

Abstract:

The result of process of territory-s development is the territory-s state of development (TSoD), which is pointed towards the provision and improvement of people-s life conditions. The authors offer to measure the TSoD according to their own developed model. Using the available statistical data regarding the values of model-s elements, the authors empirically show which element mainly determines the TSoD. The findings of the research showed that the key elements of the TSoD are the “Material welfare of people" and “People-s health". Performing a deeper statistical analysis of correlation between these elements, it turned out that it is not so necessary for a country to be bent on trying to increase the material growth of a territory, because a relatively high index of life expectancy at birth could be ensured also by much more modest material resources. On the other hand, the economical feedback of longer lifespan within countries with lower material performance is also relatively low.

Keywords: Development indices, health, territory's state of development, wealth.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1197
8264 Difference in Psychological Well-Being Based On Comparison of Religions: A Case Study in Pekan District, Pahang, Malaysia

Authors: Amran Hassan, Fatimah Yusooff, Khadijah Alavi

Abstract:

The psychological well-being of a family is a subjective matter for evaluation, all the more when it involves the element of religions, whether Islam, Christianity, Buddhism or Hinduism. Each of these religions emphasises similar values and morals on family psychological well-being. This comparative study is specifically to determine the role of religion on family psychological well-being in Pekan district, Pahang, Malaysia. The study adopts a quantitative and qualitative mixed method design and considers a total of 412 samples of parents and children for the quantitative study, and 21 samples for the qualitative study. The quantitative study uses simple random sampling, whereas the qualitative sampling is purposive. The instrument for quantitative study is Ryff’s Psychological Well-being Scale and the qualitative study involves the construction of a guidelines protocol for in-depth interviews of respondents. The quantitative study uses the SPSS version .19 with One Way Anova, and the qualitative analysis is manual based on transcripts with specific codes and themes. The results show nonsignificance, that is, no significant difference among religions in all family psychological well-being constructs in the comparison of Islam, Christianity, Buddhism and Hinduism, thereby accepting a null hypothesis and rejecting an alternative hypothesis. The qualitative study supports the quantitative study, that is, all 21 respondents explain that no difference exists in psychological wellbeing in the comparison of teachings in all the religious mentioned. These implications may be used as guidelines for government and non-government bodies in considering religion as an important element in family psychological well-being in the long run. 

Keywords: Psychological well-being, comparison of religions, family, Malaysia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2338
8263 Assessing the Effect of the Position of the Cavities on the Inner Plate of the Steel Shear Wall under Time History Dynamic Analysis

Authors: Masoud Mahdavi, Mojtaba Farzaneh Moghadam

Abstract:

The seismic forces caused by the waves created in the depths of the earth during the earthquake hit the structure and cause the building to vibrate. Creating large seismic forces will cause low-strength sections in the structure to suffer extensive surface damage. The use of new steel shear walls in steel structures has caused the strength of the building and its main members (columns) to increase due to the reduction and depreciation of seismic forces during earthquakes. In the present study, an attempt was made to evaluate a type of steel shear wall that has regular holes in the inner sheet by modeling the finite element model with Abacus software. The shear wall of the steel plate, measuring 6000 × 3000 mm (one floor) and 3 mm thickness, was modeled with four different pores with a cross-sectional area. The shear wall was dynamically subjected to a time history of 5 seconds by three accelerators, El Centro, Imperial Valley and Kobe. The results showed that increasing the distance between the geometric center of the hole and the geometric center of the inner plate in the steel shear wall (increasing the RCS index) caused the total maximum acceleration to be transferred from the perimeter of the hole to horizontal and vertical beams. The results also show that there is no direct relationship between RCS index and total acceleration in steel shear wall and RCS index is separate from the peak ground acceleration value of earthquake.

Keywords: Hollow Steel plate shear wall, time history analysis, finite element method, Abaqus Software.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 579
8262 Effects of Opening Shape and Location on the Structural Strength of R.C. Deep Beams with Openings

Authors: Haider M. Alsaeq

Abstract:

This research investigates the effects of the opening shape and location on the structural behavior of reinforced concrete deep beam with openings, while keeping the opening size unchanged. The software ANSYS 12.1 is used to handle the nonlinear finite element analysis. The ultimate strength of reinforced concrete deep beam with opening obtained by ANSYS 12.1 shows fair agreement with the experimental results, with a difference of no more than 20%. The present work concludes that the opening location has much more effect on the structural strength than the opening shape. It was concluded that placing the openings near the upper corners of the deep beam may double the strength, and the use of a rectangular narrow opening, with the long sides in the horizontal direction, can save up to 40% of structural strength of the deep beam.

