Search results for: thermal annealing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1416

Search results for: thermal annealing

576 Pioneer Synthesis and Characterization of Boron Containing Hard Materials

Authors: G. Çelik Gül, F. Kurtuluş

Abstract:

The first laboratory synthesis of hard materials such as diamond proceeded to attack of developing materials with high hardness to compete diamond. Boron rich solids are good candidates owing to their short interatomic bond lengths and strong covalent character. Boron containing hard material was synthesized by modifiedmicrowave method under nitrogen atmosphere by using a fuel (glycine or urea), amorphous boron and/or boric acid in appropriate molar ratio. Characterizations were done by x-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy/energy dispersive analyze (SEM/EDS), thermo gravimetric/differential thermal analysis (TG/DTA).

Keywords: Boron containing materials, hard materials, microwave synthesis, powder X-ray diffraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2160
575 Factors in a Sustainability Assessment of New Types of Closed Cavity Façades

Authors: Zoran Veršić, Josip Galić, Marin Binički, Lucija Stepinac

Abstract:

With the current increase in CO2 emissions and global warming, the sustainability of both existing and new solutions must be assessed on a wide scale. As the implementation of closed cavity façades (CCF) is on the rise, various factors must be included in the analysis of new types of CCF. This paper aims to cover the relevant factors included in the sustainability assessment of new types of CCF. Several mathematical models are being used to describe the physical behavior of CCF. Depending on the type of CCF, they cover the main factors which affect the durability of the façade: thermal behavior of various elements in the façade, stress and deflection of the glass panels, pressure and the moisture control in the cavity. CCF itself represents a complex system in which all mentioned factors must be considered mutually. Still, the façade is only an envelope of a more complex system, the building. Choice of the façade dictates the heat loss and the heat gain, thermal comfort of inner space, natural lighting, and ventilation. Annual energy consumption for heating, cooling, lighting, and maintenance costs will present the operational advantages or disadvantages of the chosen façade system in economic and environmental aspects. Still, the only operational viewpoint is not all-inclusive. As the building codes constantly demand higher energy efficiency as well as transfer to renewable energy sources, the ratio of embodied and lifetime operational energy footprint of buildings is changing. With the drop in operational energy CO2 emissions, embodied energy emissions present a larger and larger share in the lifecycle emissions of the building. Taking all into account, the sustainability assessment of a façade, as well as other major building elements, should include all mentioned factors during the lifecycle of an element. The challenge of such an approach is a timescale. Depending on the climatic conditions on the building site, the expected lifetime of a glazed façade can exceed 25 years. In such a timespan, some of the factors can be estimated more precisely than the others. However, the ones depending on the socio-economic conditions are more likely to be harder to predict than the natural ones like the climatic load. This work recognizes and summarizes the relevant factors needed for the assessment of a new type of CCF, considering the entire lifetime of a façade element in an environmental aspect.

Keywords: Assessment, closed cavity façade, life cycle, sustainability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 394
574 Proton-conducting PVA/PMA Hybrid Membranes for Fuel Cell Applications

Authors: Uma Thanganathan

Abstract:

The hybrid membranes containing inorganic materials in polymer matrix are identified as a remarkable family of proton conducting hybrid electrolytes. In this work, the proton conducting inorganic/organic hybrid membranes for proton exchange membrane fuel cells (PEMFCs) were prepared using polyvinyl alcohol (PVA), tetraethoxyorthosilane (TEOS) and heteropolyacid (HPA). The synthesized hybrid membranes were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction spectroscopy (XRD), Scanning electron microscopy (SEM) and Thermogravimetry analysis (TGA). The effects of heteropolyacid incorporation on membrane properties, including morphology and thermal stability were extensively investigated.

Keywords: PEMFC, Hybrid membrane, FTIR, TGA, Phosphomolybdic acid

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2575
573 An Experimental Investigation of Heating in Induction Motors

Authors: R. Khaldi, N. Benamrouche, M. Bouheraoua

Abstract:

The ability to predict an accurate temperature distribution requires the knowledge of the losses, the thermal characteristics of the materials, and the cooling conditions, all of which are very difficult to quantify. In this paper, the impact of the effects of iron and copper losses are investigated separately and their effects on the heating in various points of the stator of an induction motor, is highlighted by using two simple tests. In addition, the effect of a defect, such as an open circuit in a phase of the stator, on the heating is also obtained by a no-load test. The squirrel cage induction motor is rated at 2.2 kW; 380 V; 5.2 A; Δ connected; 50 Hz; 1420 rpm and the class of insulation F, has been thermally tested under several load conditions. Several thermocouples were placed in strategic points of the stator.

