Search results for: Fuzzy estimation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1920

Search results for: Fuzzy estimation

1050 Radar Hydrology: New Z/R Relationships for Klang River Basin Malaysia based on Rainfall Classification

Authors: R. Suzana, T. Wardah, A.B. Sahol Hamid

Abstract:

The use of radar in Quantitative Precipitation Estimation (QPE) for radar-rainfall measurement is significantly beneficial. Radar has advantages in terms of high spatial and temporal condition in rainfall measurement and also forecasting. In Malaysia, radar application in QPE is still new and needs to be explored. This paper focuses on the Z/R derivation works of radarrainfall estimation based on rainfall classification. The works developed new Z/R relationships for Klang River Basin in Selangor area for three different general classes of rain events, namely low (<10mm/hr), moderate (>10mm/hr, <30mm/hr) and heavy (>30mm/hr) and also on more specific rain types during monsoon seasons. Looking at the high potential of Doppler radar in QPE, the newly formulated Z/R equations will be useful in improving the measurement of rainfall for any hydrological application, especially for flood forecasting.

Keywords: Radar, Quantitative Precipitation Estimation, Z/R development, flood forecasting

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2152
1049 Effects of Different Meteorological Variables on Reference Evapotranspiration Modeling: Application of Principal Component Analysis

Authors: Akinola Ikudayisi, Josiah Adeyemo

Abstract:

The correct estimation of reference evapotranspiration (ETₒ) is required for effective irrigation water resources planning and management. However, there are some variables that must be considered while estimating and modeling ETₒ. This study therefore determines the multivariate analysis of correlated variables involved in the estimation and modeling of ETₒ at Vaalharts irrigation scheme (VIS) in South Africa using Principal Component Analysis (PCA) technique. Weather and meteorological data between 1994 and 2014 were obtained both from South African Weather Service (SAWS) and Agricultural Research Council (ARC) in South Africa for this study. Average monthly data of minimum and maximum temperature (°C), rainfall (mm), relative humidity (%), and wind speed (m/s) were the inputs to the PCA-based model, while ETₒ is the output. PCA technique was adopted to extract the most important information from the dataset and also to analyze the relationship between the five variables and ETₒ. This is to determine the most significant variables affecting ETₒ estimation at VIS. From the model performances, two principal components with a variance of 82.7% were retained after the eigenvector extraction. The results of the two principal components were compared and the model output shows that minimum temperature, maximum temperature and windspeed are the most important variables in ETₒ estimation and modeling at VIS. In order words, ETₒ increases with temperature and windspeed. Other variables such as rainfall and relative humidity are less important and cannot be used to provide enough information about ETₒ estimation at VIS. The outcome of this study has helped to reduce input variable dimensionality from five to the three most significant variables in ETₒ modelling at VIS, South Africa.

Keywords: Irrigation, principal component analysis, reference evapotranspiration, Vaalharts.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1062
1048 QoS Improvement Using Intelligent Algorithm under Dynamic Tropical Weather for Earth-Space Satellite Applications

Authors: Joseph S. Ojo, Vincent A. Akpan, Oladayo G. Ajileye, Olalekan L, Ojo

Abstract:

In this paper, the intelligent algorithm (IA) that is capable of adapting to dynamical tropical weather conditions is proposed based on fuzzy logic techniques. The IA effectively interacts with the quality of service (QoS) criteria irrespective of the dynamic tropical weather to achieve improvement in the satellite links. To achieve this, an adaptive network-based fuzzy inference system (ANFIS) has been adopted. The algorithm is capable of interacting with the weather fluctuation to generate appropriate improvement to the satellite QoS for efficient services to the customers. 5-year (2012-2016) rainfall rate of one-minute integration time series data has been used to derive fading based on ITU-R P. 618-12 propagation models. The data are obtained from the measurement undertaken by the Communication Research Group (CRG), Physics Department, Federal University of Technology, Akure, Nigeria. The rain attenuation and signal-to-noise ratio (SNR) were derived for frequency between Ku and V-band and propagation angle with respect to different transmitting power. The simulated results show a substantial reduction in SNR especially for application in the area of digital video broadcast-second generation coding modulation satellite networks.