Keywords: Deep Beams, Finite Element, Opening, Reinforced Concrete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4297
8261 Simulation Study on the Thin-walled Tube Structure of a Vehicle Simulator Crash Testing Equipment

Authors: Xu Zhang, Qi Jiang, Liwei Li, Weiwei Cui, Jijun Cui, Yang Cao, Hairong Zhao

Abstract:

A kind of crash energy absorption structure adopted by vehicle simulator crash testing equipment based on mechanical energy storage was studied. Dynamic explicit finite element simulation was achieved for thin-walled tube structure under different conditions of section shape, thickness and inducement groove style. Crash energy absorption property of the structure was obtained. After optimization, a reasonable structure was given which can meet current vehicle crash regulation. And the optimized structure can be adopted in vehicle simulator, which can increase the practicability of the testing equipment.

Keywords: thin-walled tube structure, crash energy absorption, deceleration, finite element simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1764
8260 Viscoelastic Modeling of Brain MRE Data Using FE Method

Authors: H. Ajabi Naeeni, M. Haghpanahi

Abstract:

Dynamic shear test on simulated phantom can be used to validate magnetic resonance elastography (MRE) measurements. Phantom gel has been usually utilized for the cell culture of cartilage and soft tissue and also been used for mechanical property characterization using imaging systems. The viscoelastic property of the phantom would be important for dynamic experiments and analyses. In this study, An axisymmetric FE model is presented for determining the dynamic shear behaviour of brain simulated phantom using ABAQUS. The main objective of this study was to investigate the effect of excitation frequencies and boundary conditions on shear modulus and shear viscosity in viscoelastic media.

Keywords: Viscoelastic, MR Elastography, Finite Element, Brain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1754
8259 Efficient System for Speech Recognition using General Regression Neural Network

Authors: Abderrahmane Amrouche, Jean Michel Rouvaen

Abstract:

In this paper we present an efficient system for independent speaker speech recognition based on neural network approach. The proposed architecture comprises two phases: a preprocessing phase which consists in segmental normalization and features extraction and a classification phase which uses neural networks based on nonparametric density estimation namely the general regression neural network (GRNN). The relative performances of the proposed model are compared to the similar recognition systems based on the Multilayer Perceptron (MLP), the Recurrent Neural Network (RNN) and the well known Discrete Hidden Markov Model (HMM-VQ) that we have achieved also. Experimental results obtained with Arabic digits have shown that the use of nonparametric density estimation with an appropriate smoothing factor (spread) improves the generalization power of the neural network. The word error rate (WER) is reduced significantly over the baseline HMM method. GRNN computation is a successful alternative to the other neural network and DHMM.

Keywords: Speech Recognition, General Regression NeuralNetwork, Hidden Markov Model, Recurrent Neural Network, ArabicDigits.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2189
8258 Optimizing the Design of Radial/Axial PMSM and SRM used for Powered Wheel-Chairs

Authors: D. Fodorean, D.C. Popa, F. Jurca, M. Ruba

Abstract:

the paper presents the optimization results for several electrical machines dedicated for powered electric wheel-chairs. The optimization, using the Hook-Jeeves algorithm, was employed based on a design approach which takes into consideration the road conditions. Also, through numerical simulations (based on finite element method), the analytical approach was validated. The optimization approach gave satisfactory results and the best suited variant was chosen for the motorization of the wheel-chair.

Keywords: electrical machines, numerical validation, optimization, electric wheel chair.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2075
8257 The Error Analysis of An Upwind Difference Approximation for a Singularly Perturbed Problem

Authors: Jiming Yang

Abstract:

An upwind difference approximation is used for a singularly perturbed problem in material science. Based on the discrete Green-s function theory, the error estimate in maximum norm is achieved, which is first-order uniformly convergent with respect to the perturbation parameter. The numerical experimental result is verified the valid of the theoretical analysis.

Keywords: Singularly perturbed, upwind difference, uniform convergence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1403
8256 Parameter Optimization and Thermal Simulation in Laser Joining of Coach Peel Panels of Dissimilar Materials

Authors: Masoud Mohammadpour, Blair Carlson, Radovan Kovacevic

Abstract:

The quality of laser welded-brazed (LWB) joints were strongly dependent on the main process parameters, therefore the effect of laser power (3.2–4 kW), welding speed (60–80 mm/s) and wire feed rate (70–90 mm/s) on mechanical strength and surface roughness were investigated in this study. The comprehensive optimization process by means of response surface methodology (RSM) and desirability function was used for multi-criteria optimization. The experiments were planned based on Box– Behnken design implementing linear and quadratic polynomial equations for predicting the desired output properties. Finally, validation experiments were conducted on an optimized process condition which exhibited good agreement between the predicted and experimental results. AlSi3Mn1 was selected as the filler material for joining aluminum alloy 6022 and hot-dip galvanized steel in coach peel configuration. The high scanning speed could control the thickness of IMC as thin as 5 µm. The thermal simulations of joining process were conducted by the Finite Element Method (FEM), and results were validated through experimental data. The Fe/Al interfacial thermal history evidenced that the duration of critical temperature range (700–900 °C) in this high scanning speed process was less than 1 s. This short interaction time leads to the formation of reaction-control IMC layer instead of diffusion-control mechanisms.