Keywords: induction motor, temperature, heating, losses

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1831
572 Satellite Thermal Control: Cooling by a Diphasic Loop

Authors: L. Boukhris, A. Boudjemai, A. Bellar, R. Roubache, M. Bensaada

Abstract:

In space during functioning, a satellite will be heated up due to the behavior of its components such as power electronics. In order to prevent problems in the satellite, this heat has to be released in space thanks to the cooling system. This system consists of a loop heat pipe (LHP), in which a fluid streams through an evaporator and a condenser. In the evaporator, the fluid captures the heat from the satellite and evaporates. Then it flows to the condenser where it releases the heat and it condenses. In this project, the two mains parts of a cooling system are studied: the evaporator and the condenser. The study of the diphasic loop was done starting from digital simulations carried out under Matlab and Femlab.

Keywords: capillarity, condenser, evaporator, phase change, transfer of heat.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2012
571 Effect of Manual Compacting and Semi-Automatic Compacting on Behavior of Stabilized Earth Concrete

Authors: Sihem Chaibeddra, Fattoum Kharchi, Fahim Kahlouche, Youcef Benna

Abstract:

In the recent years, a considerable level of interest has been developed on the use of earth in construction, led by its rediscovery as an environmentally building material. The Stabilized Earth Concrete (SEC) is a good alternative to the cement concrete, thanks to its thermal and moisture regulating features. Many parameters affect the behavior of stabilized earth concrete. This article presents research results related to the influence of the compacting nature on some SEC properties namely: The mechanical behavior, capillary absorption, shrinkage and sustainability to water erosion, and this, basing on two types of compacting: Manual and semi-automatic.

Keywords: Behavior, compacting, manual, SEC, semi-automatic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2081
570 A Clock Skew Minimization Technique Considering Temperature Gradient

Authors: Se-Jin Ko, Deok-Min Kim, Seok-Yoon Kim

Abstract:

The trend of growing density on chips has increases not only the temperature in chips but also the gradient of the temperature depending on locations. In this paper, we propose the balanced skew tree generation technique for minimizing the clock skew that is affected by the temperature gradients on chips. We calculate the interconnect delay using Elmore delay equation, and find out the optimal balanced clock tree by modifying the clock trees generated through the Deferred Merge Embedding(DME) algorithm. The experimental results show that the distance variance of clock insertion points with and without considering the temperature gradient can be lowered below 54% and we confirm that the skew is remarkably decreased after applying the proposed technique.

Keywords: clock, clock-skew, temperature, thermal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1701
569 Application of Higher Order Splines for Boundary Value Problems

Authors: Pankaj Kumar Srivastava

Abstract:

Bringing forth a survey on recent higher order spline techniques for solving boundary value problems in ordinary differential equations. Here we have discussed the summary of the articles since 2000 till date based on higher order splines like Septic, Octic, Nonic, Tenth, Eleventh, Twelfth and Thirteenth Degree splines. Comparisons of methods with own critical comments as remarks have been included.

Keywords: Septic spline, Octic spline, Nonic spline, Tenth, Eleventh, Twelfth and Thirteenth Degree spline, parametric and non-parametric splines, thermal instability, astrophysics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2746
568 Lattice Boltzmann Simulation of the Carbonization of Wood Particle

Authors: Ahmed Mahmoudi, Imen Mejri, Mohamed A. Abbassi, Ahmed Omri

Abstract:

A numerical study based on the Lattice Boltzmann Method (LBM) is proposed to solve one, two and three dimensional heat and mass transfer for isothermal carbonization of thick wood particles. To check the validity of the proposed model, computational results have been compared with the published data and a good agreement is obtained. Then, the model is used to study the effect of reactor temperature and thermal boundary conditions, on the evolution of the local temperature and the mass distributions of the wood particle during carbonization

Keywords: Lattice Boltzmann Method, pyrolysis conduction, carbonization, Heat and mass transfer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2663
567 Critical Analysis of Different Actuation Techniques for a Micro Cantilever

Authors: B. G. Sheeparamatti, Prashant Hanasi, Vanita Abbigeri

Abstract:

The objective of this work is to carryout critical comparison of different actuation mechanisms like electrostatic, thermal, piezoelectric, and magnetic with reference to a micro cantilever. The relevant parameters like force generated, displacement are compared in actuation methods. With these results, helps in choosing the best actuation method for a particular application. In this study, Comsol/Multiphysics software is used. Modeling and simulation is done by considering the micro cantilever of same dimensions as an actuator using all the above mentioned actuation techniques. In addition to their small size, micro actuators consume very little power and are capable of accurate results. In this work, a comparison of actuation mechanisms is done to decide the efficient system in micro domain.