Keywords: Fuzzy logic, intelligent algorithm, Nigeria, QoS, satellite applications, tropical weather.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 821
1047 Design of a Fuzzy Feed-forward Controller for Monitor HAGC System of Cold Rolling Mill

Authors: S. Khosravi, A. Afshar, F. Barazandeh

Abstract:

In this study we propose a novel monitor hydraulic automatic gauge control (HAGC) system based on fuzzy feedforward controller. This is used in the development of cold rolling mill automation system to improve the quality of cold strip. According to features/ properties of entry steel strip like its average yield stress, width of strip, and desired exit thickness, this controller realizes the compensation for the exit thickness error. The traditional methods of adjusting the roller position, can-t tolerate the variance in the entry steel strip. The proposed method uses a mathematical model of the system together with the expert knowledge to perform this adjustment while minimizing the effect of the stated problem. In order to improve the speed of the controller in rejecting disturbances introduced by entry strip thickness variations, expert knowledge is added as a feed-forward term to the HAGC system. Simulation results for the application of the proposed controller to a real cold mill show that the exit strip quality is highly improved.

Keywords: Fuzzy feed-forward controller, monitor HAGC system, dynamic mathematical model, entry strip thickness deviation compensation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2207
1046 Mathematical Programming on Multivariate Calibration Estimation in Stratified Sampling

Authors: Dinesh Rao, M.G.M. Khan, Sabiha Khan

Abstract:

Calibration estimation is a method of adjusting the original design weights to improve the survey estimates by using auxiliary information such as the known population total (or mean) of the auxiliary variables. A calibration estimator uses calibrated weights that are determined to minimize a given distance measure to the original design weights while satisfying a set of constraints related to the auxiliary information. In this paper, we propose a new multivariate calibration estimator for the population mean in the stratified sampling design, which incorporates information available for more than one auxiliary variable. The problem of determining the optimum calibrated weights is formulated as a Mathematical Programming Problem (MPP) that is solved using the Lagrange multiplier technique.

Keywords: Calibration estimation, Stratified sampling, Multivariate auxiliary information, Mathematical programming problem, Lagrange multiplier technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1957
1045 Estimation of the Spent Fuel Pool Water Temperature at a Loss-of-Pool-Cooling Accident

Authors: Chan Hee Park, Arim Lee, Jung Min Lee, Joo Hyun Moon

Abstract:

Accident in spent fuel pool (SFP) of Fukushima Daiichi Unit 4 showed the importance of continuous monitoring of the key environmental parameters such as water temperature, water level, and radiation level in the SFP at accident conditions. Because the SFP water temperature is one of the key parameters indicating SFP conditions, its behavior at accident conditions shall be understood to prepare appropriate measures. This study estimated temporal change in the SFP water temperature at Kori Unit 1 with 587 MWe for 1 hour after initiation of a loss-of-pool-cooling accident. For the estimation, ANSYS CFX 13.0 code was used. The estimation showed that the increasing rate of the water temperature was 3.90C per hour and the SFP water temperature could reach 1000C in 25.6 hours after the initiation of loss-of-pool-cooling accident.

Keywords: Spent fuel pool, water temperature, Kori Unit 1, a loss-of-pool-cooling accident.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2691
1044 A Self Supervised Bi-directional Neural Network (BDSONN) Architecture for Object Extraction Guided by Beta Activation Function and Adaptive Fuzzy Context Sensitive Thresholding

Authors: Siddhartha Bhattacharyya, Paramartha Dutta, Ujjwal Maulik, Prashanta Kumar Nandi

Abstract:

A multilayer self organizing neural neural network (MLSONN) architecture for binary object extraction, guided by a beta activation function and characterized by backpropagation of errors estimated from the linear indices of fuzziness of the network output states, is discussed. Since the MLSONN architecture is designed to operate in a single point fixed/uniform thresholding scenario, it does not take into cognizance the heterogeneity of image information in the extraction process. The performance of the MLSONN architecture with representative values of the threshold parameters of the beta activation function employed is also studied. A three layer bidirectional self organizing neural network (BDSONN) architecture comprising fully connected neurons, for the extraction of objects from a noisy background and capable of incorporating the underlying image context heterogeneity through variable and adaptive thresholding, is proposed in this article. The input layer of the network architecture represents the fuzzy membership information of the image scene to be extracted. The second layer (the intermediate layer) and the final layer (the output layer) of the network architecture deal with the self supervised object extraction task by bi-directional propagation of the network states. Each layer except the output layer is connected to the next layer following a neighborhood based topology. The output layer neurons are in turn, connected to the intermediate layer following similar topology, thus forming a counter-propagating architecture with the intermediate layer. The novelty of the proposed architecture is that the assignment/updating of the inter-layer connection weights are done using the relative fuzzy membership values at the constituent neurons in the different network layers. Another interesting feature of the network lies in the fact that the processing capabilities of the intermediate and the output layer neurons are guided by a beta activation function, which uses image context sensitive adaptive thresholding arising out of the fuzzy cardinality estimates of the different network neighborhood fuzzy subsets, rather than resorting to fixed and single point thresholding. An application of the proposed architecture for object extraction is demonstrated using a synthetic and a real life image. The extraction efficiency of the proposed network architecture is evaluated by a proposed system transfer index characteristic of the network.

