Search results for: Ad-hoc Networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1857

Search results for: Ad-hoc Networks

1017 A New Self-Adaptive EP Approach for ANN Weights Training

Authors: Kristina Davoian, Wolfram-M. Lippe

Abstract:

Evolutionary Programming (EP) represents a methodology of Evolutionary Algorithms (EA) in which mutation is considered as a main reproduction operator. This paper presents a novel EP approach for Artificial Neural Networks (ANN) learning. The proposed strategy consists of two components: the self-adaptive, which contains phenotype information and the dynamic, which is described by genotype. Self-adaptation is achieved by the addition of a value, called the network weight, which depends on a total number of hidden layers and an average number of neurons in hidden layers. The dynamic component changes its value depending on the fitness of a chromosome, exposed to mutation. Thus, the mutation step size is controlled by two components, encapsulated in the algorithm, which adjust it according to the characteristics of a predefined ANN architecture and the fitness of a particular chromosome. The comparative analysis of the proposed approach and the classical EP (Gaussian mutation) showed, that that the significant acceleration of the evolution process is achieved by using both phenotype and genotype information in the mutation strategy.

Keywords: Artificial Neural Networks (ANN), Learning Theory, Evolutionary Programming (EP), Mutation, Self-Adaptation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1834
1016 Evaluating the Perception of Roma in Europe through Social Network Analysis

Authors: Giulia I. Pintea

Abstract:

The Roma people are a nomadic ethnic group native to India, and they are one of the most prevalent minorities in Europe. In the past, Roma were enslaved and they were imprisoned in concentration camps during the Holocaust; today, Roma are subject to hate crimes and are denied access to healthcare, education, and proper housing. The aim of this project is to analyze how the public perception of the Roma people may be influenced by antiziganist and pro-Roma institutions in Europe. In order to carry out this project, we used social network analysis to build two large social networks: The antiziganist network, which is composed of institutions that oppress and racialize Roma, and the pro-Roma network, which is composed of institutions that advocate for and protect Roma rights. Measures of centrality, density, and modularity were obtained to determine which of the two social networks is exerting the greatest influence on the public’s perception of Roma in European societies. Furthermore, data on hate crimes on Roma were gathered from the Organization for Security and Cooperation in Europe (OSCE). We analyzed the trends in hate crimes on Roma for several European countries for 2009-2015 in order to see whether or not there have been changes in the public’s perception of Roma, thus helping us evaluate which of the two social networks has been more influential. Overall, the results suggest that there is a greater and faster exchange of information in the pro-Roma network. However, when taking the hate crimes into account, the impact of the pro-Roma institutions is ambiguous, due to differing patterns among European countries, suggesting that the impact of the pro-Roma network is inconsistent. Despite antiziganist institutions having a slower flow of information, the hate crime patterns also suggest that the antiziganist network has a higher impact on certain countries, which may be due to institutions outside the political sphere boosting the spread of antiziganist ideas and information to the European public.

Keywords: Applied mathematics, oppression, Roma people, social network analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1014
1015 Local Linear Model Tree (LOLIMOT) Reconfigurable Parallel Hardware

Authors: A. Pedram, M. R. Jamali, T. Pedram, S. M. Fakhraie, C. Lucas

Abstract:

Local Linear Neuro-Fuzzy Models (LLNFM) like other neuro- fuzzy systems are adaptive networks and provide robust learning capabilities and are widely utilized in various applications such as pattern recognition, system identification, image processing and prediction. Local linear model tree (LOLIMOT) is a type of Takagi-Sugeno-Kang neuro fuzzy algorithm which has proven its efficiency compared with other neuro fuzzy networks in learning the nonlinear systems and pattern recognition. In this paper, a dedicated reconfigurable and parallel processing hardware for LOLIMOT algorithm and its applications are presented. This hardware realizes on-chip learning which gives it the capability to work as a standalone device in a system. The synthesis results on FPGA platforms show its potential to improve the speed at least 250 of times faster than software implemented algorithms.

Keywords: LOLIMOT, hardware, neurofuzzy systems, reconfigurable, parallel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3896
1014 Identification of Aircraft Gas Turbine Engines Temperature Condition

Authors: Pashayev A., Askerov D., C. Ardil, Sadiqov R., Abdullayev P.

