Search results for: shrinkage functions
315 On the Efficient Implementation of a Serial and Parallel Decomposition Algorithm for Fast Support Vector Machine Training Including a Multi-Parameter Kernel
Authors: Tatjana Eitrich, Bruno Lang
Abstract:
This work deals with aspects of support vector machine learning for large-scale data mining tasks. Based on a decomposition algorithm for support vector machine training that can be run in serial as well as shared memory parallel mode we introduce a transformation of the training data that allows for the usage of an expensive generalized kernel without additional costs. We present experiments for the Gaussian kernel, but usage of other kernel functions is possible, too. In order to further speed up the decomposition algorithm we analyze the critical problem of working set selection for large training data sets. In addition, we analyze the influence of the working set sizes onto the scalability of the parallel decomposition scheme. Our tests and conclusions led to several modifications of the algorithm and the improvement of overall support vector machine learning performance. Our method allows for using extensive parameter search methods to optimize classification accuracy.
Keywords: Support Vector Machine Training, Multi-ParameterKernels, Shared Memory Parallel Computing, Large Data
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1443314 Periodic Control of a Wastewater Treatment Process to Improve Productivity
Authors: Muhammad Rizwan Azhar, Emadadeen Ali
Abstract:
In this paper, periodic force operation of a wastewater treatment process has been studied for the improved process performance. A previously developed dynamic model for the process is used to conduct the performance analysis. The static version of the model was utilized first to determine the optimal productivity conditions for the process. Then, feed flow rate in terms of dilution rate i.e. (D) is transformed into sinusoidal function. Nonlinear model predictive control algorithm is utilized to regulate the amplitude and period of the sinusoidal function. The parameters of the feed cyclic functions are determined which resulted in improved productivity than the optimal productivity under steady state conditions. The improvement in productivity is found to be marginal and is satisfactory in substrate conversion compared to that of the optimal condition and to the steady state condition, which corresponds to the average value of the periodic function. Successful results were also obtained in the presence of modeling errors and external disturbances.
Keywords: Dilution rate, nonlinear model predictive control, sinusoidal function, wastewater treatment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2209313 Concept, Design and Implementation of Power System Component Simulator Based on Thyristor Controlled Transformer and Power Converter
Authors: B. Kędra, R. Małkowski
Abstract:
This paper presents information on Power System Component Simulator – a device designed for LINTE^2 laboratory owned by Gdansk University of Technology in Poland. In this paper, we first provide an introductory information on the Power System Component Simulator and its capabilities. Then, the concept of the unit is presented. Requirements for the unit are described as well as proposed and introduced functions are listed. Implementation details are given. Hardware structure is presented and described. Information about used communication interface, data maintenance and storage solution, as well as used Simulink real-time features are presented. List and description of all measurements is provided. Potential of laboratory setup modifications is evaluated. Lastly, the results of experiments performed using Power System Component Simulator are presented. This includes simulation of under frequency load shedding, frequency and voltage dependent characteristics of groups of load units, time characteristics of group of different load units in a chosen area.
Keywords: Power converter, Simulink real-time, MATLAB, load, tap controller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 795312 Neural Network Control of a Biped Robot Model with Composite Adaptation Low
Authors: Ahmad Forouzantabar
Abstract:
this paper presents a novel neural network controller with composite adaptation low to improve the trajectory tracking problems of biped robots comparing with classical controller. The biped model has 5_link and 6 degrees of freedom and actuated by Plated Pneumatic Artificial Muscle, which have a very high power to weight ratio and it has large stoke compared to similar actuators. The proposed controller employ a stable neural network in to approximate unknown nonlinear functions in the robot dynamics, thereby overcoming some limitation of conventional controllers such as PD or adaptive controllers and guarantee good performance. This NN controller significantly improve the accuracy requirements by retraining the basic PD/PID loop, but adding an inner adaptive loop that allows the controller to learn unknown parameters such as friction coefficient, therefore improving tracking accuracy. Simulation results plus graphical simulation in virtual reality show that NN controller tracking performance is considerably better than PD controller tracking performance.Keywords: Biped robot, Neural network, Plated Pneumatic Artificial Muscle, Composite adaptation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1846311 An Information Theoretic Approach to Rescoring Peptides Produced by De Novo Peptide Sequencing