Keywords: Beta activation function, fuzzy cardinality, multilayer self organizing neural network, object extraction,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1568
1043 Artificial Intelligence Techniques for Controlling Spacecraft Power System

Authors: Hanaa T. El-Madany, Faten H. Fahmy, Ninet M. A. El-Rahman, Hassen T. Dorrah

Abstract:

Advancements in the field of artificial intelligence (AI) made during this decade have forever changed the way we look at automating spacecraft subsystems including the electrical power system. AI have been used to solve complicated practical problems in various areas and are becoming more and more popular nowadays. In this paper, a mathematical modeling and MATLAB–SIMULINK model for the different components of the spacecraft power system is presented. Also, a control system, which includes either the Neural Network Controller (NNC) or the Fuzzy Logic Controller (FLC) is developed for achieving the coordination between the components of spacecraft power system as well as control the energy flows. The performance of the spacecraft power system is evaluated by comparing two control systems using the NNC and the FLC.

Keywords: Spacecraft, Neural network, Fuzzy logic control, Photovoltaic array.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1951
1042 An Implementation of Fuzzy Logic Technique for Prediction of the Power Transformer Faults

Authors: Omar M. Elmabrouk., Roaa Y. Taha., Najat M. Ebrahim, Sabbreen A. Mohammed

Abstract:

Power transformers are the most crucial part of power electrical system, distribution and transmission grid. This part is maintained using predictive or condition-based maintenance approach. The diagnosis of power transformer condition is performed based on Dissolved Gas Analysis (DGA). There are five main methods utilized for analyzing these gases. These methods are International Electrotechnical Commission (IEC) gas ratio, Key Gas, Roger gas ratio, Doernenburg, and Duval Triangle. Moreover, due to the importance of the transformers, there is a need for an accurate technique to diagnose and hence predict the transformer condition. The main objective of this technique is to avoid the transformer faults and hence to maintain the power electrical system, distribution and transmission grid. In this paper, the DGA was utilized based on the data collected from the transformer records available in the General Electricity Company of Libya (GECOL) which is located in Benghazi-Libya. The Fuzzy Logic (FL) technique was implemented as a diagnostic approach based on IEC gas ratio method. The FL technique gave better results and approved to be used as an accurate prediction technique for power transformer faults. Also, this technique is approved to be a quite interesting for the readers and the concern researchers in the area of FL mathematics and power transformer.

Keywords: Fuzzy logic, dissolved gas-in-oil analysis, DGA, prediction, power transformer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1357
1041 An Energy Detection-Based Algorithm for Cooperative Spectrum Sensing in Rayleigh Fading Channel

Authors: H. Bakhshi, E. Khayyamian

Abstract:

Cognitive radios have been recognized as one of the most promising technologies dealing with the scarcity of the radio spectrum. In cognitive radio systems, secondary users are allowed to utilize the frequency bands of primary users when the bands are idle. Hence, how to accurately detect the idle frequency bands has attracted many researchers’ interest. Detection performance is sensitive toward noise power and gain fluctuation. Since signal to noise ratio (SNR) between primary user and secondary users are not the same and change over the time, SNR and noise power estimation is essential. In this paper, we present a cooperative spectrum sensing algorithm using SNR estimation to improve detection performance in the real situation.

Keywords: Cognitive radio, cooperative spectrum sensing, energy detection, SNR estimation, spectrum sensing, Rayleigh fading channel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1407
1040 A Framework for Early Differential Diagnosis of Tropical Confusable Diseases Using the Fuzzy Cognitive Map Engine

Authors: Faith-Michael E. Uzoka, Boluwaji A. Akinnuwesi, Taiwo Amoo, Flora Aladi, Stephen Fashoto, Moses Olaniyan, Joseph Osuji

Abstract:

The overarching aim of this study is to develop a soft-computing system for the differential diagnosis of tropical diseases. These conditions are of concern to health bodies, physicians, and the community at large because of their mortality rates, and difficulties in early diagnosis due to the fact that they present with symptoms that overlap, and thus become ‘confusable’. We report on the first phase of our study, which focuses on the development of a fuzzy cognitive map model for early differential diagnosis of tropical diseases. We used malaria as a case disease to show the effectiveness of the FCM technology as an aid to the medical practitioner in the diagnosis of tropical diseases. Our model takes cognizance of manifested symptoms and other non-clinical factors that could contribute to symptoms manifestations. Our model showed 85% accuracy in diagnosis, as against the physicians’ initial hypothesis, which stood at 55% accuracy. It is expected that the next stage of our study will provide a multi-disease, multi-symptom model that also improves efficiency by utilizing a decision support filter that works on an algorithm, which mimics the physician’s diagnosis process.