Abstract:

Groundlessness of application probability-statistic methods are especially shown at an early stage of the aviation GTE technical condition diagnosing, when the volume of the information has property of the fuzzy, limitations, uncertainty and efficiency of application of new technology Soft computing at these diagnosing stages by using the fuzzy logic and neural networks methods. It is made training with high accuracy of multiple linear and nonlinear models (the regression equations) received on the statistical fuzzy data basis. At the information sufficiency it is offered to use recurrent algorithm of aviation GTE technical condition identification on measurements of input and output parameters of the multiple linear and nonlinear generalized models at presence of noise measured (the new recursive least squares method (LSM)). As application of the given technique the estimation of the new operating aviation engine D30KU-154 technical condition at height H=10600 m was made.

Keywords: Identification of a technical condition, aviation gasturbine engine, fuzzy logic and neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1663
1013 FWM Aware Fuzzy Dynamic Routing and Wavelength Assignment in Transparent Optical Networks

Authors: Debajyoti Mishra, Urmila Bhanja

Abstract:

In this paper, a novel fuzzy approach is developed while solving the Dynamic Routing and Wavelength Assignment (DRWA) problem in optical networks with Wavelength Division Multiplexing (WDM). In this work, the effect of nonlinear and linear impairments such as Four Wave Mixing (FWM) and amplifier spontaneous emission (ASE) noise are incorporated respectively. The novel algorithm incorporates fuzzy logic controller (FLC) to reduce the effect of FWM noise and ASE noise on a requested lightpath referred in this work as FWM aware fuzzy dynamic routing and wavelength assignment algorithm. The FWM crosstalk products and the static FWM noise power per link are pre computed in order to reduce the set up time of a requested lightpath, and stored in an offline database. These are retrieved during the setting up of a lightpath and evaluated online taking the dynamic parameters like cost of the links into consideration.

Keywords: Amplifier spontaneous emission (ASE), Dynamic routing and wavelength assignment, Four wave mixing (FWM), Fuzzy rule based system (FRBS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1743
1012 Analysis of Linked in Series Servers with Blocking, Priority Feedback Service and Threshold Policy

Authors: Walenty Oniszczuk

Abstract:

The use of buffer thresholds, blocking and adequate service strategies are well-known techniques for computer networks traffic congestion control. This motivates the study of series queues with blocking, feedback (service under Head of Line (HoL) priority discipline) and finite capacity buffers with thresholds. In this paper, the external traffic is modelled using the Poisson process and the service times have been modelled using the exponential distribution. We consider a three-station network with two finite buffers, for which a set of thresholds (tm1 and tm2) is defined. This computer network behaves as follows. A task, which finishes its service at station B, gets sent back to station A for re-processing with probability o. When the number of tasks in the second buffer exceeds a threshold tm2 and the number of task in the first buffer is less than tm1, the fed back task is served under HoL priority discipline. In opposite case, for fed backed tasks, “no two priority services in succession" procedure (preventing a possible overflow in the first buffer) is applied. Using an open Markovian queuing schema with blocking, priority feedback service and thresholds, a closed form cost-effective analytical solution is obtained. The model of servers linked in series is very accurate. It is derived directly from a twodimensional state graph and a set of steady-state equations, followed by calculations of main measures of effectiveness. Consequently, efficient expressions of the low computational cost are determined. Based on numerical experiments and collected results we conclude that the proposed model with blocking, feedback and thresholds can provide accurate performance estimates of linked in series networks.

Keywords: Blocking, Congestion control, Feedback, Markov chains, Performance evaluation, Threshold-base networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1304
1011 Identification of Aircraft Gas Turbine Engine's Temperature Condition

Authors: Pashayev A., Askerov D., C. Ardil, Sadiqov R., Abdullayev P.

Abstract:

Groundlessness of application probability-statistic methods are especially shown at an early stage of the aviation GTE technical condition diagnosing, when the volume of the information has property of the fuzzy, limitations, uncertainty and efficiency of application of new technology Soft computing at these diagnosing stages by using the fuzzy logic and neural networks methods. It is made training with high accuracy of multiple linear and nonlinear models (the regression equations) received on the statistical fuzzy data basis. At the information sufficiency it is offered to use recurrent algorithm of aviation GTE technical condition identification on measurements of input and output parameters of the multiple linear and nonlinear generalized models at presence of noise measured (the new recursive least squares method (LSM)). As application of the given technique the estimation of the new operating aviation engine D30KU-154 technical condition at height H=10600 m was made.

