Search results for: fatigue damage accumulation
864 Failure Analysis and Fatigue Life Estimation of a Shaft of a Rotary Draw Bending Machine
Authors: B. Engel, Sara Salman Hassan Al-Maeeni
Abstract:
Human consumption of the Earth's resources increases the need for a sustainable development as an important ecological, social, and economic theme. Re-engineering of machine tools, in terms of design and failure analysis, is defined as steps performed on an obsolete machine to return it to a new machine with the warranty that matches the customer requirement. To understand the future fatigue behavior of the used machine components, it is important to investigate the possible causes of machine parts failure through design, surface, and material inspections. In this study, the failure modes of the shaft of the rotary draw bending machine are inspected. Furthermore, stress and deflection analysis of the shaft subjected to combined torsion and bending loads are carried out by an analytical method and compared with a finite element analysis method. The theoretical fatigue strength, correction factors, and fatigue life sustained by the shaft before damaged are estimated by creating a stress-cycle (S-N) diagram. In conclusion, it is seen that the shaft can work in the second life, but it needs some surface treatments to increase the reliability and fatigue life.
Keywords: Failure analysis, fatigue life, FEM analysis, shaft, stress analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4625863 Stress and Strain Analysis of Notched Bodies Subject to Non-Proportional Loadings
Authors: A. Ince
Abstract:
In this paper, an analytical simplified method for calculating elasto-plastic stresses strains of notched bodies subject to non-proportional loading paths is discussed. The method was based on the Neuber notch correction, which relates the incremental elastic and elastic-plastic strain energy densities at the notch root and the material constitutive relationship. The validity of the method was presented by comparing computed results of the proposed model against finite element numerical data of notched shaft. The comparison showed that the model estimated notch-root elasto-plastic stresses strains with good accuracy using linear-elastic stresses. The prosed model provides more efficient and simple analysis method preferable to expensive experimental component tests and more complex and time consuming incremental non-linear FE analysis. The model is particularly suitable to perform fatigue life and fatigue damage estimates of notched components subjected to nonproportional loading paths.Keywords: Elasto-plastic, stress-strain, notch analysis, nonprortional loadings, cyclic plasticity, fatigue.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2561862 Fatigue Life Prediction on Steel Beam Bridges under Variable Amplitude Loading
Authors: M. F. V. Montezuma, E. P. Deus, M. C. Carvalho
Abstract:
Steel bridges are normally subjected to random loads with different traffic frequencies. They are structures with dynamic behavior and are subject to fatigue failure process, where the nucleation of a crack, growth and failure can occur. After locating and determining the size of an existing fault, it is important to predict the crack propagation and the convenient time for repair. Therefore, fracture mechanics and fatigue concepts are essential to the right approach to the problem. To study the fatigue crack growth, a computational code was developed by using the root mean square (RMS) and the cycle-by-cycle models. One observes the variable amplitude loading influence on the life structural prediction. Different loads histories and initial crack length were considered as input variables. Thus, it was evaluated the dispersion of results of the expected structural life choosing different initial parameters.
Keywords: Fatigue crack propagation, life prediction, variable loadings, steel bridges.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 533861 Radiation Damage as Nonlinear Evolution of Complex System
Authors: Pavlo Selyshchev
Abstract:
Irradiated material is a typical example of a complex system with nonlinear coupling between its elements. During irradiation the radiation damage is developed and this development has bifurcations and qualitatively different kinds of behavior. The accumulation of primary defects in irradiated crystals is considered in frame work of nonlinear evolution of complex system. The thermo-concentration nonlinear feedback is carried out as a mechanism of self-oscillation development. It is shown that there are two ways of the defect density evolution under stationary irradiation. The first is the accumulation of defects; defect density monotonically grows and tends to its stationary state for some system parameters. Another way that takes place for opportune parameters is the development of self-oscillations of the defect density. The stationary state, its stability and type are found. The bifurcation values of parameters (environment temperature, defect generation rate, etc.) are obtained. The frequency of the selfoscillation and the conditions of their development is found and rated. It is shown that defect density, heat fluxes and temperature during self-oscillations can reach much higher values than the expected steady-state values. It can lead to a change of typical operation and an accident, e.g. for nuclear equipment.Keywords: Irradiation, Primary Defects, Solids, Self-oscillation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1736860 Optimization of Tolerance Grades of a Bearing and Shaft Assembly in a Washing Machine with Regard to Fatigue Life
Authors: M. Cangi, T. Dolar, C. Ersoy, Y. E. Aydogdu, A. I. Aydeniz, A. Mugan
Abstract:
The drum is one of the critical parts in a washing machine in which the clothes are washed and spin by the rotational movement. It is activated by the drum shaft which is attached to an electric motor and subjected to dynamic loading. Being one of the critical components, failures of the drum require costly repairs of dynamic components. In this study, tolerance bands between the drum shaft and its two bearings were examined to develop a relationship between the fatigue life of the shaft and the interaction tolerances. Optimization of tolerance bands was completed in consideration of the fatigue life of the shaft as the cost function. The following methodology is followed: multibody dynamic model of a washing machine was constructed and used to calculate dynamic loading on the components. Then, these forces were used in finite element analyses to calculate the stress field in critical components which was used for fatigue life predictions. The factors affecting the fatigue life were examined to find optimum tolerance grade for a given test condition. Numerical results were verified by experimental observations.