Keywords: Medical diagnosis, tropical diseases, fuzzy cognitive map, decision support filters, malaria differential diagnosis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2100
1039 Coordination for Synchronous Cooperative Systems Based on Fuzzy Causal Relations

Authors: Luis A. Morales Rosales, Saul E. Pomares Hernandez, Gustavo Rodriguez Gomez

Abstract:

Synchronous cooperative systems (SCS) bring together users that are geographically distributed and connected through a network to carry out a task. Examples of SCS include Tele- Immersion and Tele-Conferences. In SCS, the coordination is the core of the system, and it has been defined as the act of managing interdependencies between activities performed to achieve a goal. Some of the main problems that SCS present deal with the management of constraints between simultaneous activities and the execution ordering of these activities. In order to resolve these problems, orderings based on Lamport-s happened-before relation have been used, namely, causal, Δ-causal, and causal-total orderings. They mainly differ in the degree of asynchronous execution allowed. One of the most important orderings is the causal order, which establishes that the events must be seen in the cause-effect order as they occur in the system. In this paper we show that for certain SCS (e.g. videoconferences, tele-immersion) where some degradation of the system is allowed, ensuring the causal order is still rigid, which can render negative affects to the system. In this paper, we illustrate how a more relaxed ordering, which we call Fuzzy Causal Order (FCO), is useful for such kind of systems by allowing a more asynchronous execution than the causal order. The benefit of the FCO is illustrated by applying it to a particular scenario of intermedia synchronization of an audio-conference system.

Keywords: Event ordering, fuzzy causal ordering, happenedbefore relation and cooperative systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1497
1038 Control Strategy for Two-Mode Hybrid Electric Vehicle by Using Fuzzy Controller

Authors: Jia-Shiun Chen, Hsiu-Ying Hwang

Abstract:

Hybrid electric vehicles can reduce pollution and improve fuel economy. Power-split hybrid electric vehicles (HEVs) provide two power paths between the internal combustion engine (ICE) and energy storage system (ESS) through the gears of an electrically variable transmission (EVT). EVT allows ICE to operate independently from vehicle speed all the time. Therefore, the ICE can operate in the efficient region of its characteristic brake specific fuel consumption (BSFC) map. The two-mode powertrain can operate in input-split or compound-split EVT modes and in four different fixed gear configurations. Power-split architecture is advantageous because it combines conventional series and parallel power paths. This research focuses on input-split and compound-split modes in the two-mode power-split powertrain. Fuzzy Logic Control (FLC) for an internal combustion engine (ICE) and PI control for electric machines (EMs) are derived for the urban driving cycle simulation. These control algorithms reduce vehicle fuel consumption and improve ICE efficiency while maintaining the state of charge (SOC) of the energy storage system in an efficient range.

Keywords: Hybrid electric vehicle, fuel economy, two-mode hybrid, fuzzy control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2611
1037 Analysis of Cost Estimation and Payment Systems for Consultant Contracts in the US, Japan, China and the UK

Authors: Shih-Hsu Wang, Yuan-Yuan Cheng, Ming-Tsung Lee, Wei-Chih Wang

Abstract:

Determining reasonable fees is the main objective of designing the cost estimation and payment systems for consultant contracts. However, project clients utilize different cost estimation and payment systems because of their varying views on the reasonableness of consultant fees. This study reviews the cost estimation and payment systems of consultant contracts for five countries, including the US (Washington State Department of Transportation), Japan (Ministry of Land, Infrastructure, Transport and Tourism), China (Engineering Design Charging Standard) and UK (Her Majesty's Treasure). Specifically, this work investigates the budgeting process, contractor selection method, contractual price negotiation process, cost review, and cost-control concept of the systems used in these countries. The main finding indicates that that project client-s view on whether the fee is high will affect the way he controls it. In the US, the fee is commonly considered to be high. As a result, stringent auditing system (low flexibility given to the consultant) is then applied. In the UK, the fee is viewed to be low by comparing it to the total life-cycle project cost. Thus, a system that has high flexibility in budgeting and cost reviewing is given to the consultant. In terms of the flexibility allowed for the consultant, the systems applied in Japan and China fall between those of the US and UK. Both the US and UK systems are helpful in determining a reasonable fee. However, in the US system, rigid auditing standards must be established and additional cost-audit manpower is required. In the UK system, sufficient historical cost data should be needed to evaluate the reasonableness of the consultant-s proposed fee