Keywords: Identification of a technical condition, aviation gasturbine engine, fuzzy logic and neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1679
1010 Development of NOx Emission Model for a Tangentially Fired Acid Incinerator

Authors: Elangeshwaran Pathmanathan, Rosdiazli Ibrahim, Vijanth Sagayan Asirvadam

Abstract:

This paper aims to develop a NOx emission model of an acid gas incinerator using Nelder-Mead least squares support vector regression (LS-SVR). Malaysia DOE is actively imposing the Clean Air Regulation to mandate the installation of analytical instrumentation known as Continuous Emission Monitoring System (CEMS) to report emission level online to DOE . As a hardware based analyzer, CEMS is expensive, maintenance intensive and often unreliable. Therefore, software predictive technique is often preferred and considered as a feasible alternative to replace the CEMS for regulatory compliance. The LS-SVR model is built based on the emissions from an acid gas incinerator that operates in a LNG Complex. Simulated Annealing (SA) is first used to determine the initial hyperparameters which are then further optimized based on the performance of the model using Nelder-Mead simplex algorithm. The LS-SVR model is shown to outperform a benchmark model based on backpropagation neural networks (BPNN) in both training and testing data.

Keywords: artificial neural networks, industrial pollution, predictive algorithms, support vector machines

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1982
1009 Gene Network Analysis of PPAR-γ: A Bioinformatics Approach Using STRING

Authors: S. Bag, S. Ramaiah, P. Anitha, K. M. Kumar, P. Lavanya, V. Sivasakhthi, A. Anbarasu

Abstract:

Gene networks present a graphical view at the level of gene activities and genetic functions and help us to understand complex interactions in a meaningful manner. In the present study, we have analyzed the gene interaction of PPAR-γ (peroxisome proliferator-activated receptor gamma) by search tool for retrieval of interacting genes. We find PPAR-γ is highly networked by genetic interactions with 10 genes: RXRA (retinoid X receptor, alpha), PPARGC1A (peroxisome proliferator-activated receptor gamma, coactivator 1 alpha), NCOA1 (nuclear receptor coactivator 1), NR0B2 (nuclear receptor subfamily 0, group B, member 2), HDAC3 (histone deacetylase 3), MED1 (mediator complex subunit 1), INS (insulin), NCOR2 (nuclear receptor co-repressor 2), PAX8 (paired box 8), ADIPOQ (adiponectin) and it augurs well for the fact that obesity and several other metabolic disorders are inter related.

Keywords: Gene networks, NCOA1, PPARγ, PPARGC1A, RXRA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4550
1008 Knowledge Representation Based On Interval Type-2 CFCM Clustering

Authors: Myung-Won Lee, Keun-Chang Kwak

Abstract:

This paper is concerned with knowledge representation and extraction of fuzzy if-then rules using Interval Type-2 Context-based Fuzzy C-Means clustering (IT2-CFCM) with the aid of fuzzy granulation. This proposed clustering algorithm is based on information granulation in the form of IT2 based Fuzzy C-Means (IT2-FCM) clustering and estimates the cluster centers by preserving the homogeneity between the clustered patterns from the IT2 contexts produced in the output space. Furthermore, we can obtain the automatic knowledge representation in the design of Radial Basis Function Networks (RBFN), Linguistic Model (LM), and Adaptive Neuro-Fuzzy Networks (ANFN) from the numerical input-output data pairs. We shall focus on a design of ANFN in this paper. The experimental results on an estimation problem of energy performance reveal that the proposed method showed a good knowledge representation and performance in comparison with the previous works.

Keywords: IT2-FCM, IT2-CFCM, context-based fuzzy clustering, adaptive neuro-fuzzy network, knowledge representation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2628
1007 A Fast Sensor Relocation Algorithm in Wireless Sensor Networks

Authors: Yu-Chen Kuo, Shih-Chieh Lin

Abstract:

Sensor relocation is to repair coverage holes caused by node failures. One way to repair coverage holes is to find redundant nodes to replace faulty nodes. Most researches took a long time to find redundant nodes since they randomly scattered redundant nodes around the sensing field. To record the precise position of sensor nodes, most researches assumed that GPS was installed in sensor nodes. However, high costs and power-consumptions of GPS are heavy burdens for sensor nodes. Thus, we propose a fast sensor relocation algorithm to arrange redundant nodes to form redundant walls without GPS. Redundant walls are constructed in the position where the average distance to each sensor node is the shortest. Redundant walls can guide sensor nodes to find redundant nodes in the minimum time. Simulation results show that our algorithm can find the proper redundant node in the minimum time and reduce the relocation time with low message complexity.

Keywords: Coverage, distributed algorithm, sensor relocation, wireless sensor networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1571
1006 Improving Location Management in Mobile IPv4 Networks

Authors: Haidar Safa, Hassan Artail, Ahmad Mehio, Hicham Zahr, Ziad Matragi

Abstract:

The Mobile IP Standard has been developed to support mobility over the Internet. This standard contains several drawbacks as in the cases where packets are routed via sub-optimal paths and significant amount of signaling messages is generated due to the home registration procedure which keeps the network aware of the current location of the mobile nodes. Recently, a dynamic hierarchical mobility management strategy for mobile IP networks (DHMIP) has been proposed to reduce home registrations costs. However, this strategy induces a packet delivery delay and increases the risk of packet loss. In this paper, we propose an enhanced version of the dynamic hierarchical strategy that reduces the packet delivery delay and minimizes the risk of packet loss. Preliminary results obtained from simulations are promising. They show that the enhanced version outperforms the original dynamic hierarchical mobility management strategy version.

Keywords: Location management, Mobile IP (MIP), Home Agent, Foreign Agent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1452
1005 Mitigation of ISI for Next Generation Wireless Channels in Outdoor Vehicular Environments

Authors: Mohd. Israil, M. Salim Beg

Abstract:

In order to accommodate various multimedia services, next generation wireless networks are characterized by very high transmission bit rates. Thus, in such systems and networks, the received signal is not only limited by noise but - especially with increasing symbols rate often more significantly by the intersymbol interference (ISI) caused by the time dispersive radio channels such as those are used in this work. This paper deals with the study of the performance of detector for high bit rate transmission on some worst case models of frequency selective fading channels for outdoor mobile radio environments. This paper deals with a number of different wireless channels with different power profiles and different number of resolvable paths. All the radio channels generated in this paper are for outdoor vehicular environments with Doppler spread of 100 Hz. A carrier frequency of 1800 MHz is used and all the channels used in this work are such that they are useful for next generation wireless systems. Schemes for mitigation of ISI with adaptive equalizers of different types have been investigated and their performances have been investigated in terms of BER measured as a function of SNR.

Keywords: Mobile channels, Rayleigh Fading, Equalization, NMLD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1430
1004 Multihop Cooperative Transmissions for Asymmetric Traffic Accommodation in CDMA/FDD Cellular Networks

Authors: Kazuo Mori, Takeo Saga, Katsuhiro Naito, Hideo Kobayashi

Abstract:

The asymmetric trafc between uplink and downlink over recent mobile communication systems has been conspicuous because of providing new communication services. This paper proposes an asymmetric trafc accommodation scheme adopting a multihop cooperative transmission technique for CDMA/FDD cellular networks. The proposed scheme employs the cooperative transmission technique in the already proposed downlink multihop transmissions for the accommodation of the asymmetric trafc, which utilizes the vacant uplink band for the downlink relay transmissions. The proposed scheme reduces the transmission power at the downlink relay transmissions and then suppresses the interference to the uplink communications, and thus, improves the uplink performance. The proposed scheme is evaluated by computer simulation and the results show that it can achieve better throughput performance.

Keywords: asymmetric traffic, cooperative transmissions, multihop transmissions, CDMA, FDD, cellular systems

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1739
1003 Neuro-fuzzy Classification System for Wireless-Capsule Endoscopic Images

Authors: Vassilis S. Kodogiannis, John N. Lygouras

Abstract:

In this research study, an intelligent detection system to support medical diagnosis and detection of abnormal lesions by processing endoscopic images is presented. The images used in this study have been obtained using the M2A Swallowable Imaging Capsule - a patented, video color-imaging disposable capsule. Schemes have been developed to extract texture features from the fuzzy texture spectra in the chromatic and achromatic domains for a selected region of interest from each color component histogram of endoscopic images. The implementation of an advanced fuzzy inference neural network which combines fuzzy systems and artificial neural networks and the concept of fusion of multiple classifiers dedicated to specific feature parameters have been also adopted in this paper. The achieved high detection accuracy of the proposed system has provided thus an indication that such intelligent schemes could be used as a supplementary diagnostic tool in endoscopy.

Keywords: Medical imaging, Computer aided diagnosis, Endoscopy, Neuro-fuzzy networks, Fuzzy integral.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1768
1002 A Comparative Study of SVM Classifiers and Artificial Neural Networks Application for Rolling Element Bearing Fault Diagnosis using Wavelet Transform Preprocessing

Authors: Commander Sunil Tyagi

Abstract:

Effectiveness of Artificial Neural Networks (ANN) and Support Vector Machines (SVM) classifiers for fault diagnosis of rolling element bearings are presented in this paper. The characteristic features of vibration signals of rotating driveline that was run in its normal condition and with faults introduced were used as input to ANN and SVM classifiers. Simple statistical features such as standard deviation, skewness, kurtosis etc. of the time-domain vibration signal segments along with peaks of the signal and peak of power spectral density (PSD) are used as features to input the ANN and SVM classifier. The effect of preprocessing of the vibration signal by Discreet Wavelet Transform (DWT) prior to feature extraction is also studied. It is shown from the experimental results that the performance of SVM classifier in identification of bearing condition is better then ANN and pre-processing of vibration signal by DWT enhances the effectiveness of both ANN and SVM classifier

Keywords: ANN, Artificial Intelligence, Fault Diagnosis, Pattern Recognition, Rolling Element Bearing, SVM. Wavelet Transform

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2129
1001 Fault Diagnosis of Nonlinear Systems Using Dynamic Neural Networks

Authors: E. Sobhani-Tehrani, K. Khorasani, N. Meskin

Abstract:

This paper presents a novel integrated hybrid approach for fault diagnosis (FD) of nonlinear systems. Unlike most FD techniques, the proposed solution simultaneously accomplishes fault detection, isolation, and identification (FDII) within a unified diagnostic module. At the core of this solution is a bank of adaptive neural parameter estimators (NPE) associated with a set of singleparameter fault models. The NPEs continuously estimate unknown fault parameters (FP) that are indicators of faults in the system. Two NPE structures including series-parallel and parallel are developed with their exclusive set of desirable attributes. The parallel scheme is extremely robust to measurement noise and possesses a simpler, yet more solid, fault isolation logic. On the contrary, the series-parallel scheme displays short FD delays and is robust to closed-loop system transients due to changes in control commands. Finally, a fault tolerant observer (FTO) is designed to extend the capability of the NPEs to systems with partial-state measurement.

Keywords: Hybrid fault diagnosis, Dynamic neural networks, Nonlinear systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2229
1000 UDCA: An Energy Efficient Clustering Algorithm for Wireless Sensor Network

Authors: Boregowda S.B., Hemanth Kumar A.R. Babu N.V, Puttamadappa C., And H.S Mruthyunjaya

Abstract:

In the past few years, the use of wireless sensor networks (WSNs) potentially increased in applications such as intrusion detection, forest fire detection, disaster management and battle field. Sensor nodes are generally battery operated low cost devices. The key challenge in the design and operation of WSNs is to prolong the network life time by reducing the energy consumption among sensor nodes. Node clustering is one of the most promising techniques for energy conservation. This paper presents a novel clustering algorithm which maximizes the network lifetime by reducing the number of communication among sensor nodes. This approach also includes new distributed cluster formation technique that enables self-organization of large number of nodes, algorithm for maintaining constant number of clusters by prior selection of cluster head and rotating the role of cluster head to evenly distribute the energy load among all sensor nodes.

Keywords: Clustering algorithms, Cluster head, Energy consumption, Sensor nodes, and Wireless sensor networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2398
999 Quantifying the Stability of Software Systems via Simulation in Dependency Networks

Authors: Weifeng Pan

Abstract:

The stability of a software system is one of the most important quality attributes affecting the maintenance effort. Many techniques have been proposed to support the analysis of software stability at the architecture, file, and class level of software systems, but little effort has been made for that at the feature (i.e., method and attribute) level. And the assumptions the existing techniques based on always do not meet the practice to a certain degree. Considering that, in this paper, we present a novel metric, Stability of Software (SoS), to measure the stability of object-oriented software systems by software change propagation analysis using a simulation way in software dependency networks at feature level. The approach is evaluated by case studies on eight open source Java programs using different software structures (one employs design patterns versus one does not) for the same object-oriented program. The results of the case studies validate the effectiveness of the proposed metric. The approach has been fully automated by a tool written in Java.

Keywords: Software stability, change propagation, design pattern, software maintenance, object-oriented (OO) software.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1689
998 Methods of Geodesic Distance in Two-Dimensional Face Recognition

Authors: Rachid Ahdid, Said Safi, Bouzid Manaut

Abstract:

In this paper, we present a comparative study of three methods of 2D face recognition system such as: Iso-Geodesic Curves (IGC), Geodesic Distance (GD) and Geodesic-Intensity Histogram (GIH). These approaches are based on computing of geodesic distance between points of facial surface and between facial curves. In this study we represented the image at gray level as a 2D surface in a 3D space, with the third coordinate proportional to the intensity values of pixels. In the classifying step, we use: Neural Networks (NN), K-Nearest Neighbor (KNN) and Support Vector Machines (SVM). The images used in our experiments are from two wellknown databases of face images ORL and YaleB. ORL data base was used to evaluate the performance of methods under conditions where the pose and sample size are varied, and the database YaleB was used to examine the performance of the systems when the facial expressions and lighting are varied.

Keywords: 2D face recognition, Geodesic distance, Iso-Geodesic Curves, Geodesic-Intensity Histogram, facial surface, Neural Networks, K-Nearest Neighbor, Support Vector Machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1823
997 Detecting and Tracking Vehicles in Airborne Videos

Authors: Hsu-Yung Cheng, Chih-Chang Yu

Abstract:

In this work, we present an automatic vehicle detection system for airborne videos using combined features. We propose a pixel-wise classification method for vehicle detection using Dynamic Bayesian Networks. In spite of performing pixel-wise classification, relations among neighboring pixels in a region are preserved in the feature extraction process. The main novelty of the detection scheme is that the extracted combined features comprise not only pixel-level information but also region-level information. Afterwards, tracking is performed on the detected vehicles. Tracking is performed using efficient Kalman filter with dynamic particle sampling. Experiments were conducted on a wide variety of airborne videos. We do not assume prior information of camera heights, orientation, and target object sizes in the proposed framework. The results demonstrate flexibility and good generalization abilities of the proposed method on a challenging dataset.

Keywords: Vehicle Detection, Airborne Video, Tracking, Dynamic Bayesian Networks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1595
996 Optimization for Reducing Handoff Latency and Utilization of Bandwidth in ATM Networks

Authors: Pooja, Megha Kulshrestha, V. K. Banga, Parvinder S. Sandhu

Abstract:

To support mobility in ATM networks, a number of technical challenges need to be resolved. The impact of handoff schemes in terms of service disruption, handoff latency, cost implications and excess resources required during handoffs needs to be addressed. In this paper, a one phase handoff and route optimization solution using reserved PVCs between adjacent ATM switches to reroute connections during inter-switch handoff is studied. In the second phase, a distributed optimization process is initiated to optimally reroute handoff connections. The main objective is to find the optimal operating point at which to perform optimization subject to cost constraint with the purpose of reducing blocking probability of inter-switch handoff calls for delay tolerant traffic. We examine the relation between the required bandwidth resources and optimization rate. Also we calculate and study the handoff blocking probability due to lack of bandwidth for resources reserved to facilitate the rapid rerouting.

Keywords: Wireless ATM, Mobility, Latency, Optimization rateand Blocking Probability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1455
995 Exploiting Query Feedback for Efficient Query Routing in Unstructured Peer-to-peer Networks

Authors: Iskandar Ishak, Naomie Salim

Abstract:

Unstructured peer-to-peer networks are popular due to its robustness and scalability. Query schemes that are being used in unstructured peer-to-peer such as the flooding and interest-based shortcuts suffer various problems such as using large communication overhead long delay response. The use of routing indices has been a popular approach for peer-to-peer query routing. It helps the query routing processes to learn the routing based on the feedbacks collected. In an unstructured network where there is no global information available, efficient and low cost routing approach is needed for routing efficiency. In this paper, we propose a novel mechanism for query-feedback oriented routing indices to achieve routing efficiency in unstructured network at a minimal cost. The approach also applied information retrieval technique to make sure the content of the query is understandable and will make the routing process not just based to the query hits but also related to the query content. Experiments have shown that the proposed mechanism performs more efficient than flood-based routing.

Keywords: Unstructured peer-to-peer, Searching, Retrieval, Internet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1547
994 Multichannel Scheme under Max-Min Fairness Environment for Cognitive Radio Networks

Authors: Hans R. Márquez, Cesar Hernández, Ingrid Páez

Abstract:

This paper develops a multiple channel assignment model, which allows to take advantage of spectrum opportunities in cognitive radio networks in the most efficient way. The developed scheme allows making several assignments of available and frequency adjacent channel, which require a bigger bandwidth, under an equality environment. The hybrid assignment model it is made by two algorithms, one that makes the ranking and selects available frequency channels and the other one in charge of establishing the Max-Min Fairness for not restrict the spectrum opportunities for all the other secondary users, who also claim to make transmissions. Measurements made were done for average bandwidth, average delay, as well as fairness computation for several channel assignments. Reached results were evaluated with experimental spectrum occupational data from captured GSM frequency band. The developed model shows evidence of improvement in spectrum opportunity use and a wider average transmission bandwidth for each secondary user, maintaining equality criteria in channel assignment.

Keywords: Bandwidth, fairness, multichannel, secondary users.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1769
993 Analysis of MAC Protocols with Correlation Receiver for OCDMA Networks - Part II

Authors: Shivaleela E. S., Shrikant S. Tangade

Abstract:

In this paper optical code-division multiple-access (OCDMA) packet network is considered, which offers inherent security in the access networks. Two types of random access protocols are proposed for packet transmission. In protocol 1, all distinct codes and in protocol 2, distinct codes as well as shifted versions of all these codes are used. O-CDMA network performance using optical orthogonal codes (OOCs) 1-D and two-dimensional (2-D) wavelength/time single-pulse-per-row (W/T SPR) codes are analyzed. The main advantage of using 2-D codes instead of onedimensional (1-D) codes is to reduce the errors due to multiple access interference among different users. In this paper, correlation receiver is considered in the analysis. Using analytical model, we compute and compare packet-success probability for 1-D and 2-D codes in an O-CDMA network and the analysis shows improved performance with 2-D codes as compared to 1-D codes.

Keywords: Optical code-division multiple-access, optical CDMA correlation receiver, wavelength/time optical CDMA codes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1402
992 Solving Bus Terminal Location Problem Using Genetic Algorithm

Authors: S. Babaie-Kafaki, R. Ghanbari, S.H. Nasseri, E. Ardil

Abstract:

Bus networks design is an important problem in public transportation. The main step to this design, is determining the number of required terminals and their locations. This is an especial type of facility location problem, a large scale combinatorial optimization problem that requires a long time to be solved. The genetic algorithm (GA) is a search and optimization technique which works based on evolutionary principle of natural chromosomes. Specifically, the evolution of chromosomes due to the action of crossover, mutation and natural selection of chromosomes based on Darwin's survival-of-the-fittest principle, are all artificially simulated to constitute a robust search and optimization procedure. In this paper, we first state the problem as a mixed integer programming (MIP) problem. Then we design a new crossover and mutation for bus terminal location problem (BTLP). We tested the different parameters of genetic algorithm (for a sample problem) and obtained the optimal parameters for solving BTLP with numerical try and error.

Keywords: Bus networks, Genetic algorithm (GA), Locationproblem, Mixed integer programming (MIP).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2311
991 Machine Learning Techniques in Bank Credit Analysis

Authors: Fernanda M. Assef, Maria Teresinha A. Steiner

Abstract:

The aim of this paper is to compare and discuss better classifier algorithm options for credit risk assessment by applying different Machine Learning techniques. Using records from a Brazilian financial institution, this study uses a database of 5,432 companies that are clients of the bank, where 2,600 clients are classified as non-defaulters, 1,551 are classified as defaulters and 1,281 are temporarily defaulters, meaning that the clients are overdue on their payments for up 180 days. For each case, a total of 15 attributes was considered for a one-against-all assessment using four different techniques: Artificial Neural Networks Multilayer Perceptron (ANN-MLP), Artificial Neural Networks Radial Basis Functions