Search results for: low back.
418 Workstation Design Based On Ergonomics in Animal Feed Packing Process
Authors: Pirutchada Musigapong, Wantanee Phanprasit
Abstract:
The intention of this study to design the probability optimized sewing sack-s workstation based on ergonomics for productivity improvement and decreasing musculoskeletal disorders. The physical dimensions of two workers were using to design the new workstation. The physical dimensions are (1) sitting height, (2) mid shoulder height sitting, (3) shoulder breadth, (4) knee height, (5) popliteal height, (6) hip breadth and (7) buttock-knee length. The 5th percentile of buttock knee length sitting (51 cm), the 50th percentile of mid shoulder height sitting (62 cm) and the 95th percentile of popliteal height (43 cm) and hip breadth (45 cm) applied to design the workstation for sewing sack-s operator and the others used to adjust the components of this workstation. The risk assessment by RULA before and after using the probability optimized workstation were 7 and 7 scores and REBA scores were 11 and 5, respectively. Body discomfort-abnormal index was used to assess muscle fatigue of operators before adjustment workstation found that neck muscles, arm muscles area, muscles on the back and the lower back muscles fatigue. Therefore, the extension and flexion exercise was applied to relief musculoskeletal stresses. The workers exercised 15 minutes before the beginning and the end of work for 5 days. After that, the capability of flexion and extension muscles- workers were increasing in 3 muscles (arm, leg, and back muscles).
Keywords: Animal feed, anthropometry, ergonomics, sewing sack, workstation design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2429417 Back Bone Node Based Black Hole Detection Mechanism in Mobile Ad Hoc Networks
Authors: Nidhi Gupta, Sanjoy Das, Khushal Singh
Abstract:
Mobile Ad hoc Network is a set of self-governing nodes which communicate through wireless links. Dynamic topology MANETs makes routing a challenging task. Various routing protocols are there, but due to various fundamental characteristic open medium, changing topology, distributed collaboration and constrained capability, these protocols are tend to various types of security attacks. Black hole is one among them. In this attack, malicious node represents itself as having the shortest path to the destination but that path not even exists. In this paper, we aim to develop a routing protocol for detection and prevention of black hole attack by modifying AODV routing protocol. This protocol is able to detect and prevent the black hole attack. Simulation is done using NS-2, which shows the improvement in network performance.Keywords: Ad hoc, AODV, Back Bone, routing, Security.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2159416 The Impact of the Number of Neurons in the Hidden Layer on the Performance of MLP Neural Network: Application to the Fast Identification of Toxic Gases
Authors: Slimane Ouhmad, Abdellah Halimi
Abstract:
In this work, neural networks methods MLP type were applied to a database from an array of six sensors for the detection of three toxic gases. The choice of the number of hidden layers and the weight values are influential on the convergence of the learning algorithm. We proposed, in this article, a mathematical formula to determine the optimal number of hidden layers and good weight values based on the method of back propagation of errors. The results of this modeling have improved discrimination of these gases and optimized the computation time. The model presented here has proven to be an effective application for the fast identification of toxic gases.
Keywords: Back-propagation, Computing time, Fast identification, MLP neural network, Number of neurons in the hidden layer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2261415 Applications of Artificial Neural Network to Building Statistical Models for Qualifying and Indexing Radiation Treatment Plans
Authors: Pei-Ju Chao, Tsair-Fwu Lee, Wei-Luen Huang, Long-Chang Chen, Te-Jen Su, Wen-Ping Chen
Abstract:
The main goal in this paper is to quantify the quality of different techniques for radiation treatment plans, a back-propagation artificial neural network (ANN) combined with biomedicine theory was used to model thirteen dosimetric parameters and to calculate two dosimetric indices. The correlations between dosimetric indices and quality of life were extracted as the features and used in the ANN model to make decisions in the clinic. The simulation results show that a trained multilayer back-propagation neural network model can help a doctor accept or reject a plan efficiently. In addition, the models are flexible and whenever a new treatment technique enters the market, the feature variables simply need to be imported and the model re-trained for it to be ready for use.Keywords: neural network, dosimetric index, radiation treatment, tumor
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1688414 A survey Method and new design Lecture Chair for Complied Ergonomics Guideline at Classroom Building 2 Suranaree University of Technology, Thailand
Authors: Sumalee B., Sirinapa L., Jenjira T., Jr., Setasak S.
