Search results for: excitation mode
961 Geometry Calibration Factors of Modified Arcan Fracture Test for Welded Joint
Authors: S. R. Hosseini, N. Choupani, A. R. M. Gharabaghi
Abstract:
In this study the mixed mode fracture mechanics parameters were investigated for high tensile steel butt welded joint based on modified Arcan test and finite element analysis was used to evaluate the effect of crack length on fracture criterion. The nondimensional stress intensity factors, strain energy release rates and Jintegral energy on crack tip were obtained for various in-plane loading combinations on Arcan specimen starting from pure mode-I to pure mode-II loading conditions. The specimen and apparatus were modeled by finite element method and analyzed under various loading angles (between 0 to 90 degrees with 15 degree interval) to simulate the pure mode-I, II and mixed mode fracture. Since the analytical results are independent from elasticity modules for isotropic materials, therefore the results in elastic fields can be used for Arcan specimens. The main objective of this study was to evaluate the geometric calibration factors for modified Arcan test specimen in order to obtain fracture toughness under mixed mode loading conditions.Keywords: Arcan specimen, Geometric calibration factors, Mixed Mode, Fracture mechanics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1966960 Sliding Mode Control for Active Suspension System with Actuator Delay
Authors: Aziz Sezgin, Yuksel Hacioglu, Nurkan Yagiz
Abstract:
Sliding mode controller for a vehicle active suspension system is designed in this study. The widely used quarter car model is preferred and it is aimed to improve the ride comfort of the passengers. The effect of the actuator time delay, which may arise due to the information processing, sensors or actuator dynamics, is also taken into account during the design of the controller. A sliding mode controller was designed that has taken into account the actuator time delay by using Smith predictor. The successful performance of the designed controller is confirmed via numerical results.Keywords: Sliding mode control, active suspension system, actuator time delay.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1641959 Selective Intra Prediction Mode Decision for H.264/AVC Encoders
Authors: Jun Sung Park, Hyo Jung Song
Abstract:
H.264/AVC offers a considerably higher improvement in coding efficiency compared to other compression standards such as MPEG-2, but computational complexity is increased significantly. In this paper, we propose selective mode decision schemes for fast intra prediction mode selection. The objective is to reduce the computational complexity of the H.264/AVC encoder without significant rate-distortion performance degradation. In our proposed schemes, the intra prediction complexity is reduced by limiting the luma and chroma prediction modes using the directional information of the 16×16 prediction mode. Experimental results are presented to show that the proposed schemes reduce the complexity by up to 78% maintaining the similar PSNR quality with about 1.46% bit rate increase in average.Keywords: Video encoding, H.264, Intra prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3467958 Two Active Elements Based All-Pass Section Suited for Current-Mode Cascading
Authors: J. Mohan, S. Maheshwari
Abstract:
A new circuit topology realizing a first-order currentmode all-pass filter is proposed using two dual-output second generation current conveyor and two passive components. The circuit possesses low-input and high-output impedance, which makes it ideal for current-mode systems. The proposed circuit is verified through PSPICE simulation results.
Keywords: active filter, all-pass filter, current-mode, current conveyor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1623957 Pulse Skipping Modulated DC to DC Step Down Converter Under Discontinuous Conduction Mode
Authors: Ramamurthy S, Ranjan P V, Raghavendiran T A
Abstract:
Reduced switching loss favours Pulse Skipping Modulation mode of switching dc-to-dc converters at light loads. Under certain conditions the converter operates in discontinuous conduction mode (DCM). Inductor current starts from zero in each switching cycle as the switching frequency is constant and not adequately high. A DC-to-DC buck converter is modelled and simulated in this paper under DCM. Effect of ESR of the filter capacitor in input current frequency components is studied. The converter is studied for its operation under input voltage and load variation. The operating frequency is selected to be close to and above audio range.Keywords: Buck converter, Discontinuous conduction mode, Electromagnetic Interference, Pulse Skipping Modulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4927956 Response Time Behavior Trends of Proptional, Propotional Integral and Proportional Integral Derivative Mode on Lab Scale
Authors: Syed Zohaib Javaid Zaidi, W. Iqbal
Abstract:
The industrial automation is dependent upon pneumatic control systems. The industrial units are now controlled with digital control systems to tackle the process variables like Temperature, Pressure, Flow rates and Composition.