Authors: John R. Rose, James P. Cleveland, Alvin Fox
Abstract:
Tandem mass spectrometry (MS/MS) is the engine driving high-throughput protein identification. Protein mixtures possibly representing thousands of proteins from multiple species are treated with proteolytic enzymes, cutting the proteins into smaller peptides that are then analyzed generating MS/MS spectra. The task of determining the identity of the peptide from its spectrum is currently the weak point in the process. Current approaches to de novo sequencing are able to compute candidate peptides efficiently. The problem lies in the limitations of current scoring functions. In this paper we introduce the concept of proteome signature. By examining proteins and compiling proteome signatures (amino acid usage) it is possible to characterize likely combinations of amino acids and better distinguish between candidate peptides. Our results strongly support the hypothesis that a scoring function that considers amino acid usage patterns is better able to distinguish between candidate peptides. This in turn leads to higher accuracy in peptide prediction.Keywords: Tandem mass spectrometry, proteomics, scoring, peptide, de novo, mutual information
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1728310 A Numerical Description of a Fibre Reinforced Concrete Using a Genetic Algorithm
Authors: Henrik L. Funke, Lars Ulke-Winter, Sandra Gelbrich, Lothar Kroll
Abstract:
This work reports about an approach for an automatic adaptation of concrete formulations based on genetic algorithms (GA) to optimize a wide range of different fit-functions. In order to achieve the goal, a method was developed which provides a numerical description of a fibre reinforced concrete (FRC) mixture regarding the production technology and the property spectrum of the concrete. In a first step, the FRC mixture with seven fixed components was characterized by varying amounts of the components. For that purpose, ten concrete mixtures were prepared and tested. The testing procedure comprised flow spread, compressive and bending tensile strength. The analysis and approximation of the determined data was carried out by GAs. The aim was to obtain a closed mathematical expression which best describes the given seven-point cloud of FRC by applying a Gene Expression Programming with Free Coefficients (GEP-FC) strategy. The seven-parametric FRC-mixtures model which is generated according to this method correlated well with the measured data. The developed procedure can be used for concrete mixtures finding closed mathematical expressions, which are based on the measured data.
Keywords: Concrete design, fibre reinforced concrete, genetic algorithms, GEP-FC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 990309 New Models of Financial Management Put into Effect in Dental Practices in Romania –Empirical Study
Authors: Dutescu Adriana, Amariei Corneliu, Sahlian Daniela, Stanila Aurelian, Stanila Oana
Abstract:
20 years of dentistry was a period of transition from communist to market economy but Romanian doctors have insufficient management knowledge. Recently, the need for modern management has increased due to technologies and superior materials appearance, as patient-s demands. Research goal is to increase efficiency by evaluating dental medical office cost categories in real pricing procedures. Empirical research is based on guided study that includes information about the association between categories of cost perception and therapeutic procedures commonly used in dental offices. Due to the obtained results to identify all the labours that make up a settled procedure costs were determined for each procedure. Financial evaluation software was created with the main functions: introducing and maintaining patient records, treatment and appointments made, procedures cost and monitoring office productivity. We believe that the study results can significantly improve the financial management of dental offices, increasing the effectiveness and quality of services.Keywords: costs, financial methods, management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1460308 A Novel Modified Adaptive Fuzzy Inference Engine and Its Application to Pattern Classification
Authors: J. Hossen, A. Rahman, K. Samsudin, F. Rokhani, S. Sayeed, R. Hasan
Abstract:
The Neuro-Fuzzy hybridization scheme has become of research interest in pattern classification over the past decade. The present paper proposes a novel Modified Adaptive Fuzzy Inference Engine (MAFIE) for pattern classification. A modified Apriori algorithm technique is utilized to reduce a minimal set of decision rules based on input output data sets. A TSK type fuzzy inference system is constructed by the automatic generation of membership functions and rules by the fuzzy c-means clustering and Apriori algorithm technique, respectively. The generated adaptive fuzzy inference engine is adjusted by the least-squares fit and a conjugate gradient descent algorithm towards better performance with a minimal set of rules. The proposed MAFIE is able to reduce the number of rules which increases exponentially when more input variables are involved. The performance of the proposed MAFIE is compared with other existing applications of pattern classification schemes using Fisher-s Iris and Wisconsin breast cancer data sets and shown to be very competitive.Keywords: Apriori algorithm, Fuzzy C-means, MAFIE, TSK
