Search results for: task based learning.
12700 Mobile Learning Implementation: Students- Perceptions in UTP
Authors: Ahmad Sobri bin Hashim, Wan Fatimah Bt. Wan Ahmad, Rohiza Bt. Ahmad
Abstract:
Mobile Learning (M-Learning) is a new technology which is to enhance current learning practices and activities for all people especially students and academic practitioners UTP is currently, implemented two types of learning styles which are conventional and electronic learning. In order to improve current learning approaches, it is necessary for UTP to implement m-learning in UTP. This paper presents a study on the students- perceptions on mobile utilization in the learning practices in UTP. Besides, this paper also presents a survey that was conducted among 82 students from System Analysis and Design (SAD) course in UTP. The survey includes basic information of mobile devices that have been used by the students, opinions on current learning practices and also the opinions regarding the m-learning implementation in the current learning practices especially in SAD course. Based on the results of the survey, majority of the students are using the mobile devices that can support m-learning environment. Other than that, students also agreed that current learning practices are ineffective and they believe that m-learning utilization can improve the effectiveness of current learning practices.Keywords: m-learning, conventional learning, electronic learning, mobile devices.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 223412699 Resource Allocation and Task Scheduling with Skill Level and Time Bound Constraints
Authors: Salam Saudagar, Ankit Kamboj, Niraj Mohan, Satgounda Patil, Nilesh Powar
Abstract:
Task Assignment and Scheduling is a challenging Operations Research problem when there is a limited number of resources and comparatively higher number of tasks. The Cost Management team at Cummins needs to assign tasks based on a deadline and must prioritize some of the tasks as per business requirements. Moreover, there is a constraint on the resources that assignment of tasks should be done based on an individual skill level, that may vary for different tasks. Another constraint is for scheduling the tasks that should be evenly distributed in terms of number of working hours, which adds further complexity to this problem. The proposed greedy approach to solve assignment and scheduling problem first assigns the task based on management priority and then by the closest deadline. This is followed by an iterative selection of an available resource with the least allocated total working hours for a task, i.e. finding the local optimal choice for each task with the goal of determining the global optimum. The greedy approach task allocation is compared with a variant of Hungarian Algorithm, and it is observed that the proposed approach gives an equal allocation of working hours among the resources. The comparative study of the proposed approach is also done with manual task allocation and it is noted that the visibility of the task timeline has increased from 2 months to 6 months. An interactive dashboard app is created for the greedy assignment and scheduling approach and the tasks with more than 2 months horizon that were waiting in a queue without a delivery date initially are now analyzed effectively by the business with expected timelines for completion.
Keywords: Assignment, deadline, greedy approach, hungarian algorithm, operations research, scheduling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 120112698 Development of Multimedia Learning Application for Mastery Learning Style: A Graduated Difficulty Strategy
Authors: Nur Azlina Mohamed Mokmin, Mona Masood
Abstract:
Guided by the theory of learning styles, this study is based on the development of a multimedia learning application for students with mastery learning style. The learning material was developed by applying a graduated difficulty learning strategy. Algebra was chosen as the learning topic for this application. The effectiveness of this application in helping students learn is measured by giving a pre- and post-test. The result shows that students who learn using the learning material that matches their preferred learning style perform better than the students with a non-personalized learning material.