Abstract:
The paper describes ergonomics problems trend of student at B5101 classroom building 2, Suranaree University of Technology. The objective to survey ergonomics problems and effect from use chairs for sitting in class room. The result from survey method 100 student they use lecture chair for sitting in classroom more than 2 hours/ day by RULA[1]. and Body discomfort survey[2]. The result from Body discomfort survey contribute fatigue problems at neck, lower back, upper back and right shoulder 2.93, 2.91, 2.33, 1.75 respectively and result from RULA contribute fatigue problems at neck, body and right upper arm 4.00, 3.75 and 3.00 respectively are consistent. After that the researcher provide improvement plan for design new chair support student fatigue reduction by prepare data of sample anthropometry and design ergonomics chair prototype 3 unit. Then sample 100 student trial to use new chair and evaluate again by RULA, Body discomfort and satisfaction. The result from trial new chair after improvement by RULA present fatigue reduction average of head and neck from 4.00 to 2.25 , body and trunk from 3.75 to 2.00 and arm force from 1.00 to 0.25 respectively. The result from trial new chair after improvement by Body discomfort present fatigue reduction average of lower back from 2.91 to 0.87, neck from 2.93 to 1.24, upper back 2.33 to 0.84 and right upper arm from 1.75 to 0.74. That statistical of RULA and Body discomfort survey present fatigue reduction after improvement significance with a confidence level of 95% (p-value 0.05). When analyzing the relationship of fatigue as part of the body by Chi – square test during RULA and Body discomfort that before and after improvements were consistent with the significant level of confidence 95% (p-value 0.05) . Moreover the students satisfaction result from trial with a new chair for 30 minutes [3]. 72 percent very satisfied of the folding of the secondary writing simple 66% the width of the writing plate, 64% the suitability of the writing plate, 62% of soft seat cushion and 61% easy to seat the chair.Keywords: Ergonomics, Work station design, ErgonomicsChair, Student, Fatigue
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3495413 Optimization of a Three-Term Backpropagation Algorithm Used for Neural Network Learning
Authors: Yahya H. Zweiri
Abstract:
The back-propagation algorithm calculates the weight changes of an artificial neural network, and a two-term algorithm with a dynamically optimal learning rate and a momentum factor is commonly used. Recently the addition of an extra term, called a proportional factor (PF), to the two-term BP algorithm was proposed. The third term increases the speed of the BP algorithm. However, the PF term also reduces the convergence of the BP algorithm, and optimization approaches for evaluating the learning parameters are required to facilitate the application of the three terms BP algorithm. This paper considers the optimization of the new back-propagation algorithm by using derivative information. A family of approaches exploiting the derivatives with respect to the learning rate, momentum factor and proportional factor is presented. These autonomously compute the derivatives in the weight space, by using information gathered from the forward and backward procedures. The three-term BP algorithm and the optimization approaches are evaluated using the benchmark XOR problem.Keywords: Neural Networks, Backpropagation, Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1541412 A Distributed Mobile Agent Based on Intrusion Detection System for MANET
Authors: Maad Kamal Al-Anni
Abstract:
This study is about an algorithmic dependence of Artificial Neural Network on Multilayer Perceptron (MPL) pertaining to the classification and clustering presentations for Mobile Adhoc Network vulnerabilities. Moreover, mobile ad hoc network (MANET) is ubiquitous intelligent internetworking devices in which it has the ability to detect their environment using an autonomous system of mobile nodes that are connected via wireless links. Security affairs are the most important subject in MANET due to the easy penetrative scenarios occurred in such an auto configuration network. One of the powerful techniques used for inspecting the network packets is Intrusion Detection System (IDS); in this article, we are going to show the effectiveness of artificial neural networks used as a machine learning along with stochastic approach (information gain) to classify the malicious behaviors in simulated network with respect to different IDS techniques. The monitoring agent is responsible for detection inference engine, the audit data is collected from collecting agent by simulating the node attack and contrasted outputs with normal behaviors of the framework, whenever. In the event that there is any deviation from the ordinary behaviors then the monitoring agent is considered this event as an attack , in this article we are going to demonstrate the signature-based IDS approach in a MANET by implementing the back propagation algorithm over ensemble-based Traffic Table (TT), thus the signature of malicious behaviors or undesirable activities are often significantly prognosticated and efficiently figured out, by increasing the parametric set-up of Back propagation algorithm during the experimental results which empirically shown its effectiveness for the ratio of detection index up to 98.6 percentage. Consequently it is proved in empirical results in this article, the performance matrices are also being included in this article with Xgraph screen show by different through puts like Packet Delivery Ratio (PDR), Through Put(TP), and Average Delay(AD).