Keywords: Actuation techniques, microswitch, micro actuator, microsystems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2400
566 Characterization of an Almond Shell Composite Based on PHBH

Authors: J. Ivorra-Martinez, L. Quiles-Carrillo, J. Gomez-Caturla, T. Boronat, R. Balart

Abstract:

The utilization of almond crop by-products to obtain Poly(3-hydroxybutyrat-co-3-hydroxyhexanoat) (PHBH)-based composites was carried out by using an extrusion process followed by an injection to obtain test samples. To improve the properties of the resulting composite, the incorporation of Oligomer Lactic Acid (OLA 8) as a coupling agent and plasticizer was additionally considered. A characterization process was carried out by the measurement of mechanical properties, thermal properties, surface morphology, and water absorption ability. The use of the almond residue allows obtaining composites based on PHBH with a higher environmental interest and lower cost.

Keywords: Almond shell, PHBH, composite, polymer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 355
565 Gypsum Composites with CDW as Raw Material

Authors: R. Santos Jiménez, A. San-Antonio-González, M. Del Río Merino, M. González Cortina, C. Viñas Arrebola

Abstract:

In this study, the feasibility of incorporating ceramic waste from bricks (perforated brick and double hollow brick) and extruded polystyrene (XPS) waste, is analysed. Results show that it is possible to incorporate up to 25% of ceramic waste and 4% of XPS waste over the weight of gypsum in a gypsum matrix. Furthermore, with the addition of ceramic waste an 8% of surface hardness increase and a 25% of capillary water absorption reduction can be obtained. On the other hand, with the addition of XPS, a 26% reduction of density and a 37% improvement of thermal conductivity can be obtained. The obtained results are favorable to use these materials in order to produce prefabricated gypsum and also as material for interior cladding walls.

Keywords: CDW, waste materials, ceramic waste, XPS, construction materials, gypsum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2191
564 Entrepreneurs’ Perceptions of the Economic, Social and Physical Impacts of Tourism

Authors: Oktay Emir

Abstract:

The objective of this study is to determine how entrepreneurs perceive the economic, social and physical impacts of tourism. The study was conducted in the city of Afyonkarahisar, Turkey, which is rich in thermal tourism resources and investments. A survey was used as the data collection method, and the questionnaire was applied to 472 entrepreneurs. A simple random sampling method was used to identify the sample. Independent sampling t-tests and ANOVA tests were used to analyse the data obtained. Additionally, some statistically significant differences (p<0.05) were found based on the participants’ demographic characteristics regarding their opinions about the social, economic and physical impacts of tourism activities.

Keywords: Tourism, perception, entrepreneurship, entrepreneurs, structural equation modelling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1200
563 Experimental Investigation of the Effect of Hydrogen Manifold Injection on the Performance of Compression Ignition Engines

Authors: Haroun A.K. Shahad, Nabeel Abdul-Hadi

Abstract:

Experiments were carried out to evaluate the influence of the addition of hydrogen to the inlet air on the performance of a single cylinder direct injection diesel engine. Hydrogen was injected in the inlet manifold. The addition of hydrogen was done on energy replacement basis. It was found that the addition of hydrogen improves the combustion process due to superior combustion characteristics of hydrogen in comparison to conventional diesel fuels. It was also found that 10% energy replacement improves the engine thermal efficiency by about 40% and reduces the sfc by about 35% however the volumetric efficiency was reduced by about 35%.

Keywords: Hydrogen, Blended fuel, Manifold injection , Performance , Combustion

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2120
562 A Review on Concrete Structures in Fire

Authors: S. Iffat, B. Bose

Abstract:

Concrete as a construction material is versatile because it displays high degree of fire-resistance. Concrete’s inherent ability to combat one of the most devastating disaster that a structure can endure in its lifetime, can be attributed to its constituent materials which make it inert and have relatively poor thermal conductivity. However, concrete structures must be designed for fire effects. Structural components should be able to withstand dead and live loads without undergoing collapse. The properties of high-strength concrete must be weighed against concerns about its fire resistance and susceptibility to spalling at elevated temperatures. In this paper, the causes, effects and some remedy of deterioration in concrete due to fire hazard will be discussed. Some cost effective solutions to produce a fire resistant concrete will be conversed through this paper.