Keywords: Fatigue life, finite element analysis, tolerance analysis, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 937859 Fatigue Failure Analysis in AISI 304 Stainless Wind Turbine Shafts
Authors: M. F. V. Montezuma, E. P. Deus, M. C. Carvalho
Abstract:
Wind turbines are equipment of great importance for generating clean energy in countries and regions with abundant winds. However, complex loadings fluctuations to which they are subject can cause premature failure of these equipment due to the material fatigue process. This work evaluates fatigue failures in small AISI 304 stainless steel turbine shafts. Fractographic analysis techniques, chemical analyzes using energy dispersive spectrometry (EDS), and hardness tests were used to verify the origin of the failures, characterize the properties of the components and the material. The nucleation of cracks on the shafts' surface was observed due to a combined effect of variable stresses, geometric stress concentrating details, and surface wear, leading to the crack's propagation until the catastrophic failure. Beach marks were identified in the macrographic examination, characterizing the probable failure due to fatigue. The sensitization phenomenon was also observed.
Keywords: Fatigue, sensitization phenomenon, stainless steel shafts, wind turbine failure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 715858 Experimental and Theoretical Investigation on Notched Specimens Life Under Bending Loading
Authors: Nasim Daemi, Gholam Hossein Majzoobi
Abstract:
In this work, bending fatigue life of notched specimens with various notch geometries and dimensions is investigated by experiment and Manson-Caffin theoretical method. In this theoretical method, fatigue life of notched specimens is calculated using the fatigue life obtained from the experiments for plain specimens (without notch). Three notch geometries including ∪-shape, ∨-shape and C -shape notches are considered in this investigation. The experiments are conducted on a rotary bending Moore machine. The specimens are made of a low carbon steel alloy, which has wide application in industry. The stress- life curves are captured for all notched specimen by experiment. The results indicate that Manson-Caffin analytical method cannot adequately predict the fatigue life of notched specimen. However, it seems that the difference between the experiments and Manson-Caffin predictions can be compensated by a proportional factor.Keywords: fatigue life, Mason-Caffin method, notchedspecimen, stress-life curve.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1952857 Survivability of Verhulst-free Populations under Mutation Accumulation
Authors: Chrysline Margus N. Piñol, Jenifer DP. De Maligaya, Ahl G. Balitaon
Abstract:
Stable nonzero populations without random deaths caused by the Verhulst factor (Verhulst-free) are a rarity. Majority either grow without bounds or die of excessive harmful mutations. To delay the accumulation of bad genes or diseases, a new environmental parameter Γ is introduced in the simulation. Current results demonstrate that stability may be achieved by setting Γ = 0.1. These steady states approach a maximum size that scales inversely with reproduction age.Keywords: Aging, mutation accumulation, population dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1280856 Simulation of Low Cycle Fatigue Behaviour of Nickel-Based Alloy at Elevated Temperatures
Authors: Harish Ramesh Babu, Marco Böcker, Mario Raddatz, Sebastian Henkel, Horst Biermann, Uwe Gampe
Abstract:
Thermal power machines are subjected to cyclic loading conditions under elevated temperatures. At these extreme conditions, the durability of the components has a significant influence. The material mechanical behaviour has to be known in detail for a failsafe construction. For this study a nickel-based alloy is considered, the deformation and fatigue behaviour of the material is analysed under cyclic loading. A viscoplastic model is used for calculating the deformation behaviour as well as to simulate the rate-dependent and cyclic plasticity effects. Finally, the cyclic deformation results of the finite element simulations are compared with low cycle fatigue (LCF) experiments.Keywords: Complex low cycle fatigue, elevated temperatures, IN718, viscoplastic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 713855 Managing Truck Drivers’ Fatigue: A Critical Review of the Literature and Recommended Remedies