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1931307 Assesing Extension of Meeting System Performance in Information Technology in Defense and Aerospace Project
Authors: Hakan Gürkan, Ahmet Denker
Abstract:
The Ministry of Defense (MoD) spends hundreds of millions of dollars on software to support its infrastructure, operate its weapons and provide command, control, communications, computing, intelligence, surveillance, and reconnaissance (C4ISR) functions. These and other all new advanced systems have a common critical component is information technology. Defense and Aerospace environment is continuously striving to keep up with increasingly sophisticated Information Technology (IT) in order to remain effective in today-s dynamic and unpredictable threat environment. This makes it one of the largest and fastest growing expenses of Defense. Hundreds of millions of dollars spent a year on IT projects. But, too many of those millions are wasted on costly mistakes. Systems that do not work properly, new components that are not compatible with old once, trendily new applications that do not really satisfy defense needs or lost though poorly managed contracts. This paper investigates and compiles the effective strategies that aim to end exasperation with low returns and high cost of Information Technology Acquisition for defense; it tries to show how to maximize value while reducing time and expenditure.Keywords: Iterative Process, Acquisition Management, Project management, Software Economics, Requirement analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1243306 Effects of Silicon Oxide Filler Material and Fibre Orientation on Erosive Wear of GF/EP Composites
Authors: M. Bagci, H. Imrek, Omari M. Khalfan
Abstract:
Materials added to the matrix help improving operating properties of a composite. This experimental study has targeted to investigate this aim where Silicon Oxide particles were added to glass fibre and epoxy resin at an amount of 15% to the main material to obtain a sort of new composite material. Erosive wear behavior of epoxy-resin dipped composite materials reinforced with glass fibre and Silicon Oxide under three different impingement angles (30°, 60° and 90°), three different impact velocities (23, 34 and 53 m/s), two different angular Aluminum abrasive particle sizes (approximately 200 and 400 μm) and the fibre orientation of 45° (45/-45) were investigated. In the test results, erosion rates were obtained as functions of impingement angles, impact velocities, particle sizes and fibre orientation. Moreover, materials with addition of Silicon Oxide filler material exhibited lower wear as compared to neat materials with no added filler material. In addition, SEM views showing worn out surfaces of the test specimens were scrutinized.
Keywords: Erosive wear, fibre orientation, GF/EP, silicon oxide.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2562305 Risk Assessment in Durations and Costs for Construction of Industrial Facilities in Egypt Using Equations and Computer
Authors: M. Kamal Elbokl, Negadi Kheira
Abstract:
Risk Evaluation is an important step in protecting your workers and your business, as well as complying with the law. It helps you focus on the risks that really matter in your workplace – the ones with the potential to cause real harm. We are in this paper introduce basics of risk assessment then we mention some of ways to risk evaluation by computer especially Monte Carlo simulation and Microsoft project.
We use Program Evaluation and Review Technique (PERT) to deal with Risks in Industrial Facilities in Evaluation and Assessment for this risk. Using PERT Technique in Microsoft Project by the PERT toolbar and using PERTMASTER Program with Primavera Program we evaluate many hazards and make calculations for that by mathematical equation to make right decisions. We define and calculate risk factor and risk severity to ranking the type of the risk then dealing with it using in that many ways like probability computation, curves, and tables. By introducing variables in the equation of functions in computer programs we calculate the risk in the time and the cost in general case and then mention some examples in industrial facilities field.
Keywords: Risk, Industrial Facilities, PERT, Monte Carlo Simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1953304 Codebook Generation for Vector Quantization on Orthogonal Polynomials based Transform Coding
Authors: R. Krishnamoorthi, N. Kannan
Abstract:
In this paper, a new algorithm for generating codebook is proposed for vector quantization (VQ) in image coding. The significant features of the training image vectors are extracted by using the proposed Orthogonal Polynomials based transformation. We propose to generate the codebook by partitioning these feature vectors into a binary tree. Each feature vector at a non-terminal node of the binary tree is directed to one of the two descendants by comparing a single feature associated with that node to a threshold. The binary tree codebook is used for encoding and decoding the feature vectors. In the decoding process the feature vectors are subjected to inverse transformation with the help of basis functions of the proposed Orthogonal Polynomials based transformation to get back the approximated input image training vectors. The results of the proposed coding are compared with the VQ using Discrete Cosine Transform (DCT) and Pairwise Nearest Neighbor (PNN) algorithm. The new algorithm results in a considerable reduction in computation time and provides better reconstructed picture quality.