Keywords: Laser welding-brazing, finite element, response surface methodology, multi-response optimization, cross-beam laser.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 966
8255 Failure Analysis and Fatigue Life Estimation of a Shaft of a Rotary Draw Bending Machine

Authors: B. Engel, Sara Salman Hassan Al-Maeeni

Abstract:

Human consumption of the Earth's resources increases the need for a sustainable development as an important ecological, social, and economic theme. Re-engineering of machine tools, in terms of design and failure analysis, is defined as steps performed on an obsolete machine to return it to a new machine with the warranty that matches the customer requirement. To understand the future fatigue behavior of the used machine components, it is important to investigate the possible causes of machine parts failure through design, surface, and material inspections. In this study, the failure modes of the shaft of the rotary draw bending machine are inspected. Furthermore, stress and deflection analysis of the shaft subjected to combined torsion and bending loads are carried out by an analytical method and compared with a finite element analysis method. The theoretical fatigue strength, correction factors, and fatigue life sustained by the shaft before damaged are estimated by creating a stress-cycle (S-N) diagram. In conclusion, it is seen that the shaft can work in the second life, but it needs some surface treatments to increase the reliability and fatigue life.

Keywords: Failure analysis, fatigue life, FEM analysis, shaft, stress analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4625
8254 Vibration Analysis of a Solar Powered UAV

Authors: Kevin Anderson, Sukhwinder Singh Sandhu, Nouh Anies, Shilpa Ravichandra, Steven Dobbs, Donald Edberg

Abstract:

This paper presents the results of a Finite Element based vibration analysis of a solar powered Unmanned Aerial Vehicle (UAV). The purpose of this paper was to quantify the free vibration, forced vibration response due to differing point inputs in order to predict the relative response magnitudes and frequencies at various wing locations of vibration induced power generators (magnet in coil) excited by gust and/or control surface pulse-decays used to help power the flight of the electric UAV. A Fluid Structure Interaction (FSI) study was performed in order to ascertain pertinent design stresses and deflections as well as aerodynamic parameters of the UAV airfoil. The 10 ft span airfoil is modeled using Mylar as the primary material. Results show that the free mode in bending is 4.8 Hz while the first forced bending mode is on range of 16.2 to 16.7 Hz depending on the location of excitation. The free torsional bending mode is 28.3 Hz, and the first forced torsional mode is range of 26.4 to 27.8 Hz, depending on the location of excitation. The FSI results predict the coefficients of aerodynamic drag and lift of 0.0052 and 0.077, respectively, which matches hand-calculations used to validate the Finite Element based results. FSI based maximum von Mises stresses and deflections were found to be 0.282 MPa and 3.4 mm, respectively. Dynamic pressures on the airfoil range from 1.04 to 1.23 kPa corresponding to velocity magnitudes in range of 22 to 66 m/s.

Keywords: ANSYS, finite element, FSI, UAV, vibrations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2753
8253 A Keyword-Based Filtering Technique of Document-Centric XML using NFA Representation

Authors: Changwoo Byun, Kyounghan Lee, Seog Park

Abstract:

XML is becoming a de facto standard for online data exchange. Existing XML filtering techniques based on a publish/subscribe model are focused on the highly structured data marked up with XML tags. These techniques are efficient in filtering the documents of data-centric XML but are not effective in filtering the element contents of the document-centric XML. In this paper, we propose an extended XPath specification which includes a special matching character '%' used in the LIKE operation of SQL in order to solve the difficulty of writing some queries to adequately filter element contents using the previous XPath specification. We also present a novel technique for filtering a collection of document-centric XMLs, called Pfilter, which is able to exploit the extended XPath specification. We show several performance studies, efficiency and scalability using the multi-query processing time (MQPT).

Keywords: XML Data Stream, Document-centric XML, Filtering Technique, Value-based Predicates.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1763
8252 Enhancement of Performance Utilizing Low Complexity Switched Beam Antenna

Authors: P. Chaipanya, R. Keawchai, W. Sombatsanongkhun, S. Jantaramporn

Abstract:

To manage the demand of wireless communication that has been dramatically increased, switched beam antenna in smart antenna system is focused. Implementation of switched beam antennas at mobile terminals such as notebook or mobile handset is a preferable choice to increase the performance of the wireless communication systems. This paper proposes the low complexity switched beam antenna using single element of antenna which is suitable to implement at mobile terminal. Main beam direction is switched by changing the positions of short circuit on the radiating patch. There are four cases of switching that provide four different directions of main beam. Moreover, the performance in terms of Signal to Interference Ratio when utilizing the proposed antenna is compared with the one using omni-directional antenna to confirm the performance improvable.

Keywords: Switched beam, shorted circuit, single element, signal to interference ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1362