Keywords: Mobile ad hoc network, MANET, intrusion detection system, back propagation algorithm, neural networks, traffic table, multilayer perceptron, feed-forward back-propagation, network simulator 2.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 927411 Wavelet - Based Classification of Outdoor Natural Scenes by Resilient Neural Network
Authors: Amitabh Wahi, Sundaramurthy S.
Abstract:
Natural outdoor scene classification is active and promising research area around the globe. In this study, the classification is carried out in two phases. In the first phase, the features are extracted from the images by wavelet decomposition method and stored in a database as feature vectors. In the second phase, the neural classifiers such as back-propagation neural network (BPNN) and resilient back-propagation neural network (RPNN) are employed for the classification of scenes. Four hundred color images are considered from MIT database of two classes as forest and street. A comparative study has been carried out on the performance of the two neural classifiers BPNN and RPNN on the increasing number of test samples. RPNN showed better classification results compared to BPNN on the large test samples.
Keywords: BPNN, Classification, Feature extraction, RPNN, Wavelet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1941410 Neural Networks for Short Term Wind Speed Prediction
Authors: K. Sreelakshmi, P. Ramakanthkumar
Abstract:
Predicting short term wind speed is essential in order to prevent systems in-action from the effects of strong winds. It also helps in using wind energy as an alternative source of energy, mainly for Electrical power generation. Wind speed prediction has applications in Military and civilian fields for air traffic control, rocket launch, ship navigation etc. The wind speed in near future depends on the values of other meteorological variables, such as atmospheric pressure, moisture content, humidity, rainfall etc. The values of these parameters are obtained from a nearest weather station and are used to train various forms of neural networks. The trained model of neural networks is validated using a similar set of data. The model is then used to predict the wind speed, using the same meteorological information. This paper reports an Artificial Neural Network model for short term wind speed prediction, which uses back propagation algorithm.Keywords: Short term wind speed prediction, Neural networks, Back propagation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3064409 Comparative Study of Pasting Properties of High Fibre Plantain Based Flour Intended for Diabetic Food (Fufu)
Authors: C. C. Okafor, E. E. Ugwu
Abstract:
A comparative study on the feasibility of producing instant high fibre plantain flour for diabetic fufu by blending soy residence with different plantain (Musa spp) varieties (Horn, false Horn and French), all sieved at 60 mesh, mixed in ratio of 60:40 was analyzed for their passing properties using standard analytical method. Results show that VIIIS60 had the highest peak viscosity (303.75 RVU), Trough value (182.08 RVU), final viscosity (284.50 RVU), and lowest in breakdown viscosity (79.58 RVU), set back value (88.17 RVU), peak time (4.36min), pasting temperature (81.18°C) and differed significantly (p <0.05) from other samples. VIS60 had the lowest in peak viscosity (192.25 RVU), Trough value (112.67 RVU), final viscosity (211.92 RVU), but highest in breakdown viscosity (121.61 RVU), peak time (4.66min) pasting temperature (82.35°C), and differed significantly (p <0.05), from other samples. VIIS60 had the medium peak viscosity (236.67 RVU), Trough value (116.58 RVU), Break down viscosity (120:08 RVU), set back viscosity (167.92 RVU), peak time (4.39min), pasting temp (81.44°C) and differed significantly (p <0.05) from other samples. High final viscosity and low set back values of the French variety with soy residue blended at 60 mesh particle size recommends this french variety and fibre composition as optimum for production of instant plantain soy residue flour blend for production of diabetic fufu.