Keywords: Consultant Services, Cost Estimation and Payment System, Payment Flexibility, Cost-control Concept

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1688
1036 Knowledge-Driven Decision Support System Based on Knowledge Warehouse and Data Mining by Improving Apriori Algorithm with Fuzzy Logic

Authors: Pejman Hosseinioun, Hasan Shakeri, Ghasem Ghorbanirostam

Abstract:

In recent years, we have seen an increasing importance of research and study on knowledge source, decision support systems, data mining and procedure of knowledge discovery in data bases and it is considered that each of these aspects affects the others. In this article, we have merged information source and knowledge source to suggest a knowledge based system within limits of management based on storing and restoring of knowledge to manage information and improve decision making and resources. In this article, we have used method of data mining and Apriori algorithm in procedure of knowledge discovery one of the problems of Apriori algorithm is that, a user should specify the minimum threshold for supporting the regularity. Imagine that a user wants to apply Apriori algorithm for a database with millions of transactions. Definitely, the user does not have necessary knowledge of all existing transactions in that database, and therefore cannot specify a suitable threshold. Our purpose in this article is to improve Apriori algorithm. To achieve our goal, we tried using fuzzy logic to put data in different clusters before applying the Apriori algorithm for existing data in the database and we also try to suggest the most suitable threshold to the user automatically.

Keywords: Decision support system, data mining, knowledge discovery, data discovery, fuzzy logic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2135
1035 A Fuzzy Classifier with Evolutionary Design of Ellipsoidal Decision Regions

Authors: Leehter Yao, Kuei-Song Weng, Cherng-Dir Huang

Abstract:

A fuzzy classifier using multiple ellipsoids approximating decision regions for classification is to be designed in this paper. An algorithm called Gustafson-Kessel algorithm (GKA) with an adaptive distance norm based on covariance matrices of prototype data points is adopted to learn the ellipsoids. GKA is able toadapt the distance norm to the underlying distribution of the prototypedata points except that the sizes of ellipsoids need to be determined a priori. To overcome GKA's inability to determine appropriate size ofellipsoid, the genetic algorithm (GA) is applied to learn the size ofellipsoid. With GA combined with GKA, it will be shown in this paper that the proposed method outperforms the benchmark algorithms as well as algorithms in the field.

Keywords: Ellipsoids, genetic algorithm, classification, fuzzyc-means (FCM)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1694
1034 Qualitative Modelling for Ferromagnetic Hysteresis Cycle

Authors: M. Mordjaoui, B. Boudjema, M. Chabane, R. Daira

Abstract:

In determining the electromagnetic properties of magnetic materials, hysteresis modeling is of high importance. Many models are available to investigate those characteristics but they tend to be complex and difficult to implement. In this paper a new qualitative hysteresis model for ferromagnetic core is presented, based on the function approximation capabilities of adaptive neuro fuzzy inference system (ANFIS). The proposed ANFIS model combined the neural network adaptive capabilities and the fuzzy logic qualitative approach can restored the hysteresis curve with a little RMS error. The model accuracy is good and can be easily adapted to the requirements of the application by extending or reducing the network training set and thus the required amount of measurement data.

Keywords: ANFIS modeling technique, magnetic hysteresis, Jiles-Atherton model, ferromagnetic core.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1589
1033 Stability Enhancement of a Large-Scale Power System Using Power System Stabilizer Based on Adaptive Neuro Fuzzy Inference System

Authors: Agung Budi Muljono, I Made Ginarsa, I Made Ari Nrartha

Abstract:

A large-scale power system (LSPS) consists of two or more sub-systems connected by inter-connecting transmission. Loading pattern on an LSPS always changes from time to time and varies depend on consumer need. The serious instability problem is appeared in an LSPS due to load fluctuation in all of the bus. Adaptive neuro-fuzzy inference system (ANFIS)-based power system stabilizer (PSS) is presented to cover the stability problem and to enhance the stability of an LSPS. The ANFIS control is presented because the ANFIS control is more effective than Mamdani fuzzy control in the computation aspect. Simulation results show that the presented PSS is able to maintain the stability by decreasing peak overshoot to the value of −2.56 × 10−5 pu for rotor speed deviation Δω2−3. The presented PSS also makes the settling time to achieve at 3.78 s on local mode oscillation. Furthermore, the presented PSS is able to improve the peak overshoot and settling time of Δω3−9 to the value of −0.868 × 10−5 pu and at the time of 3.50 s for inter-area oscillation.