Keywords: Algebraic Fractions, Graduated Difficulty, Mastery Learning Style, Multimedia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 260012697 A Probabilistic Reinforcement-Based Approach to Conceptualization
Authors: Hadi Firouzi, Majid Nili Ahmadabadi, Babak N. Araabi
Abstract:
Conceptualization strengthens intelligent systems in generalization skill, effective knowledge representation, real-time inference, and managing uncertain and indefinite situations in addition to facilitating knowledge communication for learning agents situated in real world. Concept learning introduces a way of abstraction by which the continuous state is formed as entities called concepts which are connected to the action space and thus, they illustrate somehow the complex action space. Of computational concept learning approaches, action-based conceptualization is favored because of its simplicity and mirror neuron foundations in neuroscience. In this paper, a new biologically inspired concept learning approach based on the probabilistic framework is proposed. This approach exploits and extends the mirror neuron-s role in conceptualization for a reinforcement learning agent in nondeterministic environments. In the proposed method, instead of building a huge numerical knowledge, the concepts are learnt gradually from rewards through interaction with the environment. Moreover the probabilistic formation of the concepts is employed to deal with uncertain and dynamic nature of real problems in addition to the ability of generalization. These characteristics as a whole distinguish the proposed learning algorithm from both a pure classification algorithm and typical reinforcement learning. Simulation results show advantages of the proposed framework in terms of convergence speed as well as generalization and asymptotic behavior because of utilizing both success and failures attempts through received rewards. Experimental results, on the other hand, show the applicability and effectiveness of the proposed method in continuous and noisy environments for a real robotic task such as maze as well as the benefits of implementing an incremental learning scenario in artificial agents.
Keywords: Concept learning, probabilistic decision making, reinforcement learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 152712696 Knowledge Management and e-Learning –An Agent-Based Approach
Authors: Teodora Bakardjieva, Galya Gercheva
Abstract:
In this paper an open agent-based modular framework for personalized and adaptive curriculum generation in e-learning environment is proposed. Agent-based approaches offer several potential advantages over alternative approaches. Agent-based systems exhibit high levels of flexibility and robustness in dynamic or unpredictable environments by virtue of their intrinsic autonomy. The presented framework enables integration of different types of expert agents, various kinds of learning objects and user modeling techniques. It creates possibilities for adaptive e-learning process. The KM e-learning system is in a process of implementation in Varna Free University and will be used for supporting the educational process at the University.Keywords: agents, e-Learning, knowledge management, knowledge sharing, artificial intelligence
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 216612695 Behavioral Analysis of Team Members in Virtual Organization based on Trust Dimension and Learning
Authors: Indiramma M., K. R. Anandakumar
Abstract:
Trust management and Reputation models are becoming integral part of Internet based applications such as CSCW, E-commerce and Grid Computing. Also the trust dimension is a significant social structure and key to social relations within a collaborative community. Collaborative Decision Making (CDM) is a difficult task in the context of distributed environment (information across different geographical locations) and multidisciplinary decisions are involved such as Virtual Organization (VO). To aid team decision making in VO, Decision Support System and social network analysis approaches are integrated. In such situations social learning helps an organization in terms of relationship, team formation, partner selection etc. In this paper we focus on trust learning. Trust learning is an important activity in terms of information exchange, negotiation, collaboration and trust assessment for cooperation among virtual team members. In this paper we have proposed a reinforcement learning which enhances the trust decision making capability of interacting agents during collaboration in problem solving activity. Trust computational model with learning that we present is adapted for best alternate selection of new project in the organization. We verify our model in a multi-agent simulation where the agents in the community learn to identify trustworthy members, inconsistent behavior and conflicting behavior of agents.Keywords: Collaborative Decision making, Trust, Multi Agent System (MAS), Bayesian Network, Reinforcement Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 189312694 A Model for Collaborative COTS Software Acquisition (COSA)
Authors: Torsti Rantapuska, Sariseelia Sore
Abstract:
Acquiring commercial off-the-shelf (COTS) software applications is becoming routine in organizations. However, eliciting user requirements, finding the candidate COTS products and making the decision is a complex task, especially for SMEs who do not have the time and knowledge needed to do the task properly. The existing models intended to help the decision makers are originally designed for professional use. SMEs are obligated to rely on the software vendor’s ability to solve the problem with the systems provided. In this paper, we develop a model for SMEs for the acquisition of Commercial Off-The-Shelf (COTS) software products. A leading idea of the model is that the ICT investment is basically a change initiative and therefore it should also be taken as a process of organizational learning. The model is designed bearing three objectives in mind: 1) business orientation, 2) agility, and 3) Learning and knowledge management orientation. The model can be applied to ICT investments in SMEs which have a professional team leader with basic business and IT knowledge.