This research work produces an evaluation of the response time fluctuations for proportional mode, proportional integral and proportional integral derivative modes of automated chemical process control. The controller output is measured for different values of gain with respect to time in three modes (P, PI and PID). In case of P-mode for different values of gain the controller output has negligible change. When the controller output of PI-mode is checked for constant gain, it can be seen that by decreasing the integral time the controller output has showed more fluctuations. The PID mode results have found to be more interesting in a way that when rate minute has changed, the controller output has also showed fluctuations with respect to time. The controller output for integral mode and derivative mode are observed with lesser steady state error, minimum offset and larger response time to control the process variable. The tuning parameters in case of P-mode are only steady state gain with greater errors with respect to controller output. The integral mode showed controller outputs with intermediate responses during integral gain (ki). By increasing the rate minute the derivative gain (kd) also increased which showed the controlled oscillations in case of PID mode and lesser overshoot.
Keywords: Controller Output, P, PI &PID modes, Steady state gain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5583955 Sliding-Mode Control of Synchronous Reluctance Motor
Authors: Mostafa.A. Fellani, Dawo.E. Abaid
Abstract:
This paper presents a controller design technique for Synchronous Reluctance Motor to improve its dynamic performance with fast response and high accuracy. The sliding mode control is the most attractive and suitable method to use for this purpose, since it is simple in design and for its insensitivity to parameter variations or external disturbances. When this method implemented it yields fast dynamic response without overshoot and a zero steady-state error. The current loop control with decentralized sliding mode is presented in this paper. The mathematical model for the synchronous machine, the inverter and the controller is developed. The stability of the sliding mode controller is analyzed. Simulation of synchronous reluctance motor and the controller with PWM-inverter has been curried out, using the SIMULINK software package of MATLAB. Simulation results are presented to show the effectiveness of the approach.Keywords: Dynamic Simulation, MATLAB, PWM-inverter, Reluctance Machine, Sliding-mode.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3105954 An Approximate Lateral-Torsional Buckling Mode Function for Cantilever I-Beams
Authors: H. Ozbasaran
Abstract:
Lateral torsional buckling is a global buckling mode which should be considered in design of slender structural members under flexure about their strong axis. It is possible to compute the load which causes lateral torsional buckling of a beam by finite element analysis, however, closed form equations are needed in engineering practice for calculation ease which can be obtained by using energy method. In lateral torsional buckling applications of energy method, a proper function for the critical lateral torsional buckling mode should be chosen which can be thought as the variation of twisting angle along the buckled beam. Accuracy of the results depends on how close is the chosen function to the exact mode. Since critical lateral torsional buckling mode of the cantilever I-beams varies due to material properties, section properties and loading case, the hardest step is to determine a proper mode function in application of energy method. This paper presents an approximate function for critical lateral torsional buckling mode of doubly symmetric cantilever I-beams. Coefficient matrices are calculated for concentrated load at free end, uniformly distributed load and constant moment along the beam cases. Critical lateral torsional buckling modes obtained by presented function and exact solutions are compared. It is found that the modes obtained by presented function coincide with differential equation solutions for considered loading cases.Keywords: Buckling mode, cantilever, lateral-torsional buckling, I-beam.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2566953 Second Order Sliding Mode Observer Using MRAS Theory for Sensorless Control of Multiphase Induction Machine
Authors: Mohammad Jafarifar
Abstract:
This paper presents a speed estimation scheme based on second-order sliding-mode Super Twisting Algorithm (STA) and Model Reference Adaptive System (MRAS) estimation theory for Sensorless control of multiphase induction machine. A stator current observer is designed based on the STA, which is utilized to take the place of the reference voltage model of the standard MRAS algorithm. The observer is insensitive to the variation of rotor resistance and magnetizing inductance when the states arrive at the sliding mode. Derivatives of rotor flux are obtained and designed as the state of MRAS, thus eliminating the integration. Compared with the first-order sliding-mode speed estimator, the proposed scheme makes full use of the auxiliary sliding-mode surface, thus alleviating the chattering behavior without increasing the complexity. Simulation results show the robustness and effectiveness of the proposed scheme.Keywords: Multiphase induction machine, field oriented control, sliding mode, super twisting algorithm, MRAS algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2294952 Developing a Simple and an Accurate Formula for the Conduction Angle of a Single Phase Rectifier with RL Load
Authors: S. Ali Al-Mawsawi, Fadhel A. Albasri
Abstract:
The paper presents a simple and an accurate formula that has been developed for the conduction angle (δ) of a single phase half-wave or full-wave controlled rectifier with RL load. This formula can be also used for calculating the conduction angle (δ) in case of A.C. voltage regulator with inductive load under discontinuous current mode. The simulation results shows that the conduction angle calculated from the developed formula agree very well with that obtained from the exact solution arrived from the iterative method. Applying the developed formula can reduce the computational time and reduce the time for manual classroom calculation. In addition, the proposed formula is attractive for real time implementations.Keywords: Conduction Angle, Firing Angle, Excitation Angle, Load Angle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5128951 Design of Permanent Sensor Fault Tolerance Algorithms by Sliding Mode Observer for Smart Hybrid Powerpack
Authors: Sungsik Jo, Hyeonwoo Kim, Iksu Choi, Hunmo Kim
Abstract:
In the SHP, LVDT sensor is for detecting the length changes of the EHA output, and the thrust of the EHA is controlled by the pressure sensor. Sensor is possible to cause hardware fault by internal problem or external disturbance. The EHA of SHP is able to be uncontrollable due to control by feedback from uncertain information, on this paper; the sliding mode observer algorithm estimates the original sensor output information in permanent sensor fault. The proposed algorithm shows performance to recovery fault of disconnection and short circuit basically, also the algorithm detect various of sensor fault mode.Keywords: Smart Hybrid Powerpack (SHP), Electro Hydraulic Actuator (EHA), Permanent Sensor fault tolerance, Sliding mode observer (SMO), Graphic User Interface (GUI).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1491950 Performance of Power System Stabilizer (UNITROL D) in Benghazi North Power Plant
Authors: T. Hussein
Abstract:
The use of power system stabilizers (PSSs) to damp power system swing mode of oscillations is practical important. Our purpose is to retune the power system stabilizer (PSS1A) parameters in Unitrol D produced by ABB– was installed in 1995in Benghazi North Power Plants (BNPPs) at General Electricity Company of Libya (GECOL). The optimal values of the power system stabilizer (PSS1A) parameters are determined off-line by a particle swarm optimization technique (PSO). The objective is to damp the local and inter-area modes of oscillations that occur following power system disturbances. The retuned power system stabilizer (PSS1A) can cope with large disturbance at different operating points and has enhanced power system stability.Keywords: Static excitation system, particle swarm optimization (PSO), power system stabilizer (PSS).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2429949 Fuel Cell/DC-DC Convertor Control by Sliding Mode Method
Authors: Farzad Abdous
Abstract:
Fuel cell's system requires regulating circuit for voltage and current in order to control power in case of connecting to other generative devices or load. In this paper Fuel cell system and convertor, which is a multi-variable system, are controlled using sliding mode method. Use of weighting matrix in design procedure made it possible to regulate speed of control. Simulation results show the robustness and accuracy of proposed controller for controlling desired of outputs.Keywords: DC-DC converter, Fuel cell, PEM, Slides mode control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1613948 Fracture Toughness Characterization of Carbon-Epoxy Composite using Arcan Specimen
Authors: M. Nikbakht, N. Choupani
Abstract:
In this study the behavior of interlaminar fracture of carbon-epoxy thermoplastic laminated composite is investigated numerically and experimentally. Tests are performed with Arcan specimens. Testing with Arcan specimen gives the opportunity of utilizing just one kind of specimen for extracting fracture properties for mode I, mode II and different mixed mode ratios of materials with exerting load via different loading angles. Variation of loading angles in range of 0-90° made possible to achieve different mixed mode ratios. Correction factors for various conditions are obtained from ABAQUS 2D finite element models which demonstrate the finite shape of Arcan specimens used in this study. Finally, applying the correction factors to critical loads obtained experimentally, critical interlaminar fracture toughness of this type of carbon- epoxy composite has been attained.Keywords: Fracture Mechanics, Mixed Mode, Arcan Specimen, Finite Element.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2899947 Seismic Analysis of URM Buildings in S. Africa
Authors: Trevor N. Haas, Thomas van der Kolf
Abstract:
South Africa has some regions which are susceptible to moderate seismic activity. A peak ground acceleration of between 0.1g and 0.15g can be expected in the southern parts of the Western Cape. Unreinforced Masonry (URM) is commonly used as a construction material for 2 to 5 storey buildings in underprivileged areas in and around Cape Town. URM is typically regarded as the material most vulnerable to damage when subjected to earthquake excitation. In this study, a three-storey URM building was analysed by applying seven earthquake time-histories, which can be expected to occur in South Africa using a finite element approach. Experimental data was used to calibrate the in- and out-of-plane stiffness of the URM. The results indicated that tensile cracking of the in-plane piers was the dominant failure mode. It is concluded that URM buildings of this type are at risk of failure especially if sufficient ductility is not provided. The results also showed that connection failure must be investigated further.
Keywords: URM, Seismic Analysis, FEM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3001946 Fuzzy Sliding Mode Control of an MR Mount for Vibration Attenuation
Authors: Jinsiang Shaw, Ray Pan, Yin-Chieh Chang
Abstract:
In this paper, an magnetorheological (MR) mount with fuzzy sliding mode controller (FSMC) is studied for vibration suppression when the system is subject to base excitations. In recent years, magnetorheological fluids are becoming a popular material in the field of the semi-active control. However, the dynamic equation of an MR mount is highly nonlinear and it is difficult to identify. FSMC provides a simple method to achieve vibration attenuation of the nonlinear system with uncertain disturbances. This method is capable of handling the chattering problem of sliding mode control effectively and the fuzzy control rules are obtained by using the Lyapunov stability theory. The numerical simulations using one-dimension and two-dimension FSMC show effectiveness of the proposed controller for vibration suppression. Further, the well-known skyhook control scheme and an adaptive sliding mode controller are also included in the simulation for comparison with the proposed FSMC.Keywords: adaptive sliding mode controller, fuzzy sliding modecontroller, magnetorheological mount, skyhook control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1794945 Designing Back-stepping Sliding Mode Controller for a Class of 4Y Octorotor
Authors: I. Khabbazi, R. Ghasemi
Abstract:
This paper presents a combination of both robust nonlinear controller and nonlinear controller for a class of nonlinear 4Y Octorotor UAV using Back-stepping and sliding mode controller. The robustness against internal and external disturbance and decoupling control are the merits of the proposed paper. The proposed controller decouples the Octorotor dynamical system. The controller is then applied to a 4Y Octortor UAV and its feature will be shown.
Keywords: Backstepping, Decoupling, Octorotor UAV, sliding mode.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2421944 Realization of Electronically Tunable Currentmode First-order Allpass Filter and Its Application
Authors: Supayotin Na Songkla, Winai Jaikla
Abstract:
This article presents a resistorless current-mode firstorder allpass filter based on second generation current controlled current conveyors (CCCIIs). The features of the circuit are that: the pole frequency can be electronically controlled via the input bias current: the circuit description is very simple, consisting of 2 CCCIIs and single grounded capacitor, without any external resistors and component matching requirements. Consequently, the proposed circuit is very appropriate to further develop into an integrated circuit. Low input and high output impedances of the proposed configuration enable the circuit to be cascaded in current-mode without additional current buffers. The PSpice simulation results are depicted. The given results agree well with the theoretical anticipation. The application example as a current-mode quadrature oscillator is included.