Keywords: ANFIS, large-scale, power system, PSS, stability enhancement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1198
1032 A Simulator for Robot Navigation Algorithms

Authors: Michael A. Folcik, Bijan Karimi

Abstract:

A robot simulator was developed to measure and investigate the performance of a robot navigation system based on the relative position of the robot with respect to random obstacles in any two dimensional environment. The presented simulator focuses on investigating the ability of a fuzzy-neural system for object avoidance. A navigation algorithm is proposed and used to allow random navigation of a robot among obstacles when the robot faces an obstacle in the environment. The main features of this simulator can be used for evaluating the performance of any system that can provide the position of the robot with respect to obstacles in the environment. This allows a robot developer to investigate and analyze the performance of a robot without implementing the physical robot.

Keywords: Applications of Fuzzy Logic and Neural Networksin Robotics, Artificial Intelligence, Embedded Systems, MobileRobots, Robot Navigation, Robotics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1758
1031 Development of Vibration Sensor with Wide Frequency Range Based on Condenser Microphone -Estimation System for Flow Rate in Water Pipes-

Authors: Hironori Kakuta, Kajiro Watanabe, Yosuke Kurihara

Abstract:

Water leakage is a serious problem in the maintenance of a waterworks facility. Monitoring the water flow rate is one way to locate leakage. However, conventional flowmeters such as the wet-type flowmeter and the clamp-on type ultrasonic flowmeter require additional construction for their installation and are therefore quite expensive. This paper proposes a novel estimation system for the flow rate in a water pipeline, which employs a vibration sensor. This assembly can be attached to any water pipeline without the need for additional high-cost construction. The vibration sensor is designed based on a condenser microphone. This sensor detects vibration caused by water flowing through a pipeline. It is possible to estimate the water flow rate by measuring the amplitude of the output signal from the vibration sensor. We confirmed the validity of the proposed sensing system experimentally.

Keywords: Condenser microphone, Flow rate estimation, Piping vibration, Water pipe.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2329
1030 Joint Adaptive Block Matching Search (JABMS) Algorithm

Authors: V.K.Ananthashayana, Pushpa.M.K

Abstract:

In this paper a new Joint Adaptive Block Matching Search (JABMS) algorithm is proposed to generate motion vector and search a best match macro block by classifying the motion vector movement based on prediction error. Diamond Search (DS) algorithm generates high estimation accuracy when motion vector is small and Adaptive Rood Pattern Search (ARPS) algorithm can handle large motion vector but is not very accurate. The proposed JABMS algorithm which is capable of considering both small and large motions gives improved estimation accuracy and the computational cost is reduced by 15.2 times compared with Exhaustive Search (ES) algorithm and is 1.3 times less compared with Diamond search algorithm.

Keywords: Adaptive rood pattern search, Block matching, Diamond search, Joint Adaptive search, Motion estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1695
1029 Stature Estimation Based On Lower Limb Dimensions in the Malaysian Population

Authors: F. M. Nor, N. Abdullah, Al-M. Mustapa, L. Q. Wen, N. A. Faisal, D. A. A. Ahmad Nazari

Abstract:

Estimation of stature is an important step in developing a biological profile for human identification. It may provide a valuable indicator for unknown individual in a population. The aim of this study was to analyses the relationship between stature and lower limb dimensions in the Malaysian population. The sample comprised 100 corpses, which included 69 males and 31 females between age ranges of 20 to 90 years old. The parameters measured were stature, thigh length, lower leg length, leg length, foot length, foot height and foot breadth. Results showed that mean values in males were significantly higher than those in females (P < 0.05). There were significant correlations between lower limb dimensions and stature. Cross-validation of the equation on 100 individuals showed close approximation between known stature and estimated stature. It was concluded that lower limb dimensions were useful for estimation of stature, which should be validated in future studies. 

Keywords: Forensic anthropology population data, lower leg length, Malaysian, stature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3207
1028 Pectoral Muscles Suppression in Digital Mammograms Using Hybridization of Soft Computing Methods

Authors: I. Laurence Aroquiaraj, K. Thangavel

Abstract:

Breast region segmentation is an essential prerequisite in computerized analysis of mammograms. It aims at separating the breast tissue from the background of the mammogram and it includes two independent segmentations. The first segments the background region which usually contains annotations, labels and frames from the whole breast region, while the second removes the pectoral muscle portion (present in Medio Lateral Oblique (MLO) views) from the rest of the breast tissue. In this paper we propose hybridization of Connected Component Labeling (CCL), Fuzzy, and Straight line methods. Our proposed methods worked good for separating pectoral region. After removal pectoral muscle from the mammogram, further processing is confined to the breast region alone. To demonstrate the validity of our segmentation algorithm, it is extensively tested using over 322 mammographic images from the Mammographic Image Analysis Society (MIAS) database. The segmentation results were evaluated using a Mean Absolute Error (MAE), Hausdroff Distance (HD), Probabilistic Rand Index (PRI), Local Consistency Error (LCE) and Tanimoto Coefficient (TC). The hybridization of fuzzy with straight line method is given more than 96% of the curve segmentations to be adequate or better. In addition a comparison with similar approaches from the state of the art has been given, obtaining slightly improved results. Experimental results demonstrate the effectiveness of the proposed approach.

Keywords: X-ray Mammography, CCL, Fuzzy, Straight line.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1756
1027 Estimation of OPC, Fly Ash and Slag Contents in Blended and Composite Cements by Selective Dissolution Method

Authors: Suresh Palla, Suresh Vanguri, Anitha, B. N. Mohapatra

Abstract:

This paper presents the results of the study on the estimation of fly ash, slag and cement contents in blended and composite cements by selective dissolution method. Types of cement samples investigated include Ordinary Portland Cement (OPC) with fly ash as performance improver, OPC with slag as performance improver, Portland Pozzolana Cement (PPC), Portland Slag Cement (PSC) and composite cement confirming to respective Indian Standards. Slag and OPC contents in PSC were estimated by selectively dissolving OPC in stage 1 and selectively dissolving slag in stage 2. In the case of composite cement sample, the percentage of cement, slag and fly ash were estimated systematically by selective dissolution of cement, slag and fly ash in three stages. In the first stage, cement is dissolved and separated by leaving the residue of slag and fly ash, designated as R1. The second stage involves gravimetric estimation of fractions of OPC, residue and selective dissolution of fly ash and slag contents. Fly ash content, R2 was estimated through gravimetric analysis. Thereafter, the difference between the R1 and R2 is considered as slag content. The obtained results of cement, fly ash and slag using selective dissolution method showed 10% of standard deviation with the corresponding percentage of respective constituents. The results suggest that this selective dissolution method can be successfully used for estimation of OPC and Supplementary Cementitious material (SCM) contents in different types of cements.

Keywords: Selective dissolution method, fly ash, Ground Granulated blast furnace slag, EDTA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 408
1026 An Efficient Gaussian Noise Removal Image Enhancement Technique for Gray Scale Images

Authors: V. Murugan, R. Balasubramanian

Abstract:

Image enhancement is a challenging issue in many applications. In the last two decades, there are various filters developed. This paper proposes a novel method which removes Gaussian noise from the gray scale images. The proposed technique is compared with Enhanced Fuzzy Peer Group Filter (EFPGF) for various noise levels. Experimental results proved that the proposed filter achieves better Peak-Signal-to-Noise-Ratio PSNR than the existing techniques. The proposed technique achieves 1.736dB gain in PSNR than the EFPGF technique.

Keywords: Gaussian noise, adaptive bilateral filter, fuzzy peer group filter, switching bilateral filter, PSNR

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2483
1025 GCM Based Fuzzy Clustering to Identify Homogeneous Climatic Regions of North-East India

Authors: Arup K. Sarma, Jayshree Hazarika

Abstract:

The North-eastern part of India, which receives heavier rainfall than other parts of the subcontinent, is of great concern now-a-days with regard to climate change. High intensity rainfall for short duration and longer dry spell, occurring due to impact of climate change, affects river morphology too. In the present study, an attempt is made to delineate the North-eastern region of India into some homogeneous clusters based on the Fuzzy Clustering concept and to compare the resulting clusters obtained by using conventional methods and nonconventional methods of clustering. The concept of clustering is adapted in view of the fact that, impact of climate change can be studied in a homogeneous region without much variation, which can be helpful in studies related to water resources planning and management. 10 IMD (Indian Meteorological Department) stations, situated in various regions of the North-east, have been selected for making the clusters. The results of the Fuzzy C-Means (FCM) analysis show different clustering patterns for different conditions. From the analysis and comparison it can be concluded that nonconventional method of using GCM data is somehow giving better results than the others. However, further analysis can be done by taking daily data instead of monthly means to reduce the effect of standardization.

