Search results for: Image Features
2000 Sequential Straightforward Clustering for Local Image Block Matching
Authors: Mohammad Akbarpour Sekeh, Mohd. Aizaini Maarof, Mohd. Foad Rohani, Malihe Motiei
Abstract:
Duplicated region detection is a technical method to expose copy-paste forgeries on digital images. Copy-paste is one of the common types of forgeries to clone portion of an image in order to conceal or duplicate special object. In this type of forgery detection, extracting robust block feature and also high time complexity of matching step are two main open problems. This paper concentrates on computational time and proposes a local block matching algorithm based on block clustering to enhance time complexity. Time complexity of the proposed algorithm is formulated and effects of two parameter, block size and number of cluster, on efficiency of this algorithm are considered. The experimental results and mathematical analysis demonstrate this algorithm is more costeffective than lexicographically algorithms in time complexity issue when the image is complex.Keywords: Copy-paste forgery detection, Duplicated region, Timecomplexity, Local block matching, Sequential block clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18311999 Image Contrast Enhancement based Sub-histogram Equalization Technique without Over-equalization Noise
Authors: Hyunsup Yoon, Youngjoon Han, Hernsoo Hahn
Abstract:
In order to enhance the contrast in the regions where the pixels have similar intensities, this paper presents a new histogram equalization scheme. Conventional global equalization schemes over-equalizes these regions so that too bright or dark pixels are resulted and local equalization schemes produce unexpected discontinuities at the boundaries of the blocks. The proposed algorithm segments the original histogram into sub-histograms with reference to brightness level and equalizes each sub-histogram with the limited extents of equalization considering its mean and variance. The final image is determined as the weighted sum of the equalized images obtained by using the sub-histogram equalizations. By limiting the maximum and minimum ranges of equalization operations on individual sub-histograms, the over-equalization effect is eliminated. Also the result image does not miss feature information in low density histogram region since the remaining these area is applied separating equalization. This paper includes how to determine the segmentation points in the histogram. The proposed algorithm has been tested with more than 100 images having various contrasts in the images and the results are compared to the conventional approaches to show its superiority.
Keywords: Contrast Enhancement, Histogram Equalization, Histogram Region Equalization, Equalization Noise
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34181998 Effect of Scene Changing on Image Sequences Compression Using Zero Tree Coding
Authors: Mbainaibeye Jérôme, Noureddine Ellouze
Abstract:
We study in this paper the effect of the scene changing on image sequences coding system using Embedded Zerotree Wavelet (EZW). The scene changing considered here is the full motion which may occurs. A special image sequence is generated where the scene changing occurs randomly. Two scenarios are considered: In the first scenario, the system must provide the reconstruction quality as best as possible by the management of the bit rate (BR) while the scene changing occurs. In the second scenario, the system must keep the bit rate as constant as possible by the management of the reconstruction quality. The first scenario may be motivated by the availability of a large band pass transmission channel where an increase of the bit rate may be possible to keep the reconstruction quality up to a given threshold. The second scenario may be concerned by the narrow band pass transmission channel where an increase of the bit rate is not possible. In this last case, applications for which the reconstruction quality is not a constraint may be considered. The simulations are performed with five scales wavelet decomposition using the 9/7-tap filter bank biorthogonal wavelet. The entropy coding is performed using a specific defined binary code book and EZW algorithm. Experimental results are presented and compared to LEAD H263 EVAL. It is shown that if the reconstruction quality is the constraint, the system increases the bit rate to obtain the required quality. In the case where the bit rate must be constant, the system is unable to provide the required quality if the scene change occurs; however, the system is able to improve the quality while the scene changing disappears.Keywords: Image Sequence Compression, Wavelet Transform, Scene Changing, Zero Tree, Bit Rate, Quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13551997 Building Gabor Filters from Retinal Responses
Authors: Johannes Partzsch, Christian Mayr, Rene Schuffny
Abstract:
Starting from a biologically inspired framework, Gabor filters were built up from retinal filters via LMSE algorithms. Asubset of retinal filter kernels was chosen to form a particular Gabor filter by using a weighted sum. One-dimensional optimization approaches were shown to be inappropriate for the problem. All model parameters were fixed with biological or image processing constraints. Detailed analysis of the optimization procedure led to the introduction of a minimization constraint. Finally, quantization of weighting factors was investigated. This resulted in an optimized cascaded structure of a Gabor filter bank implementation with lower computational cost.
Keywords: Gabor filter, image processing, optimization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23971996 2D Spherical Spaces for Face Relighting under Harsh Illumination
Authors: Amr Almaddah, Sadi Vural, Yasushi Mae, Kenichi Ohara, Tatsuo Arai
Abstract:
In this paper, we propose a robust face relighting technique by using spherical space properties. The proposed method is done for reducing the illumination effects on face recognition. Given a single 2D face image, we relight the face object by extracting the nine spherical harmonic bases and the face spherical illumination coefficients. First, an internal training illumination database is generated by computing face albedo and face normal from 2D images under different lighting conditions. Based on the generated database, we analyze the target face pixels and compare them with the training bootstrap by using pre-generated tiles. In this work, practical real time processing speed and small image size were considered when designing the framework. In contrast to other works, our technique requires no 3D face models for the training process and takes a single 2D image as an input. Experimental results on publicly available databases show that the proposed technique works well under severe lighting conditions with significant improvements on the face recognition rates.Keywords: Face synthesis and recognition, Face illumination recovery, 2D spherical spaces, Vision for graphics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17531995 Modality and Redundancy Effects on Music Theory Learning Among Pupils of Different Anxiety Levels
Authors: Soon Fook Fong, Aldalalah, M. Osamah
Abstract:
The purpose of this study was to investigate effects of modality and redundancy principles on music theory learning among pupils of different anxiety levels. The lesson of music theory was developed in three different modes, audio and image (AI), text with image (TI) and audio with image and text (AIT). The independent variables were the three modes of courseware. The moderator variable was the anxiety level, while the dependent variable was the post test score. The study sample consisted of 405 third-grade pupils. Descriptive and inferential statistics were conducted to analyze the collected data. Analyses of covariance (ANCOVA) and Post hoc were carried out to examine the main effects as well as the interaction effects of the independent variables on the dependent variable. The findings of this study showed that medium anxiety pupils performed significantly better than low and high anxiety pupils in all the three treatment modes. The AI mode was found to help pupils with high anxiety significantly more than the TI and AIT modes.Keywords: Modality, Redundancy, Music theory, Cognitivetheory of multimedia learning, Cognitive load theory, Anxiety.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21351994 Wood Species Recognition System
Authors: Bremananth R, Nithya B, Saipriya R
Abstract:
The proposed system identifies the species of the wood using the textural features present in its barks. Each species of a wood has its own unique patterns in its bark, which enabled the proposed system to identify it accurately. Automatic wood recognition system has not yet been well established mainly due to lack of research in this area and the difficulty in obtaining the wood database. In our work, a wood recognition system has been designed based on pre-processing techniques, feature extraction and by correlating the features of those wood species for their classification. Texture classification is a problem that has been studied and tested using different methods due to its valuable usage in various pattern recognition problems, such as wood recognition, rock classification. The most popular technique used for the textural classification is Gray-level Co-occurrence Matrices (GLCM). The features from the enhanced images are thus extracted using the GLCM is correlated, which determines the classification between the various wood species. The result thus obtained shows a high rate of recognition accuracy proving that the techniques used in suitable to be implemented for commercial purposes.Keywords: Correlation, Grey Level Co-Occurrence Matrix, ProbabilityDensity Function, Wood Recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24611993 A Gnutella-based P2P System Using Cross-Layer Design for MANET
Authors: Ho-Hyun Park, Woosik Kim, Miae Woo
Abstract:
It is expected that ubiquitous era will come soon. A ubiquitous environment has features like peer-to-peer and nomadic environments. Such features can be represented by peer-to-peer systems and mobile ad-hoc networks (MANETs). The features of P2P systems and MANETs are similar, appealing for implementing P2P systems in MANET environment. It has been shown that, however, the performance of the P2P systems designed for wired networks do not perform satisfactorily in mobile ad-hoc environment. Subsequently, this paper proposes a method to improve P2P performance using cross-layer design and the goodness of a node as a peer. The proposed method uses routing metric as well as P2P metric to choose favorable peers to connect. It also utilizes proactive approach for distributing peer information. According to the simulation results, the proposed method provides higher query success rate, shorter query response time and less energy consumption by constructing an efficient overlay network.Keywords: Ad-hoc Networks, Cross-layer, Peer-to-Peer, Performance Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16701992 Robust Statistics Based Algorithm to Remove Salt and Pepper Noise in Images
Authors: V.R.Vijaykumar, P.T.Vanathi, P.Kanagasabapathy, D.Ebenezer
Abstract:
In this paper, a robust statistics based filter to remove salt and pepper noise in digital images is presented. The function of the algorithm is to detect the corrupted pixels first since the impulse noise only affect certain pixels in the image and the remaining pixels are uncorrupted. The corrupted pixels are replaced by an estimated value using the proposed robust statistics based filter. The proposed method perform well in removing low to medium density impulse noise with detail preservation upto a noise density of 70% compared to standard median filter, weighted median filter, recursive weighted median filter, progressive switching median filter, signal dependent rank ordered mean filter, adaptive median filter and recently proposed decision based algorithm. The visual and quantitative results show the proposed algorithm outperforms in restoring the original image with superior preservation of edges and better suppression of impulse noise
Keywords: Image denoising, Nonlinear filter, Robust Statistics, and Salt and Pepper Noise.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22011991 A Semi-Fragile Signature based Scheme for Ownership Identification and Color Image Authentication
Authors: M. Hamad Hassan, S.A.M. Gilani
Abstract:
In this paper, a novel scheme is proposed for ownership identification and authentication using color images by deploying Cryptography and Digital Watermarking as underlaying technologies. The former is used to compute the contents based hash and the latter to embed the watermark. The host image that will claim to be the rightful owner is first transformed from RGB to YST color space exclusively designed for watermarking based applications. Geometrically YS ÔèÑ T and T channel corresponds to the chrominance component of color image, therefore suitable for embedding the watermark. The T channel is divided into 4×4 nonoverlapping blocks. The size of block is important for enhanced localization, security and low computation. Each block along with ownership information is then deployed by SHA160, a one way hash function to compute the content based hash, which is always unique and resistant against birthday attack instead of using MD5 that may raise the condition i.e. H(m)=H(m'). The watermark payload varies from block to block and computed by the variance factorα . The quality of watermarked images is quite high both subjectively and objectively. Our scheme is blind, computationally fast and exactly locates the tampered region.
Keywords: Hash Collision, LSB, MD5, PSNR, SHA160.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15621990 Segmentation of Lungs from CT Scan Images for Early Diagnosis of Lung Cancer
Authors: Nisar Ahmed Memon, Anwar Majid Mirza, S.A.M. Gilani
Abstract:
Segmentation is an important step in medical image analysis and classification for radiological evaluation or computer aided diagnosis. The CAD (Computer Aided Diagnosis ) of lung CT generally first segment the area of interest (lung) and then analyze the separately obtained area for nodule detection in order to diagnosis the disease. For normal lung, segmentation can be performed by making use of excellent contrast between air and surrounding tissues. However this approach fails when lung is affected by high density pathology. Dense pathologies are present in approximately a fifth of clinical scans, and for computer analysis such as detection and quantification of abnormal areas it is vital that the entire and perfectly lung part of the image is provided and no part, as present in the original image be eradicated. In this paper we have proposed a lung segmentation technique which accurately segment the lung parenchyma from lung CT Scan images. The algorithm was tested against the 25 datasets of different patients received from Ackron Univeristy, USA and AGA Khan Medical University, Karachi, Pakistan.Keywords: Computer Aided Diagnosis, Medical ImageProcessing, Region Growing, Segmentation, Thresholding,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25971989 The Grey Relational Analysis of the Influence Factors of Profit in Cartoon-s Character Merchandising Rights
Abstract:
This paper constructs a four factors theoretical model of Chinese small and medium enterprises based on the “cartoon characters- reputation - enterprise marketing and management capabilities – protection of the cartoon image - institutional environment" by literature research, case studies and investigation. The empirical study show that the greatest impact on current merchandising rights income is the institutional environment friendliness, followed by marketing and management capabilities, input of character image protection and Cartoon characters- reputation through the real-time grey relational analysis, and the greatest impact on post-merchandising rights profit is Cartoon characters reputation, followed by the institutional environment friendliness, then marketing and management ability and input of character image protection through the time-delay grey relational analysis.
Keywords: Cartoon characters, merchandising rights, influencefactors, grey relational analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15951988 Evaluating some Feature Selection Methods for an Improved SVM Classifier
Authors: Daniel Morariu, Lucian N. Vintan, Volker Tresp
Abstract:
Text categorization is the problem of classifying text documents into a set of predefined classes. After a preprocessing step the documents are typically represented as large sparse vectors. When training classifiers on large collections of documents, both the time and memory restrictions can be quite prohibitive. This justifies the application of features selection methods to reduce the dimensionality of the document-representation vector. Four feature selection methods are evaluated: Random Selection, Information Gain (IG), Support Vector Machine (called SVM_FS) and Genetic Algorithm with SVM (GA_FS). We showed that the best results were obtained with SVM_FS and GA_FS methods for a relatively small dimension of the features vector comparative with the IG method that involves longer vectors, for quite similar classification accuracies. Also we present a novel method to better correlate SVM kernel-s parameters (Polynomial or Gaussian kernel).
Keywords: Features selection, learning with kernels, support vector machine, genetic algorithms and classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15371987 Towards a Complete Automation Feature Recognition System for Sheet Metal Manufacturing
Authors: Bahaa Eltahawy, Mikko Ylihärsilä, Reino Virrankoski, Esko Petäjä
Abstract:
Sheet metal processing is automated, but the step from product models to the production machine control still requires human intervention. This may cause time consuming bottlenecks in the production process and increase the risk of human errors. In this paper we present a system, which automatically recognizes features from the CAD-model of the sheet metal product. By using these features, the system produces a complete model of the particular sheet metal product. Then the model is used as an input for the sheet metal processing machine. Currently the system is implemented, capable to recognize more than 11 of the most common sheet metal structural features, and the procedure is fully automated. This provides remarkable savings in the production time, and protects against the human errors. This paper presents the developed system architecture, applied algorithms and system software implementation and testing.Keywords: Feature recognition, automation, sheet metal manufacturing, CAM, CAD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11481986 A Proposed Optimized and Efficient Intrusion Detection System for Wireless Sensor Network
Authors: Abdulaziz Alsadhan, Naveed Khan
Abstract:
In recent years intrusions on computer network are the major security threat. Hence, it is important to impede such intrusions. The hindrance of such intrusions entirely relies on its detection, which is primary concern of any security tool like Intrusion detection system (IDS). Therefore, it is imperative to accurately detect network attack. Numerous intrusion detection techniques are available but the main issue is their performance. The performance of IDS can be improved by increasing the accurate detection rate and reducing false positive. The existing intrusion detection techniques have the limitation of usage of raw dataset for classification. The classifier may get jumble due to redundancy, which results incorrect classification. To minimize this problem, Principle component analysis (PCA), Linear Discriminant Analysis (LDA) and Local Binary Pattern (LBP) can be applied to transform raw features into principle features space and select the features based on their sensitivity. Eigen values can be used to determine the sensitivity. To further classify, the selected features greedy search, back elimination, and Particle Swarm Optimization (PSO) can be used to obtain a subset of features with optimal sensitivity and highest discriminatory power. This optimal feature subset is used to perform classification. For classification purpose, Support Vector Machine (SVM) and Multilayer Perceptron (MLP) are used due to its proven ability in classification. The Knowledge Discovery and Data mining (KDD’99) cup dataset was considered as a benchmark for evaluating security detection mechanisms. The proposed approach can provide an optimal intrusion detection mechanism that outperforms the existing approaches and has the capability to minimize the number of features and maximize the detection rates.
Keywords: Particle Swarm Optimization (PSO), Principle component analysis (PCA), Linear Discriminant Analysis (LDA), Local Binary Pattern (LBP), Support Vector Machine (SVM), Multilayer Perceptron (MLP).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27631985 Public Attachment to Religious Places: A Study of Place Attachment to Mosques in Malaysia
Authors: Mina Najafi, Mustafa Kamal Bin Mohd Shariff
Abstract:
Religious place attachment is an affective bond that develops between people and their religious settings. The published literature shows that although religion has a significant impact on the public ‘place attachment’, the architectural features and attributes of the places could still play an influencing role in strengthening this attachment. However, the role of architectural characteristics and features of the religious places, as the components that give them meaning(s), has not been adequately explored. This paper reports the impacts of factors influencing the physical and ambience quality of different styles of Malaysian mosques from the Muslim public perspective. Thereby, a survey was conducted to investigate Malaysian public attachment to selected five Malaysian state mosques with respect to their architectural characteristics and features. The survey employed the results of series of interviews as its theoretical basis. The finding proved that Malaysian ‘Muslim’ society has equally strong attachment to all selected mosques in spite of their different architectural styles. The findings also confirmed that the emotional attachment to the impressive aspects of architectural features (e.g. dome, minaret etc.) and the unique identity of the studied mosques is irrespective of the architectural styles, e.g. Modern vs. Postmodern. The paper also argued that religious activities and pleasant architectural characteristic of the studied places including the functional facilities are equally important factors in forming place attachment. This is a new approach to the study of physical and ambience quality of mosques, hence providing sufficient theoretical basis for further investigations and improvements.
Keywords: Place Attachment, Place Identity, Physical Features, Malaysian Mosques.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 43111984 Ray Tracing Modified 3D Image Method Simulation of Picocellular Propagation Channel Environment
Authors: F. Alwafie
Abstract:
In this paper, we present the simulation of the propagation characteristics of the picocellular propagation channel environment. The first aim has been to find a correct description of the environment for received wave.
The result of the first investigations is that the environment of the indoor wave significantly changes as we change the electric parameters of material constructions. A modified 3D ray tracing image method tool has been utilized for the coverage prediction. A detailed analysis of the dependence of the indoor wave on the wideband characteristics of the channel: root mean square (RMS) delay spread characteristics and Mean excess delay, is also investigated.
Keywords: Propagation, Ray Tracing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19521983 Influence of the Paint Coating Thickness in Digital Image Correlation Experiments
Authors: Jesús A. Pérez, Sam Coppieters, Dimitri Debruyne
Abstract:
In the past decade, the use of digital image correlation (DIC) techniques has increased significantly in the area of experimental mechanics, especially for materials behavior characterization. This non-contact tool enables full field displacement and strain measurements over a complete region of interest. The DIC algorithm requires a random contrast pattern on the surface of the specimen in order to perform properly. To create this pattern, the specimen is usually first coated using a white matt paint. Next, a black random speckle pattern is applied using any suitable method. If the applied paint coating is too thick, its top surface may not be able to exactly follow the deformation of the specimen, and consequently, the strain measurement might be underestimated. In the present article, a study of the influence of the paint thickness on the strain underestimation is performed for different strain levels. The results are then compared to typical paint coating thicknesses applied by experienced DIC users. A slight strain underestimation was observed for paint coatings thicker than about 30μm. On the other hand, this value was found to be uncommonly high compared to coating thicknesses applied by DIC users.Keywords: Digital Image Correlation, paint coating thickness, strain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23011982 Effect Comparison of Speckle Noise Reduction Filters on 2D-Echocardigraphic Images
Authors: Faten A. Dawood, Rahmita W. Rahmat, Suhaini B. Kadiman, Lili N. Abdullah, Mohd D. Zamrin
Abstract:
Echocardiography imaging is one of the most common diagnostic tests that are widely used for assessing the abnormalities of the regional heart ventricle function. The main goal of the image enhancement task in 2D-echocardiography (2DE) is to solve two major anatomical structure problems; speckle noise and low quality. Therefore, speckle noise reduction is one of the important steps that used as a pre-processing to reduce the distortion effects in 2DE image segmentation. In this paper, we present the common filters that based on some form of low-pass spatial smoothing filters such as Mean, Gaussian, and Median. The Laplacian filter was used as a high-pass sharpening filter. A comparative analysis was presented to test the effectiveness of these filters after being applied to original 2DE images of 4-chamber and 2-chamber views. Three statistical quantity measures: root mean square error (RMSE), peak signal-to-ratio (PSNR) and signal-tonoise ratio (SNR) are used to evaluate the filter performance quantitatively on the output enhanced image.
Keywords: Gaussian operator, median filter, speckle texture, peak signal-to-ratio
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19941981 Non-Rigid Registration of Medical Images Using an Automated Method
Authors: Panos Kotsas
Abstract:
This paper presents the application of a signal intensity independent registration criterion for non-rigid body registration of medical images. The criterion is defined as the weighted ratio image of two images. The ratio is computed on a voxel per voxel basis and weighting is performed by setting the ratios between signal and background voxels to a standard high value. The mean squared value of the weighted ratio is computed over the union of the signal areas of the two images and it is minimized using the Chebyshev polynomial approximation. The geometric transformation model adopted is a local cubic B-splines based model.
Keywords: Medical image, non-rigid, registration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14481980 An Efficient Graph Query Algorithm Based on Important Vertices and Decision Features
Authors: Xiantong Li, Jianzhong Li
Abstract:
Graph has become increasingly important in modeling complicated structures and schemaless data such as proteins, chemical compounds, and XML documents. Given a graph query, it is desirable to retrieve graphs quickly from a large database via graph-based indices. Different from the existing methods, our approach, called VFM (Vertex to Frequent Feature Mapping), makes use of vertices and decision features as the basic indexing feature. VFM constructs two mappings between vertices and frequent features to answer graph queries. The VFM approach not only provides an elegant solution to the graph indexing problem, but also demonstrates how database indexing and query processing can benefit from data mining, especially frequent pattern mining. The results show that the proposed method not only avoids the enumeration method of getting subgraphs of query graph, but also effectively reduces the subgraph isomorphism tests between the query graph and graphs in candidate answer set in verification stage.Keywords: Decision Feature, Frequent Feature, Graph Dataset, Graph Query
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18701979 Face Detection using Variance based Haar-Like feature and SVM
Authors: Cuong Nguyen Khac, Ju H. Park, Ho-Youl Jung
Abstract:
This paper proposes a new approach to perform the problem of real-time face detection. The proposed method combines primitive Haar-Like feature and variance value to construct a new feature, so-called Variance based Haar-Like feature. Face in image can be represented with a small quantity of features using this new feature. We used SVM instead of AdaBoost for training and classification. We made a database containing 5,000 face samples and 10,000 non-face samples extracted from real images for learning purposed. The 5,000 face samples contain many images which have many differences of light conditions. And experiments showed that face detection system using Variance based Haar-Like feature and SVM can be much more efficient than face detection system using primitive Haar-Like feature and AdaBoost. We tested our method on two Face databases and one Non-Face database. We have obtained 96.17% of correct detection rate on YaleB face database, which is higher 4.21% than that of using primitive Haar-Like feature and AdaBoost.Keywords: AdaBoost, Haar-Like feature, SVM, variance, Variance based Haar-Like feature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37331978 High Level Synthesis of Canny Edge Detection Algorithm on Zynq Platform
Authors: Hanaa M. Abdelgawad, Mona Safar, Ayman M. Wahba
Abstract:
Real time image and video processing is a demand in many computer vision applications, e.g. video surveillance, traffic management and medical imaging. The processing of those video applications requires high computational power. Thus, the optimal solution is the collaboration of CPU and hardware accelerators. In this paper, a Canny edge detection hardware accelerator is proposed. Edge detection is one of the basic building blocks of video and image processing applications. It is a common block in the pre-processing phase of image and video processing pipeline. Our presented approach targets offloading the Canny edge detection algorithm from processing system (PS) to programmable logic (PL) taking the advantage of High Level Synthesis (HLS) tool flow to accelerate the implementation on Zynq platform. The resulting implementation enables up to a 100x performance improvement through hardware acceleration. The CPU utilization drops down and the frame rate jumps to 60 fps of 1080p full HD input video stream.
Keywords: High Level Synthesis, Canny edge detection, Hardware accelerators, and Computer Vision.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 54301977 Image Magnification Using Adaptive Interpolationby Pixel Level Data-Dependent Geometrical Shapes
Authors: Muhammad Sajjad, Naveed Khattak, Noman Jafri
Abstract:
World has entered in 21st century. The technology of computer graphics and digital cameras is prevalent. High resolution display and printer are available. Therefore high resolution images are needed in order to produce high quality display images and high quality prints. However, since high resolution images are not usually provided, there is a need to magnify the original images. One common difficulty in the previous magnification techniques is that of preserving details, i.e. edges and at the same time smoothing the data for not introducing the spurious artefacts. A definitive solution to this is still an open issue. In this paper an image magnification using adaptive interpolation by pixel level data-dependent geometrical shapes is proposed that tries to take into account information about the edges (sharp luminance variations) and smoothness of the image. It calculate threshold, classify interpolation region in the form of geometrical shapes and then assign suitable values inside interpolation region to the undefined pixels while preserving the sharp luminance variations and smoothness at the same time. The results of proposed technique has been compared qualitatively and quantitatively with five other techniques. In which the qualitative results show that the proposed method beats completely the Nearest Neighbouring (NN), bilinear(BL) and bicubic(BC) interpolation. The quantitative results are competitive and consistent with NN, BL, BC and others.Keywords: Adaptive, digital image processing, imagemagnification, interpolation, geometrical shapes, qualitative &quantitative analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17991976 Analysis of Histogram Asymmetry for Waste Recognition
Authors: Janusz Bobulski, Kamila Pasternak
Abstract:
Despite many years of effort and research, the problem of waste management is still current. There is a lack of fast and effective algorithms for classifying individual waste fractions. Many programs and projects improve statistics on the percentage of waste recycled every year. In these efforts, it is worth using modern Computer Vision techniques supported by artificial intelligence. In the article, we present a method of identifying plastic waste based on the asymmetry analysis of the histogram of the image containing the waste. The method is simple but effective (94%), which allows it to be implemented on devices with low computing power, in particular on microcomputers. Such de-vices will be used both at home and in waste sorting plants.
Keywords: Computer vision, environmental protection, image processing, waste management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3081975 Implementation of Edge Detection Based on Autofluorescence Endoscopic Image of Field Programmable Gate Array
Authors: Hao Cheng, Zhiwu Wang, Guozheng Yan, Pingping Jiang, Shijia Qin, Shuai Kuang
Abstract:
Autofluorescence Imaging (AFI) is a technology for detecting early carcinogenesis of the gastrointestinal tract in recent years. Compared with traditional white light endoscopy (WLE), this technology greatly improves the detection accuracy of early carcinogenesis, because the colors of normal tissues are different from cancerous tissues. Thus, edge detection can distinguish them in grayscale images. In this paper, based on the traditional Sobel edge detection method, optimization has been performed on this method which considers the environment of the gastrointestinal, including adaptive threshold and morphological processing. All of the processes are implemented on our self-designed system based on the image sensor OV6930 and Field Programmable Gate Array (FPGA), The system can capture the gastrointestinal image taken by the lens in real time and detect edges. The final experiments verified the feasibility of our system and the effectiveness and accuracy of the edge detection algorithm.
Keywords: AFI, edge detection, adaptive threshold, morphological processing, OV6930, FPGA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6551974 The Role of Optimization and Machine Learning in e-Commerce Logistics in 2030
Authors: Vincenzo Capalbo, Gianpaolo Ghiani, Emanuele Manni
Abstract:
Global e-commerce sales have reached unprecedented levels in the past few years. As this trend is only predicted to go up as we continue into the ’20s, new challenges will be faced by companies when planning and controlling e-commerce logistics. In this paper, we survey the related literature on Optimization and Machine Learning as well as on combined methodologies. We also identify the distinctive features of next-generation planning algorithms - namely scalability, model-and-run features and learning capabilities - that will be fundamental to cope with the scale and complexity of logistics in the next decade.Keywords: e-Commerce, Logistics, Machine Learning, Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11261973 Profit and Nonprofit Sports Clubs: Financial and Organizational Comparison in Poland
Authors: Wojciech B. Cieśliński, Igor Perechuda
Abstract:
The paper identifies the features of Polish sports clubs in the particular organizational forms: profit and nonprofit. Identification and description of these features is carried out in terms of financial efficiency of the given organizational form. Under the terms of the efficiency the research allows you to specify the advantages of particular organizational sports club form and the following limitations. Paper considers features of sports clubs in range of Polish conditions as legal regulations. The sources of the functioning efficiency of sports clubs may lie in the organizational forms in which they operate. Each of the available forms can be considered either a for-profit or nonprofit enterprise. Depending on this classification there are different capabilities of increasing organizational and financial efficiency of a given sports club. Authors start with general classification and difference between for-profit and non-profit sport clubs. Next identifies specific financial and organizational conditions of both organizational form and then show examples of mixed activity forms and their efficiency effect.Keywords: Financial efficiency, for-profit, non-profit, sports club.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20381972 M-band Wavelet and Cosine Transform Based Watermark Algorithm Using Randomization and Principal Component Analysis
Authors: Tong Liu, Xuan Xu, Xiaodi Wang
Abstract:
Computational techniques derived from digital image processing are playing a significant role in the security and digital copyrights of multimedia and visual arts. This technology has the effect within the domain of computers. This research presents discrete M-band wavelet transform (MWT) and cosine transform (DCT) based watermarking algorithm by incorporating the principal component analysis (PCA). The proposed algorithm is expected to achieve higher perceptual transparency. Specifically, the developed watermarking scheme can successfully resist common signal processing, such as geometric distortions, and Gaussian noise. In addition, the proposed algorithm can be parameterized, thus resulting in more security. To meet these requirements, the image is transformed by a combination of MWT & DCT. In order to improve the security further, we randomize the watermark image to create three code books. During the watermark embedding, PCA is applied to the coefficients in approximation sub-band. Finally, first few component bands represent an excellent domain for inserting the watermark.
Keywords: discrete M-band wavelet transform , discrete M-band wavelet transform, randomized watermark, principal component analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20081971 A Family Cars- Life Cycle Cost (LCC)-Oriented Hybrid Modelling Approach Combining ANN and CBR
Authors: Xiaochuan Chen, Jianguo Yang, Beizhi Li
Abstract:
Design for cost (DFC) is a method that reduces life cycle cost (LCC) from the angle of designers. Multiple domain features mapping (MDFM) methodology was given in DFC. Using MDFM, we can use design features to estimate the LCC. From the angle of DFC, the design features of family cars were obtained, such as all dimensions, engine power and emission volume. At the conceptual design stage, cars- LCC were estimated using back propagation (BP) artificial neural networks (ANN) method and case-based reasoning (CBR). Hamming space was used to measure the similarity among cases in CBR method. Levenberg-Marquardt (LM) algorithm and genetic algorithm (GA) were used in ANN. The differences of LCC estimation model between CBR and artificial neural networks (ANN) were provided. ANN and CBR separately each method has its shortcomings. By combining ANN and CBR improved results accuracy was obtained. Firstly, using ANN selected some design features that affect LCC. Then using LCC estimation results of ANN could raise the accuracy of LCC estimation in CBR method. Thirdly, using ANN estimate LCC errors and correct errors in CBR-s estimation results if the accuracy is not enough accurate. Finally, economically family cars and sport utility vehicle (SUV) was given as LCC estimation cases using this hybrid approach combining ANN and CBR.Keywords: case-based reasoning, life cycle cost (LCC), artificialneural networks (ANN), family cars
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1959