Keywords: First-order all pass filter, current-mode, CCCII.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1794943 A New Fast Intra Prediction Mode Decision Algorithm for H.264/AVC Encoders
Authors: A. Elyousfi, A. Tamtaoui, E. Bouyakhf
Abstract:
The H.264/AVC video coding standard contains a number of advanced features. Ones of the new features introduced in this standard is the multiple intramode prediction. Its function exploits directional spatial correlation with adjacent block for intra prediction. With this new features, intra coding of H.264/AVC offers a considerably higher improvement in coding efficiency compared to other compression standard, but computational complexity is increased significantly when brut force rate distortion optimization (RDO) algorithm is used. In this paper, we propose a new fast intra prediction mode decision method for the complexity reduction of H.264 video coding. for luma intra prediction, the proposed method consists of two step: in the first step, we make the RDO for four mode of intra 4x4 block, based the distribution of RDO cost of those modes and the idea that the fort correlation with adjacent mode, we select the best mode of intra 4x4 block. In the second step, we based the fact that the dominating direction of a smaller block is similar to that of bigger block, the candidate modes of 8x8 blocks and 16x16 macroblocks are determined. So, in case of chroma intra prediction, the variance of the chroma pixel values is much smaller than that of luma ones, since our proposed uses only the mode DC. Experimental results show that the new fast intra mode decision algorithm increases the speed of intra coding significantly with negligible loss of PSNR.
Keywords: Intra prediction, H264/AVC, video coding, encodercomplexity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2504942 Evaluation of Heterogeneity of Paint Coating on Metal Substrate Using Laser Infrared Thermography and Eddy Current
Authors: S. Mezghani, E. Perrin, J. L Bodnar, J. Marthe, B. Cauwe, V. Vrabie
Abstract:
Non contact evaluation of the thickness of paint coatings can be attempted by different destructive and nondestructive methods such as cross-section microscopy, gravimetric mass measurement, magnetic gauges, Eddy current, ultrasound or terahertz. Infrared thermography is a nondestructive and non-invasive method that can be envisaged as a useful tool to measure the surface thickness variations by analyzing the temperature response. In this paper, the thermal quadrupole method for two layered samples heated up with a pulsed excitation is firstly used. By analyzing the thermal responses as a function of thermal properties and thicknesses of both layers, optimal parameters for the excitation source can be identified. Simulations show that a pulsed excitation with duration of ten milliseconds allows obtaining a substrate-independent thermal response. Based on this result, an experimental setup consisting of a near-infrared laser diode and an Infrared camera was next used to evaluate the variation of paint coating thickness between 60 μm and 130 μm on two samples. Results show that the parameters extracted for thermal images are correlated with the estimated thicknesses by the Eddy current methods. The laser pulsed thermography is thus an interesting alternative nondestructive method that can be moreover used for nonconductive substrates.Keywords: Nondestructive, paint coating, thickness, infrared thermography, laser, heterogeneity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2073941 Kalman Filter Design in Structural Identification with Unknown Excitation
Authors: Z. Masoumi, B. Moaveni
Abstract:
This article is about first step of structural health monitoring by identifying structural system in the presence of unknown input. In the structural system identification, identification of structural parameters such as stiffness and damping are considered. In this study, the Kalman filter (KF) design for structural systems with unknown excitation is expressed. External excitations, such as earthquakes, wind or any other forces are not measured or not available. The purpose of this filter is its strengths to estimate the state variables of the system in the presence of unknown input. Also least squares estimation (LSE) method with unknown input is studied. Estimates of parameters have been adopted. Finally, using two examples advantages and drawbacks of both methods are studied.
Keywords: Structural health monitoring, Kalman filter, Least square estimation, structural system identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2286940 On Two Control Approaches for The Output Voltage Regulation of a Boost Converter
Authors: Abdelaziz Sahbani, Kamel Ben Saad, Mohamed Benrejeb
Abstract:
This paper deals with the comparison between two proposed control strategies for a DC-DC boost converter. The first control is a classical Sliding Mode Control (SMC) and the second one is a distance based Fuzzy Sliding Mode Control (FSMC). The SMC is an analytical control approach based on the boost mathematical model. However, the FSMC is a non-conventional control approach which does not need the controlled system mathematical model. It needs only the measures of the output voltage to perform the control signal. The obtained simulation results show that the two proposed control methods are robust for the case of load resistance and the input voltage variations. However, the proposed FSMC gives a better step voltage response than the one obtained by the SMC.
Keywords: Boost DC-DC converter, Sliding Mode Control (SMC), Fuzzy Sliding Mode Control (FSMC), Robustness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1542939 Triple-input Single-output Voltage-mode Multifunction Filter Using Only Two Current Conveyors
Authors: Mehmet Sagbas, Kemal Fidanboylu, M. Can Bayram
Abstract:
A new voltage-mode triple-input single-output multifunction filter using only two current conveyors is presented. The proposed filter which possesses three inputs and single-output can generate all biquadratic filtering functions at the output terminal by selecting different input signal combinations. The validity of the proposed filter is verified through PSPICE simulations.Keywords: Active Filters, Voltage mode, Current conveyor
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1754938 LQR and SMC Stabilization of a New Unmanned Aerial Vehicle
Authors: Kaan T. Oner, Ertugrul Cetinsoy, Efe Sirimoglu, Cevdet Hancer, Taylan Ayken, Mustafa Unel
Abstract:
We present our ongoing work on the development of a new quadrotor aerial vehicle which has a tilt-wing mechanism. The vehicle is capable of take-off/landing in vertical flight mode (VTOL) and flying over long distances in horizontal flight mode. Full dynamic model of the vehicle is derived using Newton-Euler formulation. Linear and nonlinear controllers for the stabilization of attitude of the vehicle and control of its altitude have been designed and implemented via simulations. In particular, an LQR controller has been shown to be quite effective in the vertical flight mode for all possible yaw angles. A sliding mode controller (SMC) with recursive nature has also been proposed to stabilize the vehicle-s attitude and altitude. Simulation results show that proposed controllers provide satisfactory performance in achieving desired maneuvers.Keywords: UAV, VTOL, dynamic model, stabilization, LQR, SMC
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2108937 First Order Filter Based Current-Mode Sinusoidal Oscillators Using Current Differencing Transconductance Amplifiers (CDTAs)
Authors: S. Summart, C. Saetiaw, T. Thosdeekoraphat, C. Thongsopa
Abstract:
This article presents new current-mode oscillator circuits using CDTAs which is designed from block diagram. The proposed circuits consist of two CDTAs and two grounded capacitors. The condition of oscillation and the frequency of oscillation can be adjusted by electronic method. The circuits have high output impedance and use only grounded capacitors without any external resistor which is very appropriate to future development into an integrated circuit. The results of PSPICE simulation program are corresponding to the theoretical analysis.
Keywords: Current-mode, Quadrature Oscillator, Block Diagram, CDTA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1617936 A Comparative Study of Vapour Compression Heat Pump Systems under Air to Air and Air to Water Mode
Authors: Kemal Çomakli, Uğur Çakir
Abstract:
This research evaluated and compared the thermodynamic performance of heat pump systems which can be run under two different modes as air to air and air to water by using only one compressor. To achieve this comparison an experimental performance study was made on a traditional vapor compressed heat pump system that can be run air to air mode and air to water mode by help of a valve. The experiments made under different thermal conditions. Thermodynamic performance of the systems are presented and compared with each other for different working conditions.
Keywords: Air source heat pump, Energy Analysis, Heat Pump
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1688935 The Influence of the Fin Set-up to the Cooling Output of the Floor Heating Convector
Authors: F. Lemfeld, K. Frana
Abstract:
This article deals with the numerical simulation of the floor heating convector in 3D. Presented convector can operate in two modes – cooling mode and heating mode. This initial numerical simulation is focused on cooling mode of the convector. Models with different temperature of the fins are compared and three various shapes of the fins are examined as well. The objective of the work is to predict air flow and heat transfer inside convector for further optimalization of these devices. For the numerical simulation was used commercial software Ansys Fluent.Keywords: Cooling output, floor heating convector, numericalsimulation, optimalization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1465934 Model Free Terminal Sliding Mode with Gravity Compensation: Application to an Exoskeleton-Upper Limb System
Authors: Sana Bembli, Nahla Khraief Haddad, Safya Belghith
Abstract:
This paper deals with a robust model free terminal sliding mode with gravity compensation approach used to control an exoskeleton-upper limb system. The considered system is a 2-DoF robot in interaction with an upper limb used for rehabilitation. The aim of this paper is to control the flexion/extension movement of the shoulder and the elbow joints in presence of matched disturbances. In the first part, we present the exoskeleton-upper limb system modeling. Then, we controlled the considered system by the model free terminal sliding mode with gravity compensation. A stability study is realized. To prove the controller performance, a robustness analysis was needed. Simulation results are provided to confirm the robustness of the gravity compensation combined with to the Model free terminal sliding mode in presence of uncertainties.Keywords: Exoskeleton-upper limb system, gravity compensation, model free terminal sliding mode, robustness analysis, Monte Carlo, H∞ methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 737933 Stability Analysis of a Class of Nonlinear Systems Using Discrete Variable Structures and Sliding Mode Control
Authors: Vivekanandan C., Prabhakar .R., Prema D.
Abstract:
This paper presents the application of discrete-time variable structure control with sliding mode based on the 'reaching law' method for robust control of a 'simple inverted pendulum on moving cart' - a standard nonlinear benchmark system. The controllers designed using the above techniques are completely insensitive to parametric uncertainty and external disturbance. The controller design is carried out using pole placement technique to find state feedback gain matrix , which decides the dynamic behavior of the system during sliding mode. This is followed by feedback gain realization using the control law which is synthesized from 'Gao-s reaching law'. The model of a single inverted pendulum and the discrete variable structure control controller are developed, simulated in MATLAB-SIMULINK and results are presented. The response of this simulation is compared with that of the discrete linear quadratic regulator (DLQR) and the advantages of sliding mode controller over DLQR are also presentedKeywords: Inverted pendulum, Variable Structure, Sliding mode control, Discrete-time systems, Nonlinear systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2002932 Impedance Matching of Axial Mode Helical Antennas
Authors: Hossein Mardani, Neil Buchanan, Robert Cahill, Vincent Fusco
Abstract:
In this paper, we study the input impedance characteristics of axial mode helical antennas to find an effective way for matching it to 50 Ω. The study is done on the important matching parameters such as like wire diameter and helix to the ground plane gap. It is intended that these parameters control the matching without detrimentally affecting the radiation pattern. Using transmission line theory, a simple broadband technique is proposed, which is applicable for perfect matching of antennas with similar design parameters. We provide design curves to help to choose the proper dimensions of the matching section based on the antenna’s unmatched input impedance. Finally, using the proposed technique, a 4-turn axial mode helix is designed at 2.5 GHz center frequency and the measurement results of the manufactured antenna will be included. This parametric study gives a good insight into the input impedance characteristics of axial mode helical antennas and the proposed impedance matching approach provides a simple, useful method for matching these types of antennas.
Keywords: Antenna, helix, helical, axial mode, wireless power transfer, impedance matching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 888