Keywords: Plantain, soy residue pasting properties particle size.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2371408 Prediction the Deformation in Upsetting Process by Neural Network and Finite Element
Authors: H.Mohammadi Majd, M.Jalali Azizpour , Foad Saadi
Abstract:
In this paper back-propagation artificial neural network (BPANN) is employed to predict the deformation of the upsetting process. To prepare a training set for BPANN, some finite element simulations were carried out. The input data for the artificial neural network are a set of parameters generated randomly (aspect ratio d/h, material properties, temperature and coefficient of friction). The output data are the coefficient of polynomial that fitted on barreling curves. Neural network was trained using barreling curves generated by finite element simulations of the upsetting and the corresponding material parameters. This technique was tested for three different specimens and can be successfully employed to predict the deformation of the upsetting processKeywords: Back-propagation artificial neural network(BPANN), prediction, upsetting
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1551407 Three-Level Converters based Generalized Unified Power Quality Conditioner
Authors: Bahr Eldin S. M, K. S. Rama Rao, N. Perumal
Abstract:
A generalized unified power quality conditioner (GUPQC) by using three single-phase three-level voltage source converters (VSCs) connected back-to-back through a common dc link is proposed in this paper as a new custom power device for a three-feeder distribution system. One of the converters is connected in shunt with one feeder for mitigation of current harmonics and reactive power compensation, while the other two VSCs are connected in series with the other two feeders to maintain the load voltage sinusoidal and at constant level. A new control scheme based on synchronous reference frame is proposed for series converters. The simulation analysis on compensation performance of GUPQC based on PSCAD/EMTDC is reported.Keywords: Custom power device, generalized unified power quality conditioner, PSCAD/ETMDC, voltage source converter
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1869406 A Study on Barreling Behavior during Upsetting Process using Artificial Neural Networks with Levenberg Algorithm
Authors: H.Mohammadi Majd, M.Jalali Azizpour
Abstract:
In this paper back-propagation artificial neural network (BPANN )with Levenberg–Marquardt algorithm is employed to predict the deformation of the upsetting process. To prepare a training set for BPANN, some finite element simulations were carried out. The input data for the artificial neural network are a set of parameters generated randomly (aspect ratio d/h, material properties, temperature and coefficient of friction). The output data are the coefficient of polynomial that fitted on barreling curves. Neural network was trained using barreling curves generated by finite element simulations of the upsetting and the corresponding material parameters. This technique was tested for three different specimens and can be successfully employed to predict the deformation of the upsetting processKeywords: Back-propagation artificial neural network(BPANN), prediction, upsetting
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1788405 2D Human Motion Regeneration with Stick Figure Animation Using Accelerometers
Authors: Alpha Agape Gopalai, S. M. N. Arosha Senanayake
Abstract:
This paper explores the opportunity of using tri-axial wireless accelerometers for supervised monitoring of sports movements. A motion analysis system for the upper extremities of lawn bowlers in particular is developed. Accelerometers are placed on parts of human body such as the chest to represent the shoulder movements, the back to capture the trunk motion, back of the hand, the wrist and one above the elbow, to capture arm movements. These sensors placement are carefully designed in order to avoid restricting bowler-s movements. Data is acquired from these sensors in soft-real time using virtual instrumentation; the acquired data is then conditioned and converted into required parameters for motion regeneration. A user interface was also created to facilitate in the acquisition of data, and broadcasting of commands to the wireless accelerometers. All motion regeneration in this paper deals with the motion of the human body segment in the X and Y direction, looking into the motion of the anterior/ posterior and lateral directions respectively.Keywords: Motion Regeneration, Virtual Instrumentation, Wireless Accelerometers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1827404 The Effects of Pilates and McKenzie Exercises on Quality of Life and Lumbar Spine Position Sense in Patients with Low Back Pain: A Comparative Study with a 4-Week Follow-Up
Authors: Vahid Mazloum, Mansour Sahebozamani, Amirhossein Barati, Nouzar Nakhaee, Pouya Rabiei
Abstract:
Non-specific chronic low back pain (NSCLBP) is a common condition with no exact diagnosis and mechanism for its occurrence. Recently, different therapeutic exercises have taken into account to manage NSCLBP. So, the aim of this study has mainly been placed on comparing the effects of Pilates and Mackenzie exercises on quality of life (QOL) lumbar spine position sense (LSPS) in patients with NSCLBP. In this randomized clinical trial, 47 patients with NSCLBP were voluntarily divided into three groups of Pilates (n=16) (with mean age 37.1 ± 9.5 years, height 168.9 ± 7.4 cm, body mass 76.1 ± 5.9 k), McKenzie (n=15) (with mean age 42.7 ± 8.1 years, height 165.7 ± 6.8, body mass 74.1 ± 4.8 kg) and control (n=16) (with mean age 39.3 ± 9.8 years, height 168.1 ± 8.1 cm, body mass 74.2 ± 5.8 kg). Primary outcome included QOL and secondary was LSPS. Both variables were assessed by the WHOQOL-BREF questionnaires and electrogoniameter, respectively. The measurements were performed at baseline, following a 6-week intervention, and after a 4-week follow-up. The ANCOVA test at P < 0.05 was administrated to analyze the collected data using SPSS software. There was a statistically significant difference between experimental groups and the control group to improve QOL. But, no difference was seen regarding the effects of two exercises on LSPS (p < 0.05). Both Pilates and Mackenzie exercises demonstrated improvement in QOL after 6-week intervention and a 4-week follow-up while none of them considerably affected LSPS. Further studies are required to establish a supporting evidence for the effectiveness of two exercises on NSCLBP.
Keywords: Pilates, Mackenzie, proprioception, low back pain, physical health.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1434403 Improving the Performance of Back-Propagation Training Algorithm by Using ANN
Authors: Vishnu Pratap Singh Kirar
Abstract:
Artificial Neural Network (ANN) can be trained using back propagation (BP). It is the most widely used algorithm for supervised learning with multi-layered feed-forward networks. Efficient learning by the BP algorithm is required for many practical applications. The BP algorithm calculates the weight changes of artificial neural networks, and a common approach is to use a twoterm algorithm consisting of a learning rate (LR) and a momentum factor (MF). The major drawbacks of the two-term BP learning algorithm are the problems of local minima and slow convergence speeds, which limit the scope for real-time applications. Recently the addition of an extra term, called a proportional factor (PF), to the two-term BP algorithm was proposed. The third increases the speed of the BP algorithm. However, the PF term also reduces the convergence of the BP algorithm, and criteria for evaluating convergence are required to facilitate the application of the three terms BP algorithm. Although these two seem to be closely related, as described later, we summarize various improvements to overcome the drawbacks. Here we compare the different methods of convergence of the new three-term BP algorithm.
Keywords: Neural Network, Backpropagation, Local Minima, Fast Convergence Rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3557402 Inter-Phase Magnetic Coupling Effects on Sensorless SR Motor Control
Authors: N. H. Mvungi
Abstract:
Control of commutation of switched reluctance (SR) motor has been an area of interest for researchers for sometime now with mixed successes in addressing the inherent challenges. New technologies, processing schemes and methods have been adopted to make sensorless SR drive a reality. There are a number of conceptual, offline, analytical and online solutions in literature that have varying complexities and achieved equally varying degree of robustness and accuracies depending on the method used to address the challenges and the SR drive application. Magnetic coupling is one such challenge when using active probing techniques to determine rotor position of a SR motor from stator winding. This paper studies the effect of back-of-core saturation on the detected rotor position and presents results on measurement made on a 4- phase SR motor. The results shows that even for a four phase motor which is excited one phase at a time and using the electrically opposite phase for active position probing, the back-of-core saturation effects should not be ignored.Keywords: Sensorless, SR motor, saturation effects, detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1189401 Control of Commutation of SR Motor Using Its Magnetic Characteristics and Back-of-Core Saturation Effects
Authors: Dr. N.H. Mvungi
Abstract:
The control of commutation of switched reluctance (SR) motor has nominally depended on a physical position detector. The physical rotor position sensor limits robustness and increases size and inertia of the SR drive system. The paper describes a method to overcome these limitations by using magnetization characteristics of the motor to indicate rotor and stator teeth overlap status. The method is using active current probing pulses of same magnitude that is used to simulate flux linkage in the winding being probed. A microprocessor is used for processing magnetization data to deduce rotor-stator teeth overlap status and hence rotor position. However, the back-of-core saturation and mutual coupling introduces overlap detection errors, hence that of commutation control. This paper presents the concept of the detection scheme and the effects of backof core saturation.Keywords: Microprocessor control, rotor position, sensorless, switched reluctance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1282400 Human Motion Regeneration in 2-Dimension as Stick Figure Animation with Accelerometers