Keywords: COTS acquisition, ICT investment, organizational learning, ICT adoption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 177012693 Social Semantic Web-Based Analytics Approach to Support Lifelong Learning
Authors: Khaled Halimi, Hassina Seridi-Bouchelaghem
Abstract:
The purpose of this paper is to describe how learning analytics approaches based on social semantic web techniques can be applied to enhance the lifelong learning experiences in a connectivist perspective. For this reason, a prototype of a system called SoLearn (Social Learning Environment) that supports this approach. We observed and studied literature related to lifelong learning systems, social semantic web and ontologies, connectivism theory, learning analytics approaches and reviewed implemented systems based on these fields to extract and draw conclusions about necessary features for enhancing the lifelong learning process. The semantic analytics of learning can be used for viewing, studying and analysing the massive data generated by learners, which helps them to understand through recommendations, charts and figures their learning and behaviour, and to detect where they have weaknesses or limitations. This paper emphasises that implementing a learning analytics approach based on social semantic web representations can enhance the learning process. From one hand, the analysis process leverages the meaning expressed by semantics presented in the ontology (relationships between concepts). From the other hand, the analysis process exploits the discovery of new knowledge by means of inferring mechanism of the semantic web.
Keywords: Connectivism, data visualization, informal learning, learning analytics, semantic web, social web.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 81312692 An Evolutionary Statistical Learning Theory
Authors: Sung-Hae Jun, Kyung-Whan Oh
Abstract:
Statistical learning theory was developed by Vapnik. It is a learning theory based on Vapnik-Chervonenkis dimension. It also has been used in learning models as good analytical tools. In general, a learning theory has had several problems. Some of them are local optima and over-fitting problems. As well, statistical learning theory has same problems because the kernel type, kernel parameters, and regularization constant C are determined subjectively by the art of researchers. So, we propose an evolutionary statistical learning theory to settle the problems of original statistical learning theory. Combining evolutionary computing into statistical learning theory, our theory is constructed. We verify improved performances of an evolutionary statistical learning theory using data sets from KDD cup.Keywords: Evolutionary computing, Local optima, Over-fitting, Statistical learning theory
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 177612691 A Family of Distributions on Learnable Problems without Uniform Convergence
Authors: César Garza
Abstract:
In supervised binary classification and regression problems, it is well-known that learnability is equivalent to uniform convergence of the hypothesis class, and if a problem is learnable, it is learnable by empirical risk minimization. For the general learning setting of unsupervised learning tasks, there are non-trivial learning problems where uniform convergence does not hold. We present here the task of learning centers of mass with an extra feature that “activates” some of the coordinates over the unit ball in a Hilbert space. We show that the learning problem is learnable under a stable RLM rule. We introduce a family of distributions over the domain space with some mild restrictions for which the sample complexity of uniform convergence for these problems must grow logarithmically with the dimension of the Hilbert space. If we take this dimension to infinity, we obtain a learnable problem for which the uniform convergence property fails for a vast family of distributions.