Keywords: Concrete, fire, spalling, temperature, compressive strength, density.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2471
561 Evaluation of The Energy Performance of Shading Devices based on Incremental Costs

Authors: Jian Yao, Chengwen Yan

Abstract:

Solar shading designs are important for reduction of building energy consumption and improvement of indoor thermal environment. This paper carried out a number of building simulations for evaluation of the energy performance of different shading devices based on incremental costs. The results show that movable shading devices lower incremental costs by up to 50% compared with fixed ones for the same building energy efficiency for residential buildings, and wing panel shadings are much more suitable in commercial buildings than baring screen ones and overhangs for commercial buildings.

Keywords: Solar shading, Incremental costs, Building energy consumption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1534
560 Preparation and Physical Characterization of Nanocomposites of PLA / Layered Silicates

Authors: I. Restrepo, S. Solorzano

Abstract:

This work was focused in to study the compatibility, dispersion and exfoliation of modified nanoclays in biodegradable polymers and evaluate its effect on the physical, mechanical and thermal properties on the biodegradable matrix used. The formulations have been developed with polylactic acid (PLA) and organically modified montmorillonite-type commercial nanoclays (Cloisite 15, Cloisite 20, and Cloisite 30B) in the presence of a plasticizer agent, specifically Polyethylene Glycol of low molecular weight. Different compositions were evaluated, in order to identify the influence of each nanoclayin the polymeric matrix. The mixtures were characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (DRX), transmission electron microscopy (TEM) and Tensile Test. These tests have allowed understanding the behavior of each of the mixtures developed.

Keywords: Biopolymers, Nanoclays, polylacticacid (PLA), polymer blends.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2668
559 Theoretical Review on Influencing Factors in the Design of Parabolic Trough Collector

Authors: S. N. Vijayan, S. Sendhil Kumar

Abstract:

Recent years have an upward trend in the research of renewable energy sector, due to the low availability of resources and huge consumption of conventional energies. Considerable renewable energy can be achieved from the available solar power with the utilization of collecting systems. Parabolic trough concentrating collector systems are mostly used to utilize maximum availability of solar power. This paper reviews the contributing factors for the overall performance of parabolic trough collectors. Its performance depends on the operating parameters such as the type of receiver and the collector material, medium of heat transfer, type of application and various climatic conditions.

Keywords: Solar radiation, parabolic trough collector, thermal analysis, efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 994
558 Factors Affecting Current Ratings for Underground and Air Cables

Authors: S. H. Alwan, J. Jasni, M. Z. A. Ab Kadir, N. Aziz

Abstract:

The aim of this paper is to present a parametric study to determine the major factors that influence the calculations of current rating for both air and underground cables. The current carrying capability of the power cables rely largely on the installation conditions and material properties. In this work, the influences on ampacity of conductor size, soil thermal resistivity and ambient soil temperature for underground installations are shown. The influences on the current-carrying capacity of solar heating (time of day effects and intensity of solar radiation), ambient air temperature and cable size for cables air are also presented. IEC and IEEE standards are taken as reference.

Keywords: Cable ampacity, underground cable, IEC standard, air cables.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6626
557 The Effect of Unburned Carbon on Coal Fly Ash toward its Adsorption Capacity for Methyl Violet

Authors: Widi Astuti, Agus Prasetya, Endang Tri Wahyuni, I Made Bendiyasa

Abstract:

Coal fly ash (CFA) generated by coal-based thermal power plants is mainly composed of quartz, mullite, and unburned carbon. In this study, the effect of unburned carbon on CFA toward its adsorption capacity was investigated. CFA with various carbon content was obtained by refluxing it with sulfuric acid having various concentration at various temperature and reflux time, by heating at 400-800°C, and by sieving into 100-mesh in particle size. To evaluate the effect of unburned carbon on CFA toward its adsorption capacity, adsorption of methyl violet solution with treated CFA was carried out. The research shows that unburned carbon leads to adsorption capacity decrease. The highest adsorption capacity of treated CFA was found 5.73 x 10-4mol.g-1.