Keywords: Orthogonal Polynomials, Image Coding, Vector Quantization, TSVQ, Binary Tree Classifier
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2149303 An Extension of the Kratzel Function and Associated Inverse Gaussian Probability Distribution Occurring in Reliability Theory
Authors: R. K. Saxena, Ravi Saxena
Abstract:
In view of their importance and usefulness in reliability theory and probability distributions, several generalizations of the inverse Gaussian distribution and the Krtzel function are investigated in recent years. This has motivated the authors to introduce and study a new generalization of the inverse Gaussian distribution and the Krtzel function associated with a product of a Bessel function of the third kind )(zKQ and a Z - Fox-Wright generalized hyper geometric function introduced in this paper. The introduced function turns out to be a unified gamma-type function. Its incomplete forms are also discussed. Several properties of this gamma-type function are obtained. By means of this generalized function, we introduce a generalization of inverse Gaussian distribution, which is useful in reliability analysis, diffusion processes, and radio techniques etc. The inverse Gaussian distribution thus introduced also provides a generalization of the Krtzel function. Some basic statistical functions associated with this probability density function, such as moments, the Mellin transform, the moment generating function, the hazard rate function, and the mean residue life function are also obtained.KeywordsFox-Wright function, Inverse Gaussian distribution, Krtzel function & Bessel function of the third kind.
Keywords: Fox-Wright function, Inverse Gaussian distribution, Krtzel function & Bessel function of the third kind.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1721302 A Neuro Adaptive Control Strategy for Movable Power Source of Proton Exchange Membrane Fuel Cell Using Wavelets
Authors: M. Sedighizadeh, A. Rezazadeh
Abstract:
Movable power sources of proton exchange membrane fuel cells (PEMFC) are the important research done in the current fuel cells (FC) field. The PEMFC system control influences the cell performance greatly and it is a control system for industrial complex problems, due to the imprecision, uncertainty and partial truth and intrinsic nonlinear characteristics of PEMFCs. In this paper an adaptive PI control strategy using neural network adaptive Morlet wavelet for control is proposed. It is based on a single layer feed forward neural networks with hidden nodes of adaptive morlet wavelet functions controller and an infinite impulse response (IIR) recurrent structure. The IIR is combined by cascading to the network to provide double local structure resulting in improving speed of learning. The proposed method is applied to a typical 1 KW PEMFC system and the results show the proposed method has more accuracy against to MLP (Multi Layer Perceptron) method.Keywords: Adaptive Control, Morlet Wavelets, PEMFC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1867301 Studies on Affecting Factors of Wheel Slip and Odometry Error on Real-Time of Wheeled Mobile Robots: A Review
Authors: D. Vidhyaprakash, A. Elango
Abstract:
In real-time applications, wheeled mobile robots are increasingly used and operated in extreme and diverse conditions traversing challenging surfaces such as a pitted, uneven terrain, natural flat, smooth terrain, as well as wet and dry surfaces. In order to accomplish such tasks, it is critical that the motion control functions without wheel slip and odometry error during the navigation of the two-wheeled mobile robot (WMR). Wheel slip and odometry error are disrupting factors on overall WMR performance in the form of deviation from desired trajectory, navigation, travel time and budgeted energy consumption. The wheeled mobile robot’s ability to operate at peak performance on various work surfaces without wheel slippage and odometry error is directly connected to four main parameters, which are the range of payload distribution, speed, wheel diameter, and wheel width. This paper analyses the effects of those parameters on overall performance and is concerned with determining the ideal range of parameters for optimum performance.
Keywords: Wheeled mobile robot (WMR), terrain, wheel slippage, odometry error, navigation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1251300 A New Hybrid Optimization Method for Optimum Distribution Capacitor Planning
Authors: A. R. Seifi
Abstract:
This work presents a new algorithm based on a combination of fuzzy (FUZ), Dynamic Programming (DP), and Genetic Algorithm (GA) approach for capacitor allocation in distribution feeders. The problem formulation considers two distinct objectives related to total cost of power loss and total cost of capacitors including the purchase and installation costs. The novel formulation is a multi-objective and non-differentiable optimization problem. The proposed method of this article uses fuzzy reasoning for sitting of capacitors in radial distribution feeders, DP for sizing and finally GA for finding the optimum shape of membership functions which are used in fuzzy reasoning stage. The proposed method has been implemented in a software package and its effectiveness has been verified through a 9-bus radial distribution feeder for the sake of conclusions supports. A comparison has been done among the proposed method of this paper and similar methods in other research works that shows the effectiveness of the proposed method of this paper for solving optimum capacitor planning problem.