Keywords: Statistical learning theory, learnability, uniform convergence, stability, regularized loss minimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35412690 Motivation Factors in Distance Education
Authors: Sheila R. Bonito
Abstract:
This study describes the relationship between motivation factors and academic performance among distance education students enrolled in a postgraduate nursing course. Students (n=96) participated in a survey that assesses student's motivational orientations from a cognitive perspective using a selfadministered questionnaire based on Pintrich-s Motivation Strategies for Learning Questionnaire (MLSQ). Results showed students- motivational factors are highest on task value (6.44, 0.71); followed by intrinsic goal orientation (6.20, 0.76), control beliefs (6.02, 0.89); extrinsic goal orientation (5.85, 1.13); self-efficacy for learning and performance (5.62, 0.84), and finally, test anxiety (4.21, 1.37). Weak positive correlations were found between academic performance and intrinsic goal orientation (r=0.13), extrinsic goal orientation (r=0.04), task value (r=0.09), control beliefs (r=0.02), and self-efficacy (r=0.05), while there was weak negative correlation with test anxiety (r=-0.04). Conclusions from the study indicate the need to focus on improving tasks and targeting intrinsic goal orientations of students to courses since these were positively correlated with academic performance and downplay the use of tests since these were negatively correlated with academic performance.
Keywords: Motivation factors, academic performance, distance education
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 226512689 An Example of Open Robot Controller Architecture - For Power Distribution Line Maintenance Robot System -
Authors: Yingxin He, Kyouichi Tatsuno
Abstract:
In this paper, we propose an architecture for easily constructing a robot controller. The architecture is a multi-agent system which has eight agents: the Man-machine interface, Task planner, Task teaching editor, Motion planner, Arm controller, Vehicle controller, Vision system and CG display. The controller has three databases: the Task knowledge database, the Robot database and the Environment database. Based on this controller architecture, we are constructing an experimental power distribution line maintenance robot system and are doing the experiment for the maintenance tasks, for example, “Bolt insertion task".Keywords: Robot controller, Software library, Maintenance robot, Robot language, Agent system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 140112688 Online Teaching and Learning Processes: Declarative and Procedural Knowledge
Authors: Eulalia Torras, Andreu Bellot
Abstract:
To know whether students’ achievements are the result of online interaction and not just a consequence of individual differences themselves, it seems essential to link the teaching presence and social presence to the types of knowledge built. The research aim is to analyze the social presence in relation to two types of knowledge, declarative and procedural. Qualitative methodology has been used. The analysis of the contents was based on an observation protocol that included community of enquiry indicators and procedural and declarative knowledge indicators. The research has been conducted in three phases that focused on an observational protocol and indicators, results and conclusions. Results show that the teaching-learning processes have been characterized by the patterns of presence and types of knowledge. Results also show the importance of social presence support provided by the teacher and the students, not only in regard to the nature of the instructional support but also concerning how it is presented to the student and the importance that is attributed to it in the teaching-learning process, that is, what it is that assistance is offered on. In this study, we find that the presence based on procedural guidelines and declarative reflection, the management of shared meaning on the basis of the skills and the evidence of these skills entail patterns of learning. Nevertheless, the importance that the teacher attributes to each support aspect has a bearing on the extent to which the students reflect more on the given task.Keywords: Education, online, teaching and learning processes, knowledge.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 205812687 Learner Autonomy Based On Constructivism Learning Theory
Authors: Haiyan Wang
Abstract:
Constuctivism learning theory lays emphasis on the learners' active learning, such as learning initiative, sociality and context. By analyzing the relationship between constructivism learning theory and learner autonomy, this paper explores how to cultivate learners' learner autonomy under the guidance of constructivism learning theory.