Keywords: CFA, carbon, methyl violet, adsorption capacity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2151
556 The Effect of the Reaction Time on the Microwave Synthesis of Magnesium Borates from MgCl2.6H2O, MgO and H3BO3

Authors: E. Moroydor Derun, P. Gurses, M. Yildirim, A. S. Kipcak, T. Ibroska, S. Piskin

Abstract:

Due to their strong mechanical and thermal properties magnesium borates have a wide usage area such as ceramic industry, detergent production, friction reducing additive and grease production. In this study, microwave synthesis of magnesium borates from MgCl2.6H2O (Magnesium chloride hexahydrate), MgO (Magnesium oxide) and H3BO3 (Boric acid) for different reaction times is researched. X-ray Diffraction (XRD) and Fourier Transform Infrared (FT-IR) Spectroscopy are used to find out how the reaction time sways on the products. The superficial properties are investigated with Scanning Electron Microscopy (SEM). According to XRD analysis, the synthesized compounds are 00-041-1407 pdf coded Shabinite (Mg5(BO3)4Cl2(OH)5.4(H2O)) and 01-073-2158 pdf coded Karlite (Mg7(BO3)3(OH,Cl)5).

Keywords: Magnesium borate, microwave synthesis, XRD, SEM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2667
555 Hole Configuration Effect on Turbine Blade Cooling

Authors: A.Hasanpour, M. Farhadi, H.R. Ashorynejad

Abstract:

In this paper a numerical technique is used to predict the metal temperature of a gas turbine vane. The Rising combustor exit temperatures in gas turbine engines necessitate active cooling for the downstream turbine section to avoid thermal failure. This study is performed the solution of external flow, internal convection, and conduction within the metal vane. Also the trade-off between the cooling performances in four different hole shapes and configurations is performed. At first one of the commonly used cooling hole geometry is investigated; cylindrical holes and then two other configurations are simulated. The average temperature magnitude in mid-plan section of each configuration is obtained and finally the lower temperature value is selected such as best arrangement.

Keywords: Forced Convection, Gas Turbine Blade, Hole Configuration

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2574
554 Packaging and Interconnection Technologies of Power Devices, Challenges and Future Trends

Authors: Raed A. Amro

Abstract:

Standard packaging and interconnection technologies of power devices have difficulties meeting the increasing thermal demands of new application fields of power electronics devices. Main restrictions are the decreasing reliability of bond-wires and solder layers with increasing junction temperature. In the last few years intensive efforts have been invested in developing new packaging and interconnection solutions which may open a path to future application of power devices. In this paper, the main failure mechanisms of power devices are described and principle of new packaging and interconnection concepts and their power cycling reliability are presented.

Keywords: Power electronics devices, Reliability, Power Cycling, Low-temperature joining technique (LTJT)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2548
553 The Study of Fabricating the Field Emission Lamps with Carbon nano-Materials

Authors: K. J. Chung, C.C.Chiang, Y.M. Liu, N. W. Pu, M. D. Ger

Abstract:

Fabrication and efficiency enhancement of non-mercury, high efficiency and green field emission lamps using carbon nano-materials such as carbon nanotubes as cathode field emitters was studied. Phosphor was coated on the ITO glass or metal substrates as the anode. The luminescence efficiency enhancement was carried out by upgrading the uniform of the emitters, improving electron and thermal conductivity of the phosphor and the optimization of the design of different cathode/anode configurations. After evaluation of the aforementioned parameters, the luminescence efficiency of the field emission lamps was raised.

Keywords: Field emission lamps, carbon nano-materials, luminescence efficiency

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1878
552 Research and Development of Lightweight Repair Mortars with Focus on Their Resistance to High Temperatures

Authors: Tomáš Melichar, Jiří Bydžovský, Vít Černý

Abstract:

In this article our research focused on study of basic physical and mechanical parameters of polymer-cement repair materials is presented. Namely the influence of applied aggregates in combination with active admixture is specially considered. New formulas which were exposed in ambient with temperature even to 1000°C were suggested. Subsequently densities and strength characteristics including their changes were evaluated. Selected samples were analyzed using electron microscope. The positive influence of porous aggregates based on sintered ash was definitely demonstrated. Further it was found than in terms of thermal resistance the effective micro silica amount represents 5% to 7.5% of cement weight.