Authors: Alpha Agape Gopalai, Darwin Gouwanda, S.M.N. Arosha Senanayake
Abstract:
This paper explores the opportunity of using tri-axial wireless accelerometers for supervised monitoring of sports movements. A motion analysis system for the upper extremities of lawn bowlers in particular is developed. Accelerometers are placed on parts of human body such as the chest to represent the shoulder movements, the back to capture the trunk motion, back of the hand, the wrist and one above the elbow, to capture arm movements. These sensors placement are carefully designed in order to avoid restricting bowler-s movements. Data is acquired from these sensors in soft-real time using virtual instrumentation; the acquired data is then conditioned and converted into required parameters for motion regeneration. A user interface was also created to facilitate in the acquisition of data, and broadcasting of commands to the wireless accelerometers. All motion regeneration in this paper deals with the motion of the human body segment in the X and Y direction, looking into the motion of the anterior/ posterior and lateral directions respectively.Keywords: Motion Regeneration, Virtual Instrumentation, Wireless Accelerometers
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1729399 Energy Consumption and Economic Growth in South Asian Countries: A Co-integrated Panel Analysis
Authors: S. Noor, M. W. Siddiqi
Abstract:
This study examines causal link between energy use and economic growth for five South Asian countries over period 1971-2006. Panel cointegration, ECM and FMOLS are applied for short and long run estimates. In short run unidirectional causality from per capita GDP to per capita energy consumption is found, but not vice versa. In long run one percent increase in per capita energy consumption tend to decrease 0.13 percent per capita GDP. i.e. Energy use discourage economic growth. This short and long run relationship indicate energy shortage crisis in South Asia due to increased energy use coupled with insufficient energy supply. Beside this long run estimated coefficient of error term suggest that short term adjustment to equilibrium are driven by adjustment back to long run equilibrium. Moreover, per capita energy consumption is responsive to adjustment back to equilibrium and it takes 59 years approximately. It specifies long run feedback between both variables.
Keywords: Energy consumption, Income, Panel co-integration, Causality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3312398 Increasing The Speed of Convergence of an Artificial Neural Network based ARMA Coefficients Determination Technique
Authors: Abiodun M. Aibinu, Momoh J. E. Salami, Amir A. Shafie, Athaur Rahman Najeeb
Abstract:
In this paper, novel techniques in increasing the accuracy and speed of convergence of a Feed forward Back propagation Artificial Neural Network (FFBPNN) with polynomial activation function reported in literature is presented. These technique was subsequently used to determine the coefficients of Autoregressive Moving Average (ARMA) and Autoregressive (AR) system. The results obtained by introducing sequential and batch method of weight initialization, batch method of weight and coefficient update, adaptive momentum and learning rate technique gives more accurate result and significant reduction in convergence time when compared t the traditional method of back propagation algorithm, thereby making FFBPNN an appropriate technique for online ARMA coefficient determination.Keywords: Adaptive Learning rate, Adaptive momentum, Autoregressive, Modeling, Neural Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1497397 A Neural-Network-Based Fault Diagnosis Approach for Analog Circuits by Using Wavelet Transformation and Fractal Dimension as a Preprocessor
Abstract:
This paper presents a new method of analog fault diagnosis based on back-propagation neural networks (BPNNs) using wavelet decomposition and fractal dimension as preprocessors. The proposed method has the capability to detect and identify faulty components in an analog electronic circuit with tolerance by analyzing its impulse response. Using wavelet decomposition to preprocess the impulse response drastically de-noises the inputs to the neural network. The second preprocessing by fractal dimension can extract unique features, which are the fed to a neural network as inputs for further classification. A comparison of our work with [1] and [6], which also employs back-propagation (BP) neural networks, reveals that our system requires a much smaller network and performs significantly better in fault diagnosis of analog circuits due to our proposed preprocessing techniques.