Keywords: Constructivism learning theory, learner autonomy, relationship, cultivation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 775812686 Peer Assessment in the Context of Project-Based Learning Online
Authors: Y. Benjelloun Touimi, N. Faddouli, S. Bennani, M. Khalidi Idrissi
Abstract:
The pedagogy project has been proven as an active learning method, which is used to develop learner-s skills and knowledge.The use of technology in the learning world, has filed several gaps in the implementation of teaching methods, and online evaluation of learners. However, the project methodology presents challenges in the assessment of learners online. Indeed, interoperability between E-learning platforms (LMS) is one of the major challenges of project-based learning assessment. Firstly, we have reviewed the characteristics of online assessment in the context of project-based teaching. We addressed the constraints encountered during the peer evaluation process. Our approach is to propose a meta-model, which will describe a language dedicated to the conception of peer assessment scenario in project-based learning. Then we illustrate our proposal by an instantiation of the meta-model through a business process in a scenario of collaborative assessment on line.Keywords: Online project based learning, meta-model, peer assessment process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 237212685 Facial Emotion Recognition with Convolutional Neural Network Based Architecture
Authors: Koray U. Erbas
Abstract:
Neural networks are appealing for many applications since they are able to learn complex non-linear relationships between input and output data. As the number of neurons and layers in a neural network increase, it is possible to represent more complex relationships with automatically extracted features. Nowadays Deep Neural Networks (DNNs) are widely used in Computer Vision problems such as; classification, object detection, segmentation image editing etc. In this work, Facial Emotion Recognition task is performed by proposed Convolutional Neural Network (CNN)-based DNN architecture using FER2013 Dataset. Moreover, the effects of different hyperparameters (activation function, kernel size, initializer, batch size and network size) are investigated and ablation study results for Pooling Layer, Dropout and Batch Normalization are presented.
Keywords: Convolutional Neural Network, Deep Learning, Deep Learning Based FER, Facial Emotion Recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 137112684 Self-Assembling Hypernetworks for Cognitive Learning of Linguistic Memory
Authors: Byoung-Tak Zhang, Chan-Hoon Park
Abstract:
Hypernetworks are a generalized graph structure representing higher-order interactions between variables. We present a method for self-organizing hypernetworks to learn an associative memory of sentences and to recall the sentences from this memory. This learning method is inspired by the “mental chemistry" model of cognition and the “molecular self-assembly" technology in biochemistry. Simulation experiments are performed on a corpus of natural-language dialogues of approximately 300K sentences collected from TV drama captions. We report on the sentence completion performance as a function of the order of word-interaction and the size of the learning corpus, and discuss the plausibility of this architecture as a cognitive model of language learning and memory.Keywords: Linguistic recall memory, sentence completion task, self-organizing hypernetworks, cognitive learning and memory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 149712683 A Novel Adaptive E-Learning Model Based on Developed Learner's Styles
Authors: Hazem M. El-Bakry, Ahmed A. Saleh, Taghreed T. Asfour
Abstract:
Adaptive e-learning today gives the student a central role in his own learning process. It allows learners to try things out, participate in courses like never before, and get more out of learning than before. In this paper, an adaptive e-learning model for logic design, simplification of Boolean functions and related fields is presented. Such model presents suitable courses for each student in a dynamic and adaptive manner using existing database and workflow technologies. The main objective of this research work is to provide an adaptive e-learning model based learners' personality using explicit and implicit feedback. To recognize the learner-s, we develop dimensions to decide each individual learning style in order to accommodate different abilities of the users and to develop vital skills. Thus, the proposed model becomes more powerful, user friendly and easy to use and interpret. Finally, it suggests a learning strategy and appropriate electronic media that match the learner-s preference.Keywords: Adaptive learning, Learning styles, Teaching strategies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 202412682 A Comparison Study of Inspector's Performance between Regular and Complex Tasks
Authors: Santirat Nansaarng, Sittichai Kaewkuekool, Supreeya Siripattanakunkajorn
Abstract:
This research was to study a comparison of inspector-s performance between regular and complex visual inspection task. Visual task was simulated on DVD read control circuit. Inspection task was performed by using computer. Subjects were 10 undergraduate randomly selected and test for 20/20. Then, subjects were divided into two groups, five for regular inspection (control group) and five for complex inspection (treatment group) tasks. Result was showed that performance on regular and complex inspectors was significantly difference at the level of 0.05. Inspector performance on regular inspection was showed high percentage on defects detected by using equal time to complex inspection. This would be indicated that inspector performance was affected by visual inspection task.