Authors: Mozhgan Aliakbari, Sara Moridpour
Abstract:
In recent years, much attention has been given to truck drivers’ fatigue management. Long working hours negatively influence truck drivers’ physiology, health, and safety. However, there is little empirical research in the heavy vehicle transport sector in Australia to identify the influence of working hours’ management on drivers’ fatigue and consequently, on the risk of crashes and injuries. There is no national legislation regulating the number of hours or kilometres travelled by truck drivers. Consequently, it is almost impossible to define a standard number of hours or kilometres for truck drivers in a safety management system. This paper reviews the existing studies concerning safe system interventions such as tachographs in relation to fatigue caused by long working hours. This paper also reviews the literature to identify the influence of frequency of rest breaks on the reduction of work-related road transport accidents involving trucks. A framework is presented to manage truck drivers’ fatigue, which may result in the reduction of injuries and fatalities involving heavy vehicles.Keywords: Fatigue, time management, trucks, traffic safety.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1454854 Study on Damage Tolerance Behavior of Integrally Stiffened Panel and Conventional Stiffened Panel
Authors: M. Adeel
Abstract:
The damage tolerance behavior of integrally and conventional stiffened panel is investigated based on the fracture mechanics and finite element analysis. The load bearing capability and crack growth characteristic of both types of the stiffened panels having same configuration subjected to distributed tensile load is examined in this paper. A fourteen-stringer stiffened panel is analyzed for a central skin crack propagating towards the adjacent stringers. Stress intensity factors and fatigue crack propagation rates of both types of the stiffened panels are then compared. The analysis results show that integral stiffening causes higher stress intensity factor than conventional stiffened panel as the crack tip passes through the stringer and the integrally stiffened panel has less load bearing capability than the riveted stiffened panel.Keywords: Conventional Stiffened Structure, Damage Tolerance, Finite Element Analysis, Integrally Stiffened Structure, Stress Intensity Factor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2922853 A Current Problem for Steel Bridges: Fatigue Assessment of Seams´ Repair
Authors: H. Pasternak, A. Chwastek
Abstract:
The paper describes the results from a research project about repair of welds. The repair was carried out by grinding the flawed seams and re-welding them. The main task was to determine the FAT classes of original state and after repair of seams according to the assessment procedures, such as nominal, structural and effective notch stress approach. The first part shows the results of the tests, the second part encloses numerical analysis and evaluation of results to determine the fatigue strength classes according to three assessment procedures.
Keywords: Cyclic loading, fatigue crack, post-weld treatment, seams’ repair.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 957852 A Study of Structural Damage Detection for Spacecraft In-Orbit Based on Acoustic Sensor Array
Authors: Lei Qi, Rongxin Yan, Lichen Sun
Abstract:
With the increasing of human space activities, the number of space debris has increased dramatically, and the possibility that spacecrafts on orbit are impacted by space debris is growing. A method is of the vital significance to real-time detect and assess spacecraft damage, determine of gas leak accurately, guarantee the life safety of the astronaut effectively. In this paper, acoustic sensor array is used to detect the acoustic signal which emits from the damage of the spacecraft on orbit. Then, we apply the time difference of arrival and beam forming algorithm to locate the damage and leakage. Finally, the extent of the spacecraft damage is evaluated according to the nonlinear ultrasonic method. The result shows that this method can detect the debris impact and the structural damage, locate the damage position, and identify the damage degree effectively. This method can meet the needs of structural damage detection for the spacecraft in-orbit.
Keywords: Acoustic sensor array, spacecraft, damage assessment, leakage location.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1124851 Degree of Bending in Axially Loaded Tubular KT-Joints of Offshore Structures: Parametric Study and Formulation
Authors: Hamid Ahmadi, Shadi Asoodeh
Abstract:
The fatigue life of tubular joints commonly found in offshore industry is not only dependent on the value of hot-spot stress (HSS), but is also significantly influenced by the through-thethickness stress distribution characterized by the degree of bending (DoB). The determination of DoB values in a tubular joint is essential for improving the accuracy of fatigue life estimation using the stresslife (S–N) method and particularly for predicting the fatigue crack growth based on the fracture mechanics (FM) approach. In the present paper, data extracted from finite element (FE) analyses of tubular KT-joints, verified against experimental data and parametric equations, was used to investigate the effects of geometrical parameters on DoB values at the crown 0°, saddle, and crown 180° positions along the weld toe of central brace in tubular KT-joints subjected to axial loading. Parametric study was followed by a set of nonlinear regression analyses to derive DoB parametric formulas for the fatigue analysis of KT-joints under axial loads. The tubular KTjoint is a quite common joint type found in steel offshore structures. However, despite the crucial role of the DoB in evaluating the fatigue performance of tubular joints, this paper is the first attempt to study and formulate the DoB values in KT-joints.Keywords: Tubular KT-joint, fatigue, degree of bending (DoB), axial loading, parametric formula.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2557850 Numerical Investigation on Optimizing Fatigue Life in a Lap Joint Structure
Authors: P. Zamani, S. Mohajerzadeh, R. Masoudinejad, Kh. Farhangdoost
Abstract:
Riveting process is one of the important ways to keep fastening the lap joints in aircraft structures. Failure of aircraft lap joints directly depends on the stress field in the joint. An important application of riveting process is in the construction of aircraft fuselage structures. In this paper, a 3D finite element method is carried out in order to optimize residual stress field in a riveted lap joint and also to estimate its fatigue life. In continue, a number of experiments are designed and analyzed using design of experiments (DOE). Then, Taguchi method is used to select an optimized case between different levels of each factor. Besides that, the factor which affects the most on residual stress field is investigated. Such optimized case provides the maximum residual stress field. Fatigue life of the optimized joint is estimated by Paris-Erdogan law. Stress intensity factors (SIFs) are calculated using both finite element analysis and experimental formula. In addition, the effect of residual stress field, geometry and secondary bending are considered in SIF calculation. A good agreement is found between results of such methods. Comparison between optimized fatigue life and fatigue life of other joints has shown an improvement in the joint’s life.Keywords: Fatigue life, Residual stress, Riveting process, Stress intensity factor, Taguchi method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2179849 Fatigue and Stiffness Analysis of Rotating Drum Composter
Authors: Remigijus Janulionis, Marijus Šeporaitis, Aleksandra Legha, Raimundas Ručys
Abstract:
All types of farms have a waste problem. Livestock farms have huge amounts of manure and vegetable farms have to deal with inedible parts of vegetables or rotten, damaged and unacceptable vegetable waste. All of this waste needs to be disposed of safely, ecologically, and as quickly as possible. One of the options is composting using bioreactors, which are rotating drum composters. This type of composting allows biodegradable waste to be disposed of quickly and in an environmentally friendly manner, turning it into a useful product such as soil fertilizer or livestock bedding. This paper presents the fatigue and stiffness analysis of a rotating drum composter. The analysis was performed using a 3D finite element model. It was found that the analyzed composter design has good mechanical strength, good fatigue strength for a cylinder, and acceptable fatigue strength for tire rings. The deformation analysis of the cylinder indicated that the front and rear door support mechanisms should allow the positioning angle to be changed to ensure tightness.
Keywords: 3D modeling, fatigue, Finite Element Method, Goodman’s diagram.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 186848 Effect of Preloading on the Contact Stress Distribution of a Dovetail Interface
Authors: Kaliyaperumal Anandavel, Raghu V. Prakash, Antonio Davis
Abstract:
This paper presents the influence of preloading on a) the contact tractions, b) slip levels and c) stresses at the dovetail blade-disc interface of an aero-engine through a three-dimensional (3D) finite element (FE) modeling and analysis. The preloading is applied by an interference fit at the dovetail interface and the bulk loading is applied through the rotational speed of rotor. Preloading at the dovetail interface reduces the peak contact pressure developed due to bulk loading up to 35%, and reduces the peak contact pressure and stress difference between top and bottom contact edges. Increasing the level of preloading reduces the cyclic stress amplitude at the interface up to certain values of preload and as a consequence, an improvement in fatigue life could be expected. Fretting damage, due to vibration and wind milling effect during engine ground condition, can be minimized by preloading the dovetail interface.Keywords: Dovetail interface, Preload, Interference fit, ContactStress, Fretting Fatigue.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3219847 Viscoelastic Characterization of Bovine Trabecular Bone Samples
Authors: Ramirez D. Edgar I., Angeles H. José J., Ruiz C. Osvaldo, Jacobo A. Victor H., Ortiz P. Armando
Abstract:
Knowledge of bone mechanical properties is important for bone substitutes design and fabrication, and more efficient prostheses development. The aim of this study is to characterize the viscoelastic behavior of bone specimens, through stress relaxation and fatigue tests performed to trabecular bone samples from bovine femoral heads. Relaxation tests consisted on preloading the samples at five different magnitudes and evaluate them for 1020 seconds, adjusting the results to a KWW mathematical model. Fatigue tests consisted of 700 load cycles and analyze their status at the end of the tests. As a conclusion we have that between relaxation stress and each preload there is linear relation and for samples with initial Young´s modulus greater than 1.5 GPa showed no effects due fatigue test loading cycles.Keywords: Bone viscoelasticity, fatigue test, stress relaxation test, trabecular bone properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2078846 A New Damage Identification Strategy for SHM Based On FBGs and Bayesian Model Updating Method
Authors: Yanhui Zhang, Wenyu Yang
Abstract:
One of the difficulties of the vibration-based damage identification methods is the nonuniqueness of the results of damage identification. The different damage locations and severity may cause the identical response signal, which is even more severe for detection of the multiple damage. This paper proposes a new strategy for damage detection to avoid this nonuniqueness. This strategy firstly determines the approximates damage area based on the statistical pattern recognition method using the dynamic strain signal measured by the distributed fiber Bragg grating, and then accurately evaluates the damage information based on the Bayesian model updating method using the experimental modal data. The stochastic simulation method is then used to compute the high-dimensional integral in the Bayesian problem. Finally, an experiment of the plate structure, simulating one part of mechanical structure, is used to verify the effectiveness of this approach.
Keywords: Bayesian method, damage detection, fiber Bragg grating, structural health monitoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1910845 Study of Damage in Beams with Different Boundary Conditions
Authors: Nilson Barbieri, Renato Barbieri
Abstract:
–In this paper the damage in clamped-free, clampedclamped and free-free beam are analyzed considering samples without and with structural modifications. The damage location is investigated by the use of the bispectrum and wavelet analysis. The mathematical models are obtained using 2D elasticity theory and the Finite Element Method (FEM). The numerical and experimental data are approximated using the Particle Swarm Optimizer (PSO) method and this way is possible to adjust the localization and the severity of the damage. The experimental data are obtained through accelerometers placed along the sample. The system is excited using impact hammer.Keywords: Damage, beam, PSO, bispectrum, wavelet transform
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1771844 Corrosion Fatigue Crack Growth Studies in Ni-Cr-Mn Steel
Authors: Chinnaiah Madduri, Raghu V. Prakash
Abstract:
This paper presents the results of corrosion fatigue crack growth behaviour of a Ni-Cr-Mn steel commonly used in marine applications. The effect of mechanical variables such as frequency and load ratio on fatigue crack growth rate at various stages has been studied using compact tension (C(T)) specimens along the rolling direction of steel plate under 3.5% saturated NaCl aqueous environment. The significance of crack closure on corrosion fatigue, and the validity of Elber-s empirical linear crack closure model with the ASTM compliance offset method have been examined. Fatigue crack growth rate is higher and threshold stress intensities are lower in aqueous environment compared to the lab air conditions. It is also observed that the crack growth rate increases at lower frequencies. The higher stress ratio promotes the crack growth. The effect of oxidization and corrosion pit formation is very less as the stress ratio is increased. It is observed that as stress ratios are increased, the Elber-s crack closure model agrees well with the crack closure estimated by the ASTM compliance offset method for tests conducted at 5Hz frequency compared to tests conducted at 1Hz in corrosive environment.Keywords: Corrosion fatigue, oxide induced crack closure, Elber's crack closure, ASTM compliance offset method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2154843 On the Fatigue Behavior of a Triphasic Composite
Authors: G. Minak, D. Ghelli, A. Zucchelli
Abstract:
This paper presents the results of an experimental characterization of a glass fibre-epoxy composite. The behavior of the traditional two-phase composite has been compared with the one of a new three-phase composite where the epoxy matrix was modified by addition of a 3% weight fraction of montmorillonite nano-particles. Two different types of nano-clays, Cloisite® 30B and RXG7000, produced by Southern Clay Products Inc., have been considered. Three-point bending tests, both monotonic and cyclic, were carried out. A strong reduction of the ultimate flexural strength upon nano-modification has been observed in quasi-static tests. Fatigue tests yielded a smaller strength loss. In both quasi-static and fatigue tests a more pronounced tendency to delamination has been noticed in three-phase composites, especially in the case of 30B nano-clay, with respect to the standard two-phase glass fiber composite.
Keywords: Bending fatigue, epoxy resin, glass fiber, montmorillonite.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2456842 An Adaptive Dynamic Fracture for 3D Fatigue Crack Growth Using X-FEM
Authors: S. Lecheb, A. Nour, A. Chellil, A. Basta, D. Belmiloud, H. Kebi
Abstract:
In recent years, a new numerical method has been developed, the extended finite element method (X-FEM). The objective of this work is to exploit the (X-FEM) for the treatment of the fracture mechanics problems on 3D geometries, where we showed the ability of this method to simulate the fatigue crack growth into two cases: edge and central crack. In the results we compared the six first natural frequencies of mode shapes uncracking with the cracking initiation in the structure, and showed the stress intensity factor (SIF) evolution function as crack size propagation into structure, the analytical validation of (SIF) is presented. For to evidence the aspects of this method, all result is compared between FEA and X-FEM.Keywords: 3D fatigue crack growth, FEA, natural frequencies, stress intensity factor (SIF), X-FEM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2028841 Effects of Wastewater Strength and Salt Stress on Microalgal Biomass Production and Lipid Accumulation
Authors: Praepilas Dujjanutat, Pakawadee Kaewkannetra
Abstract:
This work aims to investigate a potential of microalgae for utilizing industrial wastewater as a cheap nutrient for their growth and oil accumulation. Wastewater was collected from the effluent ponds of agro-industrial factories (cassava and ethanol production plants). Only 2 microalgal strains were isolated and identified as Scenedesmus quadricauda and Chlorella sp.. However, only S. quadricauda was selected to cultivate in various wastewater concentrations (10%, 20%, 40%, 60%, 80% and 100%). The highest biomass obtained at 6.6×106 and 6.27×106 cells/ml when 60% wastewater was used in flask and photo-bioreactor. The cultures gave the highest lipid content at 18.58 % and 42.86% in cases of S. quadricauda and S. obliquus. In addition, under salt stress (1.0 M NaCl), S. obliquus demonstrated the highest lipid content at 50% which was much more than the case of no NaCl adding. However, the concentration of NaCl does not affect on lipid accumulation in case of S. quadricauda.Keywords: Cassava wastewater, cultivation, lipid accumulation, microalgae
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2304840 Laser Beam Micro-Drilling Effect on Ti-6Al-4V Titanium Alloy Sheet Properties
Authors: Petr Homola, Roman Růžek
Abstract:
Laser beam micro-drilling (LBMD) is one of the most important non-contact machining processes of materials that are difficult to machine by means oeqf conventional machining methods used in various industries. The paper is focused on LBMD knock-down effect on Ti-6Al-4V (Grade 5) titanium alloy sheets properties. Two various process configurations were verified with a focus on laser damages in back-structure parts affected by the process. The effects of the LBMD on the material properties were assessed by means of tensile and fatigue tests and fracture surface analyses. Fatigue limit of LBMD configurations reached a significantly lower value between 15% and 30% of the static strength as compared to the reference raw material with 58% value. The farther back-structure configuration gives a two-fold fatigue life as compared to the closer LBMD configuration at a given stress applied.
Keywords: Fatigue, fracture surface, laser beam micro-drilling, titanium alloy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 781839 Study on Nitrite Accumulation Characteristics and Nitrifying Population Dynamics at Different Growth Environments
Authors: Yunxia Zhang, Jiti Zhou, Jianbo Guo, Xiuhong Zhang, Lihong Zhao, Shouzhi Yuan
Abstract:
Novel nitrogen removal technologies via nitrite pathway attract increasing interest in recent years. In this study, batch experiments were performed to investigate nitrite accumulation characteristics and shifts in nitrifying community structure at different growth environments including ammonia concentration, pH and alkalinity. It was found that nitrite accumulation ratios were maintained at around 95% at studied conditions, and the optimum pH and Alk/N (ratio between alkalinity and nitrogen) for ammonium oxidization were 8.5 and 8.33, respectively. Fluorescence in situ hybridization analysis of nitrifying bacteria showed that high free ammonia (from influent ammonium or caused by high pH) significantly altered the structure of nitrifying community, leading to abundance of ammonia-oxidizing bacteria (AOB), especially Nitrososmonas, and inhibition of nitrite-oxidizing bacteria (NOB). The results suggest that free ammonia plays more important role than other studied conditions on nitrite accumulation.Keywords: Partial nitrification, Nitrite accumulation, Nitrifyingbacteria, Fluorescence in situ hybridization (FISH).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2033838 Influence of Raw Material Composition on Microstructure and Mechanical Properties of Nodular Cast Iron
Authors: Alan Vaško, Juraj Belan, Lenka Hurtalová, Eva Tillová
Abstract:
The aim of this study is to evaluate the influence of raw material composition on the microstructure, mechanical and fatigue properties and micromechanisms of failure of nodular cast iron. In order to evaluate the influence of charge composition, the structural analysis, mechanical and fatigue tests and microfractographic analysis were carried out on specimens of ten melts with different charge compositions. The basic charge of individual melts was formed by different ratio of pig iron and steel scrap and by different additive for regulation of chemical composition (silicon carbide or ferrosilicon). The results show differences in mechanical and fatigue properties, which are connected with the microstructure. SiC additive positively influences microstructure. Consequently, mechanical and fatigue properties of nodular cast iron are improved, especially in the melts with higher ratio of steel scrap in the charge.
Keywords: Nodular cast iron, silicon carbide, microstructure, mechanical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1542837 Failure Analysis of a Medium Duty Vehicle Leaf Spring
Authors: Gül Çevik
Abstract:
This paper summarizes the work conducted to assess the root cause of the failure of a medium commercial vehicle leaf spring failed in service. Macro- and micro-fractographic analyses by scanning electron microscope as well as material verification tests were conducted in order to understand the failure mechanisms and root cause of the failure. Findings from the fractographic analyses indicated that failure mechanism is fatigue. Crack initiation was identified to have occurred from a point on the top surface near to the front face and to the left side. Two other crack initiation points were also observed, however, these cracks did not propagate. The propagation mode of the fatigue crack revealed that the cyclic loads resulting in crack initiation and propagation were unidirectional bending. Fractographic analyses have also showed that the root cause of the fatigue crack initiation and propagation was loading the part above design stress. Material properties of the part were also verified by chemical composition analysis, microstructural analysis by optical microscopy and hardness tests.
Keywords: Leaf spring, failure analysis, fatigue, fractography.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 748836 A Procedure for Post-Earthquake Damage Estimation Based on Detection of High-Frequency Transients
Authors: Aleksandar Zhelyazkov, Daniele Zonta, Helmut Wenzel, Peter Furtner
Abstract:
In the current research structural health monitoring is considered for addressing the critical issue of post-earthquake damage detection. A non-standard approach for damage detection via acoustic emission is presented - acoustic emissions are monitored in the low frequency range (up to 120 Hz). Such emissions are termed high-frequency transients. Further a damage indicator defined as the Time-Ratio Damage Indicator is introduced. The indicator relies on time-instance measurements of damage initiation and deformation peaks. Based on the time-instance measurements a procedure for estimation of the maximum drift ratio is proposed. Monitoring data is used from a shaking-table test of a full-scale reinforced concrete bridge pier. Damage of the experimental column is successfully detected and the proposed damage indicator is calculated.Keywords: Acoustic emission, Damage detection, Shaking table test, Structural health monitoring, High-frequency transients.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1059835 Mechanical Characteristics on Fatigue Crack Propagation in Aluminium Plate
Authors: A. Chellil, A. Nour, S. Lecheb, H. Mechakra, L. Addar, H. Kebir
Abstract:
This paper present a mechanical characteristics on fatigue crack propagation in Aluminium Plate based on strain and stress distribution using the abaqus software. The changes in shear strain and stress distribution during the fatigue cycle with crack growth is identified. In progressive crack in the strain distribution and the stress is increase in the critical zone. Numerical Modal analysis of the model developed, prove that the Eigen frequencies of aluminium plate were decreased after cracking, and this reduce is nonlinear. These results can provide a reference for analysts and designers of aluminium alloys in aeronautical systems.
Therefore, the modal analysis is an important factor for monitoring the aeronautic structures.
Keywords: Aluminium alloys, plate, crack, failure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2104