Keywords: Analog circuits, fault diagnosis, tolerance, wavelettransform, fractal dimension, box dimension.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2198396 Laser Beam Micro-Drilling Effect on Ti-6Al-4V Titanium Alloy Sheet Properties
Authors: Petr Homola, Roman Růžek
Abstract:
Laser beam micro-drilling (LBMD) is one of the most important non-contact machining processes of materials that are difficult to machine by means oeqf conventional machining methods used in various industries. The paper is focused on LBMD knock-down effect on Ti-6Al-4V (Grade 5) titanium alloy sheets properties. Two various process configurations were verified with a focus on laser damages in back-structure parts affected by the process. The effects of the LBMD on the material properties were assessed by means of tensile and fatigue tests and fracture surface analyses. Fatigue limit of LBMD configurations reached a significantly lower value between 15% and 30% of the static strength as compared to the reference raw material with 58% value. The farther back-structure configuration gives a two-fold fatigue life as compared to the closer LBMD configuration at a given stress applied.
Keywords: Fatigue, fracture surface, laser beam micro-drilling, titanium alloy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 773395 Electrical Impedance Imaging Using Eddy Current
Authors: A. Ambia, T. Takemae, Y. Kosugi, M. Hongo
Abstract:
Electric impedance imaging is a method of reconstructing spatial distribution of electrical conductivity inside a subject. In this paper, a new method of electrical impedance imaging using eddy current is proposed. The eddy current distribution in the body depends on the conductivity distribution and the magnetic field pattern. By changing the position of magnetic core, a set of voltage differences is measured with a pair of electrodes. This set of voltage differences is used in image reconstruction of conductivity distribution. The least square error minimization method is used as a reconstruction algorithm. The back projection algorithm is used to get two dimensional images. Based on this principle, a measurement system is developed and some model experiments were performed with a saline filled phantom. The shape of each model in the reconstructed image is similar to the corresponding model, respectively. From the results of these experiments, it is confirmed that the proposed method is applicable in the realization of electrical imaging.Keywords: Back projection algorithm, electrical impedancetomography, eddy current, magnetic inductance tomography.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1695394 Overview of Different Approaches Used in Optimal Operation Control of Hybrid Renewable Energy Systems
Authors: K. Kusakana
Abstract:
A hybrid energy system is a combination of renewable energy sources with back up, as well as a storage system used to respond to given load energy requirements. Given that the electrical output of each renewable source is fluctuating with changes in weather conditions, and since the load demand also varies with time; one of the main attributes of hybrid systems is to be able to respond to the load demand at any time by optimally controlling each energy source, storage and back-up system. The induced optimization problem is to compute the optimal operation control of the system with the aim of minimizing operation costs while efficiently and reliably responding to the load energy requirement. Current optimization research and development on hybrid systems are mainly focusing on the sizing aspect. Thus, the aim of this paper is to report on the state-of-the-art of optimal operation control of hybrid renewable energy systems. This paper also discusses different challenges encountered, as well as future developments that can help in improving the optimal operation control of hybrid renewable energy systems.
Keywords: Renewable energies, hybrid systems, optimization, operation control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2106393 Artificial Neural Network Modeling of a Closed Loop Pulsating Heat Pipe
Authors: Vipul M. Patel, Hemantkumar B. Mehta
Abstract:
Technological innovations in electronic world demand novel, compact, simple in design, less costly and effective heat transfer devices. Closed Loop Pulsating Heat Pipe (CLPHP) is a passive phase change heat transfer device and has potential to transfer heat quickly and efficiently from source to sink. Thermal performance of a CLPHP is governed by various parameters such as number of U-turns, orientations, input heat, working fluids and filling ratio. The present paper is an attempt to predict the thermal performance of a CLPHP using Artificial Neural Network (ANN). Filling ratio and heat input are considered as input parameters while thermal resistance is set as target parameter. Types of neural networks considered in the present paper are radial basis, generalized regression, linear layer, cascade forward back propagation, feed forward back propagation; feed forward distributed time delay, layer recurrent and Elman back propagation. Linear, logistic sigmoid, tangent sigmoid and Radial Basis Gaussian Function are used as transfer functions. Prediction accuracy is measured based on the experimental data reported by the researchers in open literature as a function of Mean Absolute Relative Deviation (MARD). The prediction of a generalized regression ANN model with spread constant of 4.8 is found in agreement with the experimental data for MARD in the range of ±1.81%.