Keywords: Visual inspection task, regular and complex task.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 125712681 Task Planning for Service Robots with Limited Feedback
Authors: Chung-Woon Park, Jungwoo Lee, Jong-Tae Lim
Abstract:
In this paper, we propose a novel limited feedback scheme for task planning with service robots. Instead of sending the full service robot state information for the task planning, the proposed scheme send the best-M indices of service robots with a indicator. With the indicator, the proposed scheme significantly reduces the communication overhead for task planning as well as mitigates the system performance degradation in terms of the utility. In addition, we analyze the system performance of the proposed scheme and compare the proposed scheme with the other schemes.
Keywords: Task Planning, Service Robots, Limited Feedback, Scheduling
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 128712680 Interactive Chinese Character Learning System though Pictograph Evolution
Authors: J.H. Low, C.O. Wong, E.J. Han, K.R Kim K.C. Jung, H.K. Yang
Abstract:
This paper proposes an Interactive Chinese Character Learning System (ICCLS) based on pictorial evolution as an edutainment concept in computer-based learning of language. The advantage of the language origination itself is taken as a learning platform due to the complexity in Chinese language as compared to other types of languages. Users especially children enjoy more by utilize this learning system because they are able to memories the Chinese Character easily and understand more of the origin of the Chinese character under pleasurable learning environment, compares to traditional approach which children need to rote learning Chinese Character under un-pleasurable environment. Skeletonization is used as the representation of Chinese character and object with an animated pictograph evolution to facilitate the learning of the language. Shortest skeleton path matching technique is employed for fast and accurate matching in our implementation. User is required to either write a word or draw a simple 2D object in the input panel and the matched word and object will be displayed as well as the pictograph evolution to instill learning. The target of computer-based learning system is for pre-school children between 4 to 6 years old to learn Chinese characters in a flexible and entertaining manner besides utilizing visual and mind mapping strategy as learning methodology.Keywords: Computer-based learning, Chinese character, pictograph evolution, skeletonization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 190812679 Analytical Model Based Evaluation of Human Machine Interfaces Using Cognitive Modeling
Authors: Belkacem Chikhaoui, Helene Pigot
Abstract:
Cognitive models allow predicting some aspects of utility and usability of human machine interfaces (HMI), and simulating the interaction with these interfaces. The action of predicting is based on a task analysis, which investigates what a user is required to do in terms of actions and cognitive processes to achieve a task. Task analysis facilitates the understanding of the system-s functionalities. Cognitive models are part of the analytical approaches, that do not associate the users during the development process of the interface. This article presents a study about the evaluation of a human machine interaction with a contextual assistant-s interface using ACTR and GOMS cognitive models. The present work shows how these techniques may be applied in the evaluation of HMI, design and research by emphasizing firstly the task analysis and secondly the time execution of the task. In order to validate and support our results, an experimental study of user performance is conducted at the DOMUS laboratory, during the interaction with the contextual assistant-s interface. The results of our models show that the GOMS and ACT-R models give good and excellent predictions respectively of users performance at the task level, as well as the object level. Therefore, the simulated results are very close to the results obtained in the experimental study.Keywords: HMI, interface evaluation, Analytical evaluation, cognitivemodeling, user modeling, user performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 153112678 The Correlation between Users’ Star Rating and Usability on Mobile Applications
Authors: Abdulmohsen A. AlBesher, Richard T. Stone
Abstract:
Star rating for mobile applications is a very useful way to differentiate between the best and worst rated applications. However, the question is whether the rating reflects the level of usability or not. The aim of this paper is to find out if the user’ star ratings on mobile apps correlate with the usability of those apps. Thus, we tested three mobile apps, which have different star ratings: low, medium, and high. Participating in the study, 15 mobile phone users were asked to do one single task for each of the three tested apps. After each task, the participant evaluated the app by answering a survey based on the System Usability Scale (SUS). The results found that there is no major correlation between the star rating and the usability. However, it was found that the task completion time and the numbers of errors that may happen while completing the task were significantly correlated to the usability.Keywords: Mobile applications, SUS, Star rating, Usability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 91912677 Directed Approach and Resolution of Practical Cases as a Motivation Tool for Self-Learning and Cooperation
Authors: B. Montero, M. Rico, A. Ares, R. Bouza
Abstract:
The development of competences and practical capacities of students is getting an important incidence into the guidelines of the European Higher Education Area (EHEA). The methodology applied in this work is based on the education through directed resolution of practical cases. All cases are related to professional tasks that the students will have to develop in their future career. The method is intended to form the necessary competences of students of the Marine Engineering and Maritime Transport Degree in the matter of “Physics". The experience was applied in the course of 2011/2012. Students were grouped, and a practical task was assigned to them, that should be developed and solved within the team. The aim was to realize students learning by three ways: their own knowledge, the contribution of their teammates and the teacher's direction. The results of the evaluation were compared with those obtained previously by the traditional teaching method.Keywords: Cooperation, Marine Engineering, Self-learning skills.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 190312676 Integrating Computational Intelligence Techniques and Assessment Agents in ELearning Environments
Authors: Konstantinos C. Giotopoulos, Christos E. Alexakos, Grigorios N. Beligiannis, Spiridon D.Likothanassis
Abstract:
In this contribution an innovative platform is being presented that integrates intelligent agents and evolutionary computation techniques in legacy e-learning environments. It introduces the design and development of a scalable and interoperable integration platform supporting: I) various assessment agents for e-learning environments, II) a specific resource retrieval agent for the provision of additional information from Internet sources matching the needs and profile of the specific user and III) a genetic algorithm designed to extract efficient information (classifying rules) based on the students- answering input data. The agents are implemented in order to provide intelligent assessment services based on computational intelligence techniques such as Bayesian Networks and Genetic Algorithms. The proposed Genetic Algorithm (GA) is used in order to extract efficient information (classifying rules) based on the students- answering input data. The idea of using a GA in order to fulfil this difficult task came from the fact that GAs have been widely used in applications including classification of unknown data. The utilization of new and emerging technologies like web services allows integrating the provided services to any web based legacy e-learning environment.Keywords: Bayesian Networks, Computational Intelligencetechniques, E-learning legacy systems, Service Oriented Integration, Intelligent Agents, Genetic Algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 174412675 Secured Session Based Profile Caching for E-Learning Systems Using WiMAX Networks
Authors: R. Chithra, B. Kalaavathi
Abstract:
E-Learning enables the users to learn at anywhere at any time. In E-Learning systems, authenticating the E-Learning user has security issues. The usage of appropriate communication networks for providing the internet connectivity for E-learning is another challenge. WiMAX networks provide Broadband Wireless Access through the Multicast Broadcast Service so these networks can be most suitable for E-Learning applications. The authentication of E-Learning user is vulnerable to session hijacking problems. The repeated authentication of users can be done to overcome these issues. In this paper, session based Profile Caching Authentication is proposed. In this scheme, the credentials of E-Learning users can be cached at authentication server during the initial authentication through the appropriate subscriber station. The proposed cache based authentication scheme performs fast authentication by using cached user profile. Thus, the proposed authentication protocol reduces the delay in repeated authentication to enhance the security in ELearning.Keywords: Authentication, E-Learning, WiMAX, Security, Profile caching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 156612674 Machine Learning for Music Aesthetic Annotation Using MIDI Format: A Harmony-Based Classification Approach
Authors: Lin Yang, Zhian Mi, Jiacheng Xiao, Rong Li
Abstract:
Swimming with the tide of deep learning, the field of music information retrieval (MIR) experiences parallel development and a sheer variety of feature-learning models has been applied to music classification and tagging tasks. Among those learning techniques, the deep convolutional neural networks (CNNs) have been widespreadly used with better performance than the traditional approach especially in music genre classification and prediction. However, regarding the music recommendation, there is a large semantic gap between the corresponding audio genres and the various aspects of a song that influence user preference. In our study, aiming to bridge the gap, we strive to construct an automatic music aesthetic annotation model with MIDI format for better comparison and measurement of the similarity between music pieces in the way of harmonic analysis. We use the matrix of qualification converted from MIDI files as input to train two different classifiers, support vector machine (SVM) and Decision Tree (DT). Experimental results in performance of a tag prediction task have shown that both learning algorithms are capable of extracting high-level properties in an end-to end manner from music information. The proposed model is helpful to learn the audience taste and then the resulting recommendations are likely to appeal to a niche consumer.