Keywords: Climate change, conventional and nonconventional methods of clustering, FCM analysis, homogeneous regions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2211
1024 Performance Evaluation of Complex Electrical Bio-impedance from V/I Four-electrode Measurements

Authors: Towfeeq Fairooz, Salim Istyaq

Abstract:

The passive electrical properties of a tissue depends on the intrinsic constituents and its structure, therefore by measuring the complex electrical impedance of the tissue it might be possible to obtain indicators of the tissue state or physiological activity [1]. Complete bio-impedance information relative to physiology and pathology of a human body and functional states of the body tissue or organs can be extracted by using a technique containing a fourelectrode measurement setup. This work presents the estimation measurement setup based on the four-electrode technique. First, the complex impedance is estimated by three different estimation techniques: Fourier, Sine Correlation and Digital De-convolution and then estimation errors for the magnitude, phase, reactance and resistance are calculated and analyzed for different levels of disturbances in the observations. The absolute values of relative errors are plotted and the graphical performance of each technique is compared.

Keywords: Electrical Impedance, Fast Fourier Transform, Additive White Gaussian Noise, Total Least Square, Digital De-Convolution, Sine-Correlation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2734
1023 Development of a Catchment Water Quality Model for Continuous Simulations of Pollutants Build-up and Wash-off

Authors: Iqbal Hossain, Dr. Monzur Imteaz, Dr. Shirley Gato-Trinidad, Prof. Abdallah Shanableh

Abstract:

Estimation of runoff water quality parameters is required to determine appropriate water quality management options. Various models are used to estimate runoff water quality parameters. However, most models provide event-based estimates of water quality parameters for specific sites. The work presented in this paper describes the development of a model that continuously simulates the accumulation and wash-off of water quality pollutants in a catchment. The model allows estimation of pollutants build-up during dry periods and pollutants wash-off during storm events. The model was developed by integrating two individual models; rainfall-runoff model, and catchment water quality model. The rainfall-runoff model is based on the time-area runoff estimation method. The model allows users to estimate the time of concentration using a range of established methods. The model also allows estimation of the continuing runoff losses using any of the available estimation methods (i.e., constant, linearly varying or exponentially varying). Pollutants build-up in a catchment was represented by one of three pre-defined functions; power, exponential, or saturation. Similarly, pollutants wash-off was represented by one of three different functions; power, rating-curve, or exponential. The developed runoff water quality model was set-up to simulate the build-up and wash-off of total suspended solids (TSS), total phosphorus (TP) and total nitrogen (TN). The application of the model was demonstrated using available runoff and TSS field data from road and roof surfaces in the Gold Coast, Australia. The model provided excellent representation of the field data demonstrating the simplicity yet effectiveness of the proposed model.

Keywords: Catchment, continuous pollutants build-up, pollutants wash-off, runoff, runoff water quality model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3137
1022 Animal-Assisted Therapy for Persons with Disabilities Based on Canine Tail Language Interpretation via Gaussian-Trapezoidal Fuzzy Emotional Behavior Model

Authors: W. Phanwanich, O. Kumdee, P. Ritthipravat, Y. Wongsawat

Abstract:

In order to alleviate the mental and physical problems of persons with disabilities, animal-assisted therapy (AAT) is one of the possible modalities that employs the merit of the human-animal interaction. Nevertheless, to achieve the purpose of AAT for persons with severe disabilities (e.g. spinal cord injury, stroke, and amyotrophic lateral sclerosis), real-time animal language interpretation is desirable. Since canine behaviors can be visually notable from its tail, this paper proposes the automatic real-time interpretation of canine tail language for human-canine interaction in the case of persons with severe disabilities. Canine tail language is captured via two 3-axis accelerometers. Directions and frequencies are selected as our features of interests. The novel fuzzy rules based on Gaussian-Trapezoidal model and center of gravity (COG)-based defuzzification method are proposed in order to interpret the features into four canine emotional behaviors, i.e., agitate, happy, scare and neutral as well as its blended emotional behaviors. The emotional behavior model is performed in the simulated dog and has also been evaluated in the real dog with the perfect recognition rate.

Keywords: Animal-assisted therapy (AAT), Persons with disabilities, Canine tail language, Fuzzy emotional behavior model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2020
1021 Time-Derivative Estimation of Noisy Movie Data using Adaptive Control Theory

Authors: Soon-Hyun Park, Takami Matsuo

Abstract:

This paper presents an adaptive differentiator of sequential data based on the adaptive control theory. The algorithm is applied to detect moving objects by estimating a temporal gradient of sequential data at a specified pixel. We adopt two nonlinear intensity functions to reduce the influence of noises. The derivatives of the nonlinear intensity functions are estimated by an adaptive observer with σ-modification update law.

Keywords: Adaptive estimation, parameter adjustmentlaw, motion detection, temporal gradient, differential filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1877