Keywords: Aggregate, ash, high, lightweight, microsilica, mortar, polymer-cement, repair, temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1963
551 Modeling of a Second Order Non-Ideal Sigma-Delta Modulator

Authors: Abdelghani Dendouga, Nour-Eddine Bouguechal, Souhil Kouda, Samir Barra

Abstract:

A behavioral model of a second order switchedcapacitor Sigma-Delta modulator is presented. The purpose of this work is the presentation of a behavioral model of a second order switched capacitor ΣΔ modulator considering (Error due to Clock Jitter, Thermal noise Amplifier Noise, Amplifier Slew-Rate, Non linearity of amplifiers, Gain error, Charge Injection, Clock Feedthrough, and Nonlinear on-resistance). A comparison between the use of MOS switches and the use transmission gate switches use is analyzed.

Keywords: Charge injection, clock feed through, Sigma Deltamodulators, Sigma Delta non-idealities, switched capacitor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2988
550 Radiation Effects and Defects in InAs, InP Compounds and Their Solid Solutions InPxAs1-x

Authors: N. Kekelidze, B. Kvirkvelia, E. Khutsishvili, T. Qamushadze, D. Kekelidze, R. Kobaidze, Z. Chubinishvili, N. Qobulashvili, G. Kekelidze

Abstract:

On the basis of InAs, InP and their InPxAs1-x solid solutions, the technologies were developed and materials were created where the electron concentration and optical and thermoelectric properties do not change under the irradiation with Ф = 2∙1018 n/cm2 fluences of fast neutrons high-energy electrons (50 MeV, Ф = 6·1017 e/cm2) and 3 MeV electrons with fluence Ф = 3∙1018 e/cm2. The problem of obtaining such material has been solved, in which under hard irradiation the mobility of the electrons does not decrease, but increases. This material is characterized by high thermal stability up to T = 700 °C. The complex process of defects formation has been analyzed and shown that, despite of hard irradiation, the essential properties of investigated materials are mainly determined by point type defects.

Keywords: InAs, InP, solid solutions, irradiation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1003
549 Numerical and Experimental Studies of Joule Heating Effects around Crack and Notch Tips

Authors: Thomas Jin-Chee Liu, Ji-Fu Tseng, Yu-Shen Chen

Abstract:

This paper investigates the thermo-electric effects around the crack and notch tips under the electric current load. The research methods include the finite element analysis and thermal imaging experiment. The finite element solutions show that the electric current density field concentrates at the crack tip. Due to the Joule heating, this electric concentration causes the hot spot at the tip zone. From numerical and experimental results, this hot spot is identified. The temperature of the hot spot is affected by the electric load, operation time and geometry of the sample.

Keywords: Thermo-electric, Joule heating, crack tip, notch tip.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1441
548 Numerical Analysis for the Performance of a Thermoelectric Generator According to Engine Exhaust Gas Thermal Conditions

Authors: Jinkyu Park, Yungjin Kim, Byungdeok In, Sangki Park, Kihyung Lee

Abstract:

Internal combustion engines rejects 30-40% of the energy supplied by fuel to the environment through exhaust gas. thus, there is a possibility for further significant improvement of efficiency with the utilization of exhaust gas energy and its conversion to mechanical energy or electrical energy. The Thermo-Electric Generator (TEG) will be located in the exhaust system and will make use of an energy flow between the warmer exhaust gas and the external environment. Predict to th optimum position of temperature distribution and the performance of TEG through numerical analysis. The experimental results obtained show that the power output significantly increases with the temperature difference between cold and hot sides of a thermoelectric generator.

Keywords: Thermoelectric generator, Numerical analysis, Seebeck coefficient, Figure of merit

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2253
547 Boundary Effect on the Onset of Marangoni Convection with Internal Heat Generation

Authors: Norihan Md Arifin, Norfifah Bachok

Abstract:

The onset of Marangoni convection in a horizontal fluid layer with internal heat generation overlying a solid layer heated from below is studied. The upper free surface of a fluid is nondeformable and the bottom boundary are rigid and no-slip. The resulting eigenvalue problem is solved exactly. The critical values of the Marangoni numbers for the onset of Marangoni convection are calculated and the latter is found to be critically dependent on the internal heating, depth ratio and conductivity ratio. The effects of the thermal conductivity and the thickness of the solid plate on the onset of convective instability with internal heating are studied in detail.

Keywords: Linear stability, Marangoni convection, Internal Heatgeneration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1450