Keywords: Harmonic analysis, machine learning, music classification and tagging, MIDI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 75812673 Engineering of E-Learning Content Creation: Case Study for African Countries
Authors: María-Dolores Afonso-Suárez, Nayra Pumar-Carreras, Juan Ruiz-Alzola
Abstract:
This research addresses the use of an e-Learning creation methodology for learning objects. Throughout the process, indicators are being gathered, to determine if it responds to the main objectives of an engineering discipline. These parameters will also indicate if it is necessary to review the creation cycle and readjust any phase. Within the project developed for this study, apart from the use of structured methods, there has been a central objective: the establishment of a learning atmosphere. A place where all the professionals involved are able to collaborate, plan, solve problems and determine guides to follow in order to develop creative and innovative solutions. It has been outlined as a blended learning program with an assessment plan that proposes face to face lessons, coaching, collaboration, multimedia and web based learning objects as well as support resources. The project has been drawn as a long term task, the pilot teaching actions designed provide the preliminary results object of study. This methodology is been used in the creation of learning content for the African countries of Senegal, Mauritania and Cape Verde. It has been developed within the framework of the MACbioIDi, an Interreg European project for the International cooperation and development. The educational area of this project is focused in the training and advice of professionals of the medicine as well as engineers in the use of applications of medical imaging technology, specifically the 3DSlicer application and the Open Anatomy Browser.
Keywords: Teaching contents engineering, e-learning, blended learning, international cooperation, 3DSlicer, open anatomy browser.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 104712672 Students’ Perception of Using Dental e-Models in an Inquiry-Based Curriculum
Authors: Yanqi Yang, Chongshan Liao, Cheuk Hin Ho, Susan Bridges
Abstract:
Aim: To investigate students’ perceptions of using e-models in an inquiry-based curriculum. Approach: 52 second-year dental students completed a pre- and post-test questionnaire relating to their perceptions of e-models and their use in inquiry-based learning. The pre-test occurred prior to any learning with e-models. The follow-up survey was conducted after one year's experience of using e-models. Results: There was no significant difference between the two sets of questionnaires regarding students’ perceptions of the usefulness of e-models and their willingness to use e-models in future inquiry-based learning. Most students preferred using both plaster models and e-models in tandem. Conclusion: Students did not change their attitude towards e-models and most of them agreed or were neutral that e-models are useful in inquiry-based learning. Whilst recognizing the utility of 3D models for learning, students' preference for combining these with solid models has implications for the development of haptic sensibility in an operative discipline.
Keywords: E-models, inquiry-based curriculum, education.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 181812671 The Influence of Preprocessing Parameters on Text Categorization
Authors: Jan Pomikalek, Radim Rehurek
Abstract:
Text categorization (the assignment of texts in natural language into predefined categories) is an important and extensively studied problem in Machine Learning. Currently, popular techniques developed to deal with this task include many preprocessing and learning algorithms, many of which in turn require tuning nontrivial internal parameters. Although partial studies are available, many authors fail to report values of the parameters they use in their experiments, or reasons why these values were used instead of others. The goal of this work then is to create a more thorough comparison of preprocessing parameters and their mutual influence, and report interesting observations and results.
Keywords: Text categorization, machine learning, electronic documents, classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1574