Keywords: ANN models, CLPHP, filling ratio, generalized regression, spread constant.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1183392 An IM-COH Algorithm Neural Network Optimization with Cuckoo Search Algorithm for Time Series Samples
Authors: Wullapa Wongsinlatam
Abstract:
Back propagation algorithm (BP) is a widely used technique in artificial neural network and has been used as a tool for solving the time series problems, such as decreasing training time, maximizing the ability to fall into local minima, and optimizing sensitivity of the initial weights and bias. This paper proposes an improvement of a BP technique which is called IM-COH algorithm (IM-COH). By combining IM-COH algorithm with cuckoo search algorithm (CS), the result is cuckoo search improved control output hidden layer algorithm (CS-IM-COH). This new algorithm has a better ability in optimizing sensitivity of the initial weights and bias than the original BP algorithm. In this research, the algorithm of CS-IM-COH is compared with the original BP, the IM-COH, and the original BP with CS (CS-BP). Furthermore, the selected benchmarks, four time series samples, are shown in this research for illustration. The research shows that the CS-IM-COH algorithm give the best forecasting results compared with the selected samples.Keywords: Artificial neural networks, back propagation algorithm, time series, local minima problem, metaheuristic optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1092391 Two States Mapping Based Neural Network Model for Decreasing of Prediction Residual Error
Authors: Insung Jung, lockjo Koo, Gi-Nam Wang
Abstract:
The objective of this paper is to design a model of human vital sign prediction for decreasing prediction error by using two states mapping based time series neural network BP (back-propagation) model. Normally, lot of industries has been applying the neural network model by training them in a supervised manner with the error back-propagation algorithm for time series prediction systems. However, it still has a residual error between real value and prediction output. Therefore, we designed two states of neural network model for compensation of residual error which is possible to use in the prevention of sudden death and metabolic syndrome disease such as hypertension disease and obesity. We found that most of simulations cases were satisfied by the two states mapping based time series prediction model compared to normal BP. In particular, small sample size of times series were more accurate than the standard MLP model. We expect that this algorithm can be available to sudden death prevention and monitoring AGENT system in a ubiquitous homecare environment.
Keywords: Neural network, U-healthcare, prediction, timeseries, computer aided prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1979390 Software Effort Estimation Models Using Radial Basis Function Network
Authors: E. Praynlin, P. Latha
Abstract:
Software Effort Estimation is the process of estimating the effort required to develop software. By estimating the effort, the cost and schedule required to estimate the software can be determined. Accurate Estimate helps the developer to allocate the resource accordingly in order to avoid cost overrun and schedule overrun. Several methods are available in order to estimate the effort among which soft computing based method plays a prominent role. Software cost estimation deals with lot of uncertainty among all soft computing methods neural network is good in handling uncertainty. In this paper Radial Basis Function Network is compared with the back propagation network and the results are validated using six data sets and it is found that RBFN is best suitable to estimate the effort. The Results are validated using two tests the error test and the statistical test.
Keywords: Software cost estimation, Radial Basis Function Network (RBFN), Back propagation function network, Mean Magnitude of Relative Error (MMRE).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2386389 Control Chart Pattern Recognition Using Wavelet Based Neural Networks
Authors: Jun Seok Kim, Cheong-Sool Park, Jun-Geol Baek, Sung-Shick Kim
Abstract:
Control chart pattern recognition is one of the most important tools to identify the process state in statistical process control. The abnormal process state could be classified by the recognition of unnatural patterns that arise from assignable causes. In this study, a wavelet based neural network approach is proposed for the recognition of control chart patterns that have various characteristics. The procedure of proposed control chart pattern recognizer comprises three stages. First, multi-resolution wavelet analysis is used to generate time-shape and time-frequency coefficients that have detail information about the patterns. Second, distance based features are extracted by a bi-directional Kohonen network to make reduced and robust information. Third, a back-propagation network classifier is trained by these features. The accuracy of the proposed method is shown by the performance evaluation with numerical results.
Keywords: Control chart pattern recognition, Multi-resolution wavelet analysis, Bi-directional Kohonen network, Back-propagation network, Feature extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2478