Keywords: Capacitor planning, Fuzzy logic method, Genetic Algorithm, Dynamic programming, Radial Distribution feeder
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1610299 Rehabilitation Robot in Primary Walking Pattern Training for SCI Patient at Home
Authors: Taisuke Sakaki, Toshihiko Shimokawa, Nobuhiro Ushimi, Koji Murakami, Yong-Kwun Lee, Kazuhiro Tsuruta, Kanta Aoki, Kaoru Fujiie, Ryuji Katamoto, Atsushi Sugyo
Abstract:
Recently attention has been focused on incomplete spinal cord injuries (SCI) to the central spine caused by pressure on parts of the white matter conduction pathway, such as the pyramidal tract. In this paper, we focus on a training robot designed to assist with primary walking-pattern training. The target patient for this training robot is relearning the basic functions of the usual walking pattern; it is meant especially for those with incomplete-type SCI to the central spine, who are capable of standing by themselves but not of performing walking motions. From the perspective of human engineering, we monitored the operator’s actions to the robot and investigated the movement of joints of the lower extremities, the circumference of the lower extremities, and exercise intensity with the machine. The concept of the device was to provide mild training without any sudden changes in heart rate or blood pressure, which will be particularly useful for the elderly and disabled. The mechanism of the robot is modified to be simple and lightweight with the expectation that it will be used at home.Keywords: Training, rehabilitation, SCI patient, welfare, robot.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2037298 Optimal Economic Restructuring Aimed at an Increase in GDP Constrained by a Decrease in Energy Consumption and CO2 Emissions
Authors: Alexander Y. Vaninsky
Abstract:
The objective of this paper is finding the way of economic restructuring - that is, change in the shares of sectoral gross outputs - resulting in the maximum possible increase in the gross domestic product (GDP) combined with decreases in energy consumption and CO2 emissions. It uses an input-output model for the GDP and factorial models for the energy consumption and CO2 emissions to determine the projection of the gradient of GDP, and the antigradients of the energy consumption and CO2 emissions, respectively, on a subspace formed by the structure-related variables. Since the gradient (antigradient) provides a direction of the steepest increase (decrease) of the objective function, and their projections retain this property for the functions' limitation to the subspace, each of the three directional vectors solves a particular problem of optimal structural change. In the next step, a type of factor analysis is applied to find a convex combination of the projected gradient and antigradients having maximal possible positive correlation with each of the three. This convex combination provides the desired direction of the structural change. The national economy of the United States is used as an example of applications.
Keywords: Economic restructuring, Input-Output analysis, Divisia index, Factorial decomposition, E3 models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1608297 Seismic Fragility Functions of RC Moment Frames Using Incremental Dynamic Analyses
Authors: Seung-Won Lee, Jong Soo Lee, Won-Jik Yang, Hyung-Joon Kim
Abstract:
A capacity spectrum method (CSM), one of methodologies to evaluate seismic fragilities of building structures, has been long recognized as the most convenient method, even if it contains several limitations to predict the seismic response of structures of interest. This paper proposes the procedure to estimate seismic fragility curves using an incremental dynamic analysis (IDA) rather than the method adopting a CSM. To achieve the research purpose, this study compares the seismic fragility curves of a 5-story reinforced concrete (RC) moment frame obtained from both methods; an IDA method and aCSM. Both seismic fragility curves are similar in slight and moderate damage states whereas the fragility curve obtained from the IDA method presents less variation (or uncertainties) in extensive and complete damage states. This is due to the fact that the IDA method can properly capture the structural response beyond yielding rather than the CSM and can directly calculate higher mode effects. From these observations, the CSM could overestimate seismic vulnerabilities of the studied structure in extensive or complete damage states.
Keywords: Seismic fragility curve, Incremental dynamic analysis, Capacity spectrum method, Reinforced concrete moment frame.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3050296 Aerodynamics and Optimization of Airfoil Under Ground Effect
Authors: Kyoungwoo Park, Byeong Sam Kim, Juhee Lee, Kwang Soo Kim
Abstract:
The Prediction of aerodynamic characteristics and shape optimization of airfoil under the ground effect have been carried out by integration of computational fluid dynamics and the multiobjective Pareto-based genetic algorithm. The main flow characteristics around an airfoil of WIG craft are lift force, lift-to-drag ratio and static height stability (H.S). However, they show a strong trade-off phenomenon so that it is not easy to satisfy the design requirements simultaneously. This difficulty can be resolved by the optimal design. The above mentioned three characteristics are chosen as the objective functions and NACA0015 airfoil is considered as a baseline model in the present study. The profile of airfoil is constructed by Bezier curves with fourteen control points and these control points are adopted as the design variables. For multi-objective optimization problems, the optimal solutions are not unique but a set of non-dominated optima and they are called Pareto frontiers or Pareto sets. As the results of optimization, forty numbers of non- dominated Pareto optima can be obtained at thirty evolutions.Keywords: Aerodynamics, Shape optimization, Airfoil on WIGcraft, Genetic algorithm, Computational fluid dynamics (CFD).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3231295 Local Spectrum Feature Extraction for Face Recognition
Authors: Muhammad Imran Ahmad, Ruzelita Ngadiran, Mohd Nazrin Md Isa, Nor Ashidi Mat Isa, Mohd Zaizu Ilyas, Raja Abdullah Raja Ahmad, Said Amirul Anwar Ab Hamid, Muzammil Jusoh
Abstract:
This paper presents two techniques, local feature extraction using image spectrum and low frequency spectrum modelling using GMM to capture the underlying statistical information to improve the performance of face recognition system. Local spectrum features are extracted using overlap sub block window that are mapped on the face image. For each of this block, spatial domain is transformed to frequency domain using DFT. A low frequency coefficient is preserved by discarding high frequency coefficients by applying rectangular mask on the spectrum of the facial image. Low frequency information is non- Gaussian in the feature space and by using combination of several Gaussian functions that has different statistical properties, the best feature representation can be modelled using probability density function. The recognition process is performed using maximum likelihood value computed using pre-calculated GMM components. The method is tested using FERET datasets and is able to achieved 92% recognition rates.
Keywords: Local features modelling, face recognition system, Gaussian mixture models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2253294 Investigation of SSR Characteristics of SSSC With GA Based Voltage Controller
Authors: R. Thirumalaivasan, M.Janaki, Nagesh Prabhu
Abstract:
In this paper, investigation of subsynchronous resonance (SSR) characteristics of a hybrid series compensated system and the design of voltage controller for three level 24-pulse Voltage Source Converter based Static Synchronous Series Compensator (SSSC) is presented. Hybrid compensation consists of series fixed capacitor and SSSC which is a active series FACTS controller. The design of voltage controller for SSSC is based on damping torque analysis, and Genetic Algorithm (GA) is adopted for tuning the controller parameters. The SSR Characteristics of SSSC with constant reactive voltage control modes has been investigated. The results show that the constant reactive voltage control of SSSC has the effect of reducing the electrical resonance frequency, which detunes the SSR.The analysis of SSR with SSSC is carried out based on frequency domain method, eigenvalue analysis and transient simulation. While the eigenvalue and damping torque analysis are based on D-Q model of SSSC, the transient simulation considers both D-Q and detailed three phase nonlinear system model using switching functions.Keywords: FACTS, SSR, SSSC, damping torque, GA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1734293 Speech Recognition Using Scaly Neural Networks
Authors: Akram M. Othman, May H. Riadh
Abstract:
This research work is aimed at speech recognition using scaly neural networks. A small vocabulary of 11 words were established first, these words are “word, file, open, print, exit, edit, cut, copy, paste, doc1, doc2". These chosen words involved with executing some computer functions such as opening a file, print certain text document, cutting, copying, pasting, editing and exit. It introduced to the computer then subjected to feature extraction process using LPC (linear prediction coefficients). These features are used as input to an artificial neural network in speaker dependent mode. Half of the words are used for training the artificial neural network and the other half are used for testing the system; those are used for information retrieval. The system components are consist of three parts, speech processing and feature extraction, training and testing by using neural networks and information retrieval. The retrieve process proved to be 79.5-88% successful, which is quite acceptable, considering the variation to surrounding, state of the person, and the microphone type.Keywords: Feature extraction, Liner prediction coefficients, neural network, Speech Recognition, Scaly ANN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1737292 3DARModeler: a 3D Modeling System in Augmented Reality Environment
Authors: Trien V. Do, Jong-Weon Lee
Abstract:
This paper describes a 3D modeling system in Augmented Reality environment, named 3DARModeler. It can be considered a simple version of 3D Studio Max with necessary functions for a modeling system such as creating objects, applying texture, adding animation, estimating real light sources and casting shadows. The 3DARModeler introduces convenient, and effective human-computer interaction to build 3D models by combining both the traditional input method (mouse/keyboard) and the tangible input method (markers). It has the ability to align a new virtual object with the existing parts of a model. The 3DARModeler targets nontechnical users. As such, they do not need much knowledge of computer graphics and modeling techniques. All they have to do is select basic objects, customize their attributes, and put them together to build a 3D model in a simple and intuitive way as if they were doing in the real world. Using the hierarchical modeling technique, the users are able to group several basic objects to manage them as a unified, complex object. The system can also connect with other 3D systems by importing and exporting VRML/3Ds Max files. A module of speech recognition is included in the system to provide flexible user interfaces.Keywords: 3D Modeling, Augmented Reality, GeometricModeling, Virtual Reality
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2644291 Theory of Mind and Its Brain Distribution in Patients with Temporal Lobe Epilepsy
Authors: Wei-Han Wang, Hsiang-Yu Yu, Mau-Sun Hua
Abstract:
Theory of Mind (ToM) refers to the ability to infer another’s mental state. With appropriate ToM, one can behave well in social interactions. A growing body of evidence has demonstrated that patients with temporal lobe epilepsy (TLE) may damage ToM by affecting on regions of the underlying neural network of ToM. However, the question of whether there is cerebral laterality for ToM functions remains open. This study aimed to examine whether there is cerebral lateralization for ToM abilities in TLE patients. Sixty-seven adult TLE patients and 30 matched healthy controls (HC) were recruited. Patients were classified into right (RTLE), left (LTLE), and bilateral (BTLE) TLE groups on the basis of a consensus panel review of their seizure semiology, EEG findings, and brain imaging results. All participants completed an intellectual test and four tasks measuring basic and advanced ToM. The results showed that, on all ToM tasks, (1) each patient group performed worse than HC; (2) there were no significant differences between LTLE and RTLE groups; and (3) the BTLE group performed the worst. It appears that the neural network responsible for ToM is distributed evenly between the cerebral hemispheres.Keywords: Cerebral lateralization, social cognition, temporal lobe epilepsy, theory of mind.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2039290 A Study of Panel Logit Model and Adaptive Neuro-Fuzzy Inference System in the Prediction of Financial Distress Periods
Authors: Ε. Giovanis
Abstract:
The purpose of this paper is to present two different approaches of financial distress pre-warning models appropriate for risk supervisors, investors and policy makers. We examine a sample of the financial institutions and electronic companies of Taiwan Security Exchange (TSE) market from 2002 through 2008. We present a binary logistic regression with paned data analysis. With the pooled binary logistic regression we build a model including more variables in the regression than with random effects, while the in-sample and out-sample forecasting performance is higher in random effects estimation than in pooled regression. On the other hand we estimate an Adaptive Neuro-Fuzzy Inference System (ANFIS) with Gaussian and Generalized Bell (Gbell) functions and we find that ANFIS outperforms significant Logit regressions in both in-sample and out-of-sample periods, indicating that ANFIS is a more appropriate tool for financial risk managers and for the economic policy makers in central banks and national statistical services.Keywords: ANFIS, Binary logistic regression, Financialdistress, Panel data
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2342289 CNet Module Design of IMCS
Authors: Youkyung Park, SeungYup Kang, SungHo Kim, SimKyun Yook
Abstract:
IMCS is Integrated Monitoring and Control System for thermal power plant. This system consists of mainly two parts; controllers and OIS (Operator Interface System). These two parts are connected by Ethernet-based communication. The controller side of communication is managed by CNet module and OIS side is managed by data server of OIS. CNet module sends the data of controller to data server and receives commend data from data server. To minimizes or balance the load of data server, this module buffers data created by controller at every cycle and send buffered data to data server on request of data server. For multiple data server, this module manages the connection line with each data server and response for each request from multiple data server. CNet module is included in each controller of redundant system. When controller fail-over happens on redundant system, this module can provide data of controller to data sever without loss. This paper presents three main features – separation of get task, usage of ring buffer and monitoring communication status –of CNet module to carry out these functions.Keywords: Ethernet communication, DCS, power plant, ring buffer, data integrity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1563288 An Improved Performance of the SRM Drives Using Z-Source Inverter with the Simplified Fuzzy Logic Rule Base
Authors: M. Hari Prabhu
Abstract:
This paper is based on the performance of the Switched Reluctance Motor (SRM) drives using Z-Source Inverter with the simplified rule base of Fuzzy Logic Controller (FLC) with the output scaling factor (SF) self-tuning mechanism are proposed. The aim of this paper is to simplify the program complexity of the controller by reducing the number of fuzzy sets of the membership functions (MFs) without losing the system performance and stability via the adjustable controller gain. ZSI exhibits both voltage-buck and voltage-boost capability. It reduces line harmonics, improves reliability, and extends output voltage range. The output SF of the controller can be tuned continuously by a gain updating factor, whose value is derived from fuzzy logic, with the plant error and error change ratio as input variables. Then the results, carried out on a four-phase 6/8 pole SRM based on the dSPACEDS1104 platform, to show the feasibility and effectiveness of the devised methods and also performance of the proposed controllers will be compared with conventional counterpart.
Keywords: Fuzzy logic controller, scaling factor (SF), switched reluctance motor (SRM), variable-speed drives.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2428287 Extracellular Protein Secreted by Bacillus subtilis ATCC21332 in the Presence of Streptomycin Sulfate
Authors: Hanina M. N., Hairul Shahril M., Ismatul Nurul Asyikin I., Abdul Jalil A. K., Salina M. R., Maryam M. R., Rosfarizan M.
Abstract:
The extracellular proteins secreted by bacteria may be increased in stressful surroundings, such as in the presence of antibiotics. It appears that many antibiotics, when used at low concentrations, have in common the ability to activate or repress gene transcription, which is distinct from their inhibitory effect. There have been comparatively few studies on the potential of antibiotics as a specific chemical signal that can trigger a variety of biological functions. Therefore, this study was carried out to determine the effect of Streptomycin Sulfate in regulating extracellular proteins secreted by Bacillus subtilis ATCC21332. Results of Microdilution assay showed that the Minimum Inhibition Concentration (MIC) of Streptomycin Sulfate on B. subtilis ATCC21332 was 2.5 mg/ml. The bacteria cells were then exposed to Streptomycin Sulfate at concentration of 0.01 MIC before being further incubated for 48h to 72 h. The extracellular proteins secreted were then isolated and analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Proteins profile revealed that three additional bands with approximate sizes of 30 kDa, 22 kDa and 23 kDa were appeared for the treated bacteria with Streptomycin Sulfate. Thus, B. subtilis ATCC21332 in stressful condition with the presence of Streptomycin Sulfate at low concentration could induce the extracellular proteins secretion.
Keywords: Bacillus subtilis ATCC21332, Streptomycin Sulfate, extracellular proteins.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3167286 Neural Network Tuned Fuzzy Controller for MIMO System
Authors: Seema Chopra, R. Mitra, Vijay Kumar
Abstract:
In this paper, a neural network tuned fuzzy controller is proposed for controlling Multi-Input Multi-Output (MIMO) systems. For the convenience of analysis, the structure of MIMO fuzzy controller is divided into single input single-output (SISO) controllers for controlling each degree of freedom. Secondly, according to the characteristics of the system-s dynamics coupling, an appropriate coupling fuzzy controller is incorporated to improve the performance. The simulation analysis on a two-level mass–spring MIMO vibration system is carried out and results show the effectiveness of the proposed fuzzy controller. The performance though improved, the computational time and memory used is comparatively higher, because it has four fuzzy reasoning blocks and number may increase in case of other MIMO system. Then a fuzzy neural network is designed from a set of input-output training data to reduce the computing burden during implementation. This control strategy can not only simplify the implementation problem of fuzzy control, but also reduce computational time and consume less memory.Keywords: Fuzzy Control, Neural Network, MIMO System, Optimization of Membership functions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3210