Search results for: Satellite navigation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 362

Search results for: Satellite navigation

302 Development of Algorithms for the Study of the Image in Digital Form for Satellite Applications: Extraction of a Road Network and Its Nodes

Authors: Z. Nougrara

Abstract:

In this paper we propose a novel methodology for extracting a road network and its nodes from satellite images of Algeria country. This developed technique is a progress of our previous research works. It is founded on the information theory and the mathematical morphology; the information theory and the mathematical morphology are combined together to extract and link the road segments to form a road network and its nodes. We therefore have to define objects as sets of pixels and to study the shape of these objects and the relations that exist between them. In this approach, geometric and radiometric features of roads are integrated by a cost function and a set of selected points of a crossing road. Its performances were tested on satellite images of Algeria country.

Keywords: Satellite image, road network, nodes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1660
301 Robot Navigation and Localization Based on the Rat’s Brain Signals

Authors: Endri Rama, Genci Capi, Shigenori Kawahara

Abstract:

The mobile robot ability to navigate autonomously in its environment is very important. Even though the advances in technology, robot self-localization and goal directed navigation in complex environments are still challenging tasks. In this article, we propose a novel method for robot navigation based on rat’s brain signals (Local Field Potentials). It has been well known that rats accurately and rapidly navigate in a complex space by localizing themselves in reference to the surrounding environmental cues. As the first step to incorporate the rat’s navigation strategy into the robot control, we analyzed the rats’ strategies while it navigates in a multiple Y-maze, and recorded Local Field Potentials (LFPs) simultaneously from three brain regions. Next, we processed the LFPs, and the extracted features were used as an input in the artificial neural network to predict the rat’s next location, especially in the decision-making moment, in Y-junctions. We developed an algorithm by which the robot learned to imitate the rat’s decision-making by mapping the rat’s brain signals into its own actions. Finally, the robot learned to integrate the internal states as well as external sensors in order to localize and navigate in the complex environment.

Keywords: Brain machine interface, decision-making, local field potentials, mobile robot, navigation, neural network, rat, signal processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1427
300 Performance Evaluation of GPS \ INS Main Integration Approach

Authors: Othman Maklouf, Ahmed Adwaib

Abstract:

This paper introduces a comparative study between the main GPS\INS coupling schemes, this will include the loosely coupled and tightly coupled configurations, several types of situations and operational conditions, in which the data fusion process is done using Kalman filtering. This will include the importance of sensors calibration as well as the alignment of the strap down inertial navigation system. The limitations of the inertial navigation systems are investigated.

Keywords: GPS, INS, Kalman Filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2756
299 Satellite Imagery Classification Based on Deep Convolution Network

Authors: Zhong Ma, Zhuping Wang, Congxin Liu, Xiangzeng Liu

Abstract:

Satellite imagery classification is a challenging problem with many practical applications. In this paper, we designed a deep convolution neural network (DCNN) to classify the satellite imagery. The contributions of this paper are twofold — First, to cope with the large-scale variance in the satellite image, we introduced the inception module, which has multiple filters with different size at the same level, as the building block to build our DCNN model. Second, we proposed a genetic algorithm based method to efficiently search the best hyper-parameters of the DCNN in a large search space. The proposed method is evaluated on the benchmark database. The results of the proposed hyper-parameters search method show it will guide the search towards better regions of the parameter space. Based on the found hyper-parameters, we built our DCNN models, and evaluated its performance on satellite imagery classification, the results show the classification accuracy of proposed models outperform the state of the art method.

Keywords: Satellite imagery classification, deep convolution network, genetic algorithm, hyper-parameter optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2297
298 Autonomous Vehicle Navigation Using Harmonic Functions via Modified Arithmetic Mean Iterative Method

Authors: Azali Saudi, Jumat Sulaiman

Abstract:

Harmonic functions are solutions to Laplace’s equation that are known to have an advantage as a global approach in providing the potential values for autonomous vehicle navigation. However, the computation for obtaining harmonic functions is often too slow particularly when it involves very large environment. This paper presents a two-stage iterative method namely Modified Arithmetic Mean (MAM) method for solving 2D Laplace’s equation. Once the harmonic functions are obtained, the standard Gradient Descent Search (GDS) is performed for path finding of an autonomous vehicle from arbitrary initial position to the specified goal position. Details of the MAM method are discussed. Several simulations of vehicle navigation with path planning in a static known indoor environment were conducted to verify the efficiency of the MAM method. The generated paths obtained from the simulations are presented. The performance of the MAM method in computing harmonic functions in 2D environment to solve path planning problem for an autonomous vehicle navigation is also provided.

Keywords: Modified Arithmetic Mean method, Harmonic functions, Laplace’s equation, path planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 819
297 Dual Mode Navigation for Two-Wheeled Robot

Authors: N.M Abdul Ghani, L.K. Haur, T.P.Yon, F Naim

Abstract:

This project relates to a two-wheeled self balancing robot for transferring loads on different locations along a path. This robot specifically functions as a dual mode navigation to navigate efficiently along a desired path. First, as a plurality of distance sensors mounted at both sides of the body for collecting information on tilt angle of the body and second, as a plurality of speed sensors mounted at the bottom of the body for collecting information of the velocity of the body in relative to the ground. A microcontroller for processing information collected from the sensors and configured to set the path and to balance the body automatically while a processor operatively coupled to the microcontroller and configured to compute change of the tilt and velocity of the body. A direct current motor operatively coupled to the microcontroller for controlling the wheels and characterized in that a remote control is operatively coupled to the microcontroller to operate the robot in dual navigation modes.

Keywords: Two-Wheeled Balancing Robot, Dual Mode Navigation, Remote Control, Desired Path.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2168
296 An Edge-based Text Region Extraction Algorithm for Indoor Mobile Robot Navigation

Authors: Jagath Samarabandu, Xiaoqing Liu

Abstract:

Using bottom-up image processing algorithms to predict human eye fixations and extract the relevant embedded information in images has been widely applied in the design of active machine vision systems. Scene text is an important feature to be extracted, especially in vision-based mobile robot navigation as many potential landmarks such as nameplates and information signs contain text. This paper proposes an edge-based text region extraction algorithm, which is robust with respect to font sizes, styles, color/intensity, orientations, and effects of illumination, reflections, shadows, perspective distortion, and the complexity of image backgrounds. Performance of the proposed algorithm is compared against a number of widely used text localization algorithms and the results show that this method can quickly and effectively localize and extract text regions from real scenes and can be used in mobile robot navigation under an indoor environment to detect text based landmarks.

Keywords: Landmarks, mobile robot navigation, scene text, text localization and extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2876
295 GPS Navigator for Blind Walking in a Campus

Authors: Rangsipan Marukatat, Pongmanat Manaspaibool, Benjawan Khaiprapay, Pornpimon Plienjai

Abstract:

We developed a GPS-based navigation device for the blind, with audio guidance in Thai language. The device is composed of simple and inexpensive hardware components. Its user interface is quite simple. It determines optimal routes to various landmarks in our university campus by using heuristic search for the next waypoints. We tested the device and made note of its limitations and possible extensions.

Keywords: Blind, global positioning system (GPS), navigation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2409
294 Improving Spatiotemporal Change Detection: A High Level Fusion Approach for Discovering Uncertain Knowledge from Satellite Image Database

Authors: Wadii Boulila, Imed Riadh Farah, Karim Saheb Ettabaa, Basel Solaiman, Henda Ben Ghezala

Abstract:

This paper investigates the problem of tracking spa¬tiotemporal changes of a satellite image through the use of Knowledge Discovery in Database (KDD). The purpose of this study is to help a given user effectively discover interesting knowledge and then build prediction and decision models. Unfortunately, the KDD process for spatiotemporal data is always marked by several types of imperfections. In our paper, we take these imperfections into consideration in order to provide more accurate decisions. To achieve this objective, different KDD methods are used to discover knowledge in satellite image databases. Each method presents a different point of view of spatiotemporal evolution of a query model (which represents an extracted object from a satellite image). In order to combine these methods, we use the evidence fusion theory which considerably improves the spatiotemporal knowledge discovery process and increases our belief in the spatiotemporal model change. Experimental results of satellite images representing the region of Auckland in New Zealand depict the improvement in the overall change detection as compared to using classical methods.

Keywords: Knowledge discovery in satellite databases, knowledge fusion, data imperfection, data mining, spatiotemporal change detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1505
293 Development of Star Tracker for Satellite

Authors: S. Yelubayev, V. Ten, B. Albazarov, E. Sarsenbayev, К. Аlipbayev, A. Shamro, Т. Bopeyev, А. Sukhenko

Abstract:

Much attention is paid to the development of space branch in Kazakhstan at present. Two Earth remote sensing satellites of Kazakhstan have been launched successfully. Many projects related to the development of components for satellite are carried in Kazakhstan, in particular the project related to the development of star tracker experimental model. It is planned to use the results of this project for development of star tracker prototype in the future. This article describes the main stages of development of star tracker experimental model.

Keywords: Development, prototype, satellite, star tracker.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2894
292 Development of Precise Ephemeris Generation Module for Thaichote Satellite Operations

Authors: Manop Aorpimai, Ponthep Navakitkanok

Abstract:

In this paper, the development of the ephemeris generation module used for the Thaichote satellite operations is presented. It is a vital part of the flight dynamics system, which comprises, the orbit determination, orbit propagation, event prediction and station-keeping maneouvre modules. In the generation of the spacecraft ephemeris data, the estimated orbital state vector from the orbit determination module is used as an initial condition. The equations of motion are then integrated forward in time to predict the satellite states. The higher geopotential harmonics, as well as other disturbing forces, are taken into account to resemble the environment in low-earth orbit. Using a highly accurate numerical integrator based on the Burlish-Stoer algorithm the ephemeris data can be generated for long-term predictions, by using a relatively small computation burden and short calculation time. Some events occurring during the prediction course that are related to the mission operations, such as the satellite’s rise/set viewed from the ground station, Earth and Moon eclipses, the drift in groundtrack as well as the drift in the local solar time of the orbital plane are all detected and reported. When combined with other modules to form a flight dynamics system, this application is aimed to be applied for the Thaichote satellite and successive Thailand’s Earth-observation missions. 

Keywords: Flight Dynamics System, Orbit Propagation, Satellite Ephemeris, Thailand’s Earth Observation Satellite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3009
291 Authorization of Commercial Communication Satellite Grounds for Promoting Turkish Data Relay System

Authors: Celal Dudak, Aslı Utku, Burak Yağlioğlu

Abstract:

Uninterrupted and continuous satellite communication through the whole orbit time is becoming more indispensable every day. Data relay systems are developed and built for various high/low data rate information exchanges like TDRSS of USA and EDRSS of Europe. In these missions, a couple of task-dedicated communication satellites exist. In this regard, for Turkey a data relay system is attempted to be defined exchanging low data rate information (i.e. TTC) for Earth-observing LEO satellites appointing commercial GEO communication satellites all over the world. First, justification of this attempt is given, demonstrating duration enhancements in the link. Discussion of preference of RF communication is, also, given instead of laser communication. Then, preferred communication GEOs – including TURKSAT4A already belonging to Turkey- are given, together with the coverage enhancements through STK simulations and the corresponding link budget. Also, a block diagram of the communication system is given on the LEO satellite.

Keywords: Communication, satellite, data relay system, coverage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1380
290 Infrared Lamp Array Simulation Technology Used during Satellite Thermal Testing

Authors: Wang Jing, Liu Shouwen, Pei Yifei

Abstract:

A satellite is being integrated and tested by BISEE (Beijing Institute of Spacecraft Environment Engineering). This paper describes the infrared lamp array simulation technology used for satellite thermal balance and thermal vacuum test. These tests were performed in KM6 space environmental simulator in Beijing, China. New software and hardware developed by BISEE, along with enhanced heat flux uniformity, provided for well accomplished thermal balance and thermal vacuum tests. The flux uniformity of lamp array was satisfied with test requirement. Monitored background radiometer offered reliable heat flux measurements with remarkable repeatability. Simulation software supplied accurate thermal flux distribution predictions.

Keywords: Satellite, Thermal test, Infrared lamp array, Heatflux

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2651
289 The Effects of Visual Elements and Cognitive Styles on Students Learning in Hypermedia Environment

Authors: Rishi Ruttun

Abstract:

One of the major features of hypermedia learning is its non-linear structure, allowing learners, the opportunity of flexible navigation to accommodate their own needs. Nevertheless, such flexibility can also cause problems such as insufficient navigation and disorientation for some learners, especially those with Field Dependent cognitive styles. As a result students learning performance can be deteriorated and in turn, they can have negative attitudes with hypermedia learning systems. It was suggested that visual elements can be used to compensate dilemmas. However, it is unclear whether these visual elements improve their learning or whether problems still exist. The aim of this study is to investigate the effect of students cognitive styles and visual elements on students learning performance and attitudes in hypermedia learning environment. Cognitive Style Analysis (CSA), Learning outcome in terms of pre and post-test, practical task, and Attitude Questionnaire (AQ) were administered to a sample of 60 university students. The findings revealed that FD students preformed equally to those of FI. Also, FD students experienced more disorientation in the hypermedia learning system where they depend a lot on the visual elements for navigation and orientation purposes. Furthermore, they had more positive attitudes towards the visual elements which escape them from experiencing navigation and disorientation dilemmas. In contrast, FI students were more comfortable, did not get disturbed or did not need some of the visual elements in the hypermedia learning system.

Keywords: Hypermedia learning, cognitive styles, visual elements, support, learning performance, attitudes and perceptions

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1641
288 Design of Optimal Proportional Integral Derivative Attitude Controller for an Uncoupled Flexible Satellite Using Particle Swarm Optimization

Authors: Martha C. Orazulume, Jibril D. Jiya

Abstract:

Flexible satellites are equipped with various appendages which vibrate under the influence of any excitation and make the attitude of the satellite to be unstable. Therefore, the system must be able to adjust to balance the effect of these appendages in order to point accurately and satisfactorily which is one of the most important problems in satellite design. Proportional Integral Derivative (PID) Controller is simple to design and computationally efficient to implement which is used to stabilize the effect of these flexible appendages. However, manual turning of the PID is time consuming, waste energy and money. Particle Swarm Optimization (PSO) is used to tune the parameters of PID Controller. Simulation results obtained show that PSO tuned PID Controller is able to re-orient the spacecraft attitude as well as dampen the effect of mechanical resonance and yields better performance when compared with manually tuned PID Controller.

Keywords: Attitude control, flexible satellite, particle swarm optimization, PID controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1235
287 Frame and Burst Acquisition in TDMA Satellite Communication Networks with Transponder Hopping

Authors: Vitalice K. Oduol, C. Ardil

Abstract:

The paper presents frame and burst acquisition in a satellite communication network based on time division multiple access (TDMA) in which the transmissions may be carried on different transponders. A unique word pattern is used for the acquisition process. The search for the frame is aided by soft-decision of QPSK modulated signals in an additive white Gaussian channel. Results show that when the false alarm rate is low the probability of detection is also low, and the acquisition time is long. Conversely when the false alarm rate is high, the probability of detection is also high and the acquisition time is short. Thus the system operators can trade high false alarm rates for high detection probabilities and shorter acquisition times.

Keywords: burst acquisition, burst time plan, frame acquisition, satellite access, satellite TDMA, unique word detection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9106
286 Tailoring of ECSS Standard for Space Qualification Test of CubeSat Nano-Satellite

Authors: B. Tiseo, V. Quaranta, G. Bruno, G. Sisinni

Abstract:

There is an increasing demand of nano-satellite development among universities, small companies, and emerging countries. Low-cost and fast-delivery are the main advantages of such class of satellites achieved by the extensive use of commercial-off-the-shelf components. On the other side, the loss of reliability and the poor success rate are limiting the use of nano-satellite to educational and technology demonstration and not to the commercial purpose. Standardization of nano-satellite environmental testing by tailoring the existing test standard for medium/large satellites is then a crucial step for their market growth. Thus, it is fundamental to find the right trade-off between the improvement of reliability and the need to keep their low-cost/fast-delivery advantages. This is particularly even more essential for satellites of CubeSat family. Such miniaturized and standardized satellites have 10 cm cubic form and mass no more than 1.33 kilograms per 1 unit (1U). For this class of nano-satellites, the qualification process is mandatory to reduce the risk of failure during a space mission. This paper reports the description and results of the space qualification test campaign performed on Endurosat’s CubeSat nano-satellite and modules. Mechanical and environmental tests have been carried out step by step: from the testing of the single subsystem up to the assembled CubeSat nano-satellite. Functional tests have been performed during all the test campaign to verify the functionalities of the systems. The test duration and levels have been selected by tailoring the European Space Agency standard ECSS-E-ST-10-03C and GEVS: GSFC-STD-7000A.

Keywords: CubeSat, Nano-satellite, shock, testing, vibration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1618
285 Configuration and the Calculation of Link Budget for a Connection via a Geostationary Satellite for Multimedia Application in the Ka Band

Authors: M. A. Mebrek, L.H.Abderrahmane, A. Himeur, S. Bendoukha

Abstract:

In this article, we are going to do a study that consist in the configuration of a link between an earth station to broadcast multimedia service and a user of this service via a geostationary satellite in Ka- band and the set up of the different components of this link and then to make the calculation of the link budget for this system. The application carried out in this work, allows us to calculate the link budget in both directions: the uplink and downlink, as well as all parameters used in the calculation and the development of a link budget. Finally, we will try to verify using the application developed the feasibility of implementation of this system.

Keywords: Geostationary satellite, ground station, ka band, link budget, telecommunication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5522
284 Automatic Landmark Selection Based on Feature Clustering for Visual Autonomous Unmanned Aerial Vehicle Navigation

Authors: Paulo Fernando Silva Filho, Elcio Hideiti Shiguemori

Abstract:

The selection of specific landmarks for an Unmanned Aerial Vehicles’ Visual Navigation systems based on Automatic Landmark Recognition has significant influence on the precision of the system’s estimated position. At the same time, manual selection of the landmarks does not guarantee a high recognition rate, which would also result on a poor precision. This work aims to develop an automatic landmark selection that will take the image of the flight area and identify the best landmarks to be recognized by the Visual Navigation Landmark Recognition System. The criterion to select a landmark is based on features detected by ORB or AKAZE and edges information on each possible landmark. Results have shown that disposition of possible landmarks is quite different from the human perception.

Keywords: Clustering, edges, feature points, landmark selection, X-Means.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 759
283 User Requirements Analysis for the Development of Assistive Navigation Mobile Apps for Blind and Visually Impaired People

Authors: Paraskevi Theodorou, Apostolos Meliones

Abstract:

In the context of the development process of two assistive navigation mobile apps for blind and visually impaired people (BVI) an extensive qualitative analysis of the requirements of potential users has been conducted. The analysis was based on interviews with BVIs and aimed to elicit not only their needs with respect to autonomous navigation but also their preferences on specific features of the apps under development. The elicited requirements were structured into four main categories, namely, requirements concerning the capabilities, functionality and usability of the apps, as well as compatibility requirements with respect to other apps and services. The main categories were then further divided into nine sub-categories. This classification, along with its content, aims to become a useful tool for the researcher or the developer who is involved in the development of digital services for BVI.

Keywords: Accessibility, assistive mobile apps, blind and visually impaired people, user requirements analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 881
282 Sensor Network Based Emergency Response and Navigation Support Architecture

Authors: Dilusha Weeraddana, Ashanie Gunathillake, Samiru Gayan

Abstract:

In an emergency, combining Wireless Sensor Network's data with the knowledge gathered from various other information sources and navigation algorithms, could help safely guide people to a building exit while avoiding the risky areas. This paper presents an emergency response and navigation support architecture for data gathering, knowledge manipulation, and navigational support in an emergency situation. At normal state, the system monitors the environment. When an emergency event detects, the system sends messages to first responders and immediately identifies the risky areas from safe areas to establishing escape paths. The main functionalities of the system include, gathering data from a wireless sensor network which is deployed in a multi-story indoor environment, processing it with information available in a knowledge base, and sharing the decisions made, with first responders and people in the building. The proposed architecture will act to reduce risk of losing human lives by evacuating people much faster with least congestion in an emergency environment. 

Keywords: Emergency response, Firefighters, Navigation, Wireless sensor network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1970
281 Application of a Dual Satellite Geolocation System on Locating Sweeping Interference

Authors: M. H. Chan

Abstract:

This paper describes an application of a dual satellite geolocation (DSG) system on identifying and locating the unknown source of uplink sweeping interference. The geolocation system integrates the method of joint time difference of arrival (TDOA) and frequency difference of arrival (FDOA) with ephemeris correction technique which successfully demonstrated high accuracy in interference source location. The factors affecting the location error were also discussed.

Keywords: Dual satellite geolocation system, DGS, geolocation, TDOA/FDOA, and sweeping interference

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3976
280 Walking Hexapod Robot in Disaster Recovery: Developing Algorithm for Terrain Negotiation and Navigation

Authors: Md. Masum Billah, Mohiuddin Ahmed, Soheli Farhana

Abstract:

In modern day disaster recovery mission has become one of the top priorities in any natural disaster management regime. Smart autonomous robots may play a significant role in such missions, including search for life under earth quake hit rubbles, Tsunami hit islands, de-mining in war affected areas and many other such situations. In this paper current state of many walking robots are compared and advantages of hexapod systems against wheeled robots are described. In our research we have selected a hexapod spider robot; we are developing focusing mainly on efficient navigation method in different terrain using apposite gait of locomotion, which will make it faster and at the same time energy efficient to navigate and negotiate difficult terrain. This paper describes the method of terrain negotiation navigation in a hazardous field.

Keywords: Walking robots, locomotion, hexapod robot, gait, hazardous field.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4381
279 Navigation of Multiple Mobile Robots using Rule-based-Neuro-Fuzzy Technique

Authors: Saroj Kumar Pradhan, Dayal Ramakrushna Parhi, Anup Kumar Panda

Abstract:

This paper deals with motion planning of multiple mobile robots. Mobile robots working together to achieve several objectives have many advantages over single robot system. However, the planning and coordination between the mobile robots is extremely difficult. In the present investigation rule-based and rulebased- neuro-fuzzy techniques are analyzed for multiple mobile robots navigation in an unknown or partially known environment. The final aims of the robots are to reach some pre-defined goals. Based upon a reference motion, direction; distances between the robots and obstacles; and distances between the robots and targets; different types of rules are taken heuristically and refined later to find the steering angle. The control system combines a repelling influence related to the distance between robots and nearby obstacles and with an attracting influence between the robots and targets. Then a hybrid rule-based-neuro-fuzzy technique is analysed to find the steering angle of the robots. Simulation results show that the proposed rulebased- neuro-fuzzy technique can improve navigation performance in complex and unknown environments compared to this simple rulebased technique.

Keywords: Mobile robots, Navigation, Neuro-fuzzy, Obstacle avoidance, Rule-based, Target seeking

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1758
278 Design of Communication Primitives for Satellite Networks Management

Authors: Zhang Wenbo, Tian Ye, Sun Peigen, Xu Haifeng

Abstract:

According to the mobility of the satellite network nodes and the characteristic of management domain dynamic partition in the satellite network, the login and logout mechanism of the satellite network dynamic management domain partition was proposed in the paper. In the mechanism, a ground branch-station sends the packets of login broadcasting to satellites in view. After received the packets, the SNMP agents on the satellites adopt link-delay test to respond. According to the mechanism, the SNMP primitives were extended, and the new added primitives were as follows: broadcasting, login, login confirmation,delay_testing, test responses, and logout. The definition of primitives, which followed RFC1157 criterion, could be encoded by the BER coding. The policy of the dynamic management domain partition on the basis of the login and logout mechanism, which was supported by the SNMP protocol, was realized by the design of the extended primitives.

Keywords: Satellites Network, network management, communication primitive, SNMP

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1511
277 The Pixel Value Data Approach for Rainfall Forecasting Based on GOES-9 Satellite Image Sequence Analysis

Authors: C. Yaiprasert, K. Jaroensutasinee, M. Jaroensutasinee

Abstract:

To develop a process of extracting pixel values over the using of satellite remote sensing image data in Thailand. It is a very important and effective method of forecasting rainfall. This paper presents an approach for forecasting a possible rainfall area based on pixel values from remote sensing satellite images. First, a method uses an automatic extraction process of the pixel value data from the satellite image sequence. Then, a data process is designed to enable the inference of correlations between pixel value and possible rainfall occurrences. The result, when we have a high averaged pixel value of daily water vapor data, we will also have a high amount of daily rainfall. This suggests that the amount of averaged pixel values can be used as an indicator of raining events. There are some positive associations between pixel values of daily water vapor images and the amount of daily rainfall at each rain-gauge station throughout Thailand. The proposed approach was proven to be a helpful manual for rainfall forecasting from meteorologists by which using automated analyzing and interpreting process of meteorological remote sensing data.

Keywords: Pixel values, satellite image, water vapor, rainfall, image processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1818
276 Study of Remote Sensing and Satellite Images Ability in Preparing Agricultural Land Use Map (ALUM)

Authors: Ali Gholami

Abstract:

In this research the Preparation of Land use map of scanner LISS III satellite data, belonging to the IRS in the Aghche region in Isfahan province, is studied carefully. For this purpose, the IRS satellite images of August 2008 and various land preparation uses in region including rangelands, irrigation farming, dry farming, gardens and urban areas were separated and identified. Therefore, the GPS and Erdas Imaging software were used and three methods of Maximum Likelihood, Mahalanobis Distance and Minimum Distance were analyzed. In each of these methods, matrix error and Kappa index were calculated and accuracy of each method, based on percentages: 53.13, 56.64 and 48.44, were obtained respectively. Considering the low accuracy of these methods in separation of land preparation use, the visual interpretation of the map was used. Finally, regional visits of 150 points were noted at random and no error was observed. It shows that the map prepared by visual interpretation is in high accuracy. Although the probable errors due to visual interpretation and geometric correction might happen but the desired accuracy of the map which is more than 85 percent is reliable.

Keywords: Land use map, Aghche Region, Erdas Imagine, satellite images

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1523
275 Performance Analysis of a Dynamic Channel Reservation-Like Technique for Low Earth Orbit Mobile Satellite Systems

Authors: W. Kiamouche, S. Lasmari, M. Benslama

Abstract:

In order to derive important parameters concerning mobile subscriber MS with ongoing calls in Low Earth Orbit Mobile Satellite Systems LEO MSSs, a positioning system had to be integrated into MSS in order to localize mobile subscribers MSs and track them during the connection. Such integration is regarded as a complex implementation. We propose in this paper a novel method based on advantages of mobility model of Low Earth Orbit Mobile Satellite System LEO MSS which allows the evaluation of instant of subsequent handover of a MS even if its location is unknown. This method is utilized to propose a Dynamic Channel Reservation DCRlike scheme based on the DCR scheme previously proposed in literature. Results presented show that DCR-like technique gives different QoS performance than DCR. Indeed, an improve in handover blocking probability and an increase in new call blocking probability are observed for the DCR-like technique.

Keywords: cellular layout, DCR, LEO mobile satellite system, mobility model, positioning system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1518
274 Orbit Determination Modeling with Graphical Demonstration

Authors: Assem M. F. Sallam, Ah. El-S. Makled

Abstract:

In this paper, there is an implementation, verification, and graphical demonstration of a software application, which can be used swiftly over different preliminary orbit determination methods. A passive orbit determination method is used in this study to determine the location of a satellite or a flying body. It is named a passive orbit determination because it depends on observation without the use of any aids (radio and laser) installed on satellite. In order to understand how these methods work and how their output is accurate when compared with available verification data, the built models help in knowing the different inputs used with each method. Output from the different orbit determination methods (Gibbs, Lambert, and Gauss) will be compared with each other and verified by the data obtained from Satellite Tool Kit (STK) application. A modified model including all of the orbit determination methods using the same input will be introduced to investigate different models output (orbital parameters) for the same input (azimuth, elevation, and time). Simulation software is implemented using MATLAB. A Graphical User Interface (GUI) application named OrDet is produced using the GUI of MATLAB. It includes all the available used inputs and it outputs the current Classical Orbital Elements (COE) of satellite under observation. Produced COE are then used to propagate for a complete revolution and plotted on a 3-D view. Modified model which uses an adapter to allow same input parameters, passes these parameters to the preliminary orbit determination methods under study. Result from all orbit determination methods yield exactly the same COE output, which shows the equality of concept in determination of satellite’s location, but with different numerical methods.

Keywords: Orbit determination, STK, MATLAB-GUI, satellite tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1512
273 Augmenting Navigational Aids: The Development of an Assistive Maritime Navigation Application

Authors: A. Mihoc, K. Cater

Abstract:

On the bridge of a ship the officers are looking for visual aids to guide navigation in order to reconcile the outside world with the position communicated by the digital navigation system. Aids to navigation include: Lighthouses, lightships, sector lights, beacons, buoys, and others. They are designed to help navigators calculate their position, establish their course or avoid dangers. In poor visibility and dense traffic areas, it can be very difficult to identify these critical aids to guide navigation. The paper presents the usage of Augmented Reality (AR) as a means to present digital information about these aids to support navigation. To date, nautical navigation related mobile AR applications have been limited to the leisure industry. If proved viable, this prototype can facilitate the creation of other similar applications that could help commercial officers with navigation. While adopting a user centered design approach, the team has developed the prototype based on insights from initial research carried on board of several ships. The prototype, built on Nexus 9 tablet and Wikitude, features a head-up display of the navigational aids (lights) in the area, presented in AR and a bird’s eye view mode presented on a simplified map. The application employs the aids to navigation data managed by Hydrographic Offices and the tablet’s sensors: GPS, gyroscope, accelerometer, compass and camera. Sea trials on board of a Navy and a commercial ship revealed the end-users’ interest in using the application and further possibility of other data to be presented in AR. The application calculates the GPS position of the ship, the bearing and distance to the navigational aids; all within a high level of accuracy. However, during testing several issues were highlighted which need to be resolved as the prototype is developed further. The prototype stretched the capabilities of Wikitude, loading over 500 objects during tests in a major port. This overloaded the display and required over 45 seconds to load the data. Therefore, extra filters for the navigational aids are being considered in order to declutter the screen. At night, the camera is not powerful enough to distinguish all the lights in the area. Also, magnetic interference with the bridge of the ship generated a continuous compass error of the AR display that varied between 5 and 12 degrees. The deviation of the compass was consistent over the whole testing durations so the team is now looking at the possibility of allowing users to manually calibrate the compass. It is expected that for the usage of AR in professional maritime contexts, further development of existing AR tools and hardware is needed. Designers will also need to implement a user-centered design approach in order to create better interfaces and display technologies for enhanced solutions to aid navigation.

Keywords: Compass error, GPS, maritime navigation, mobile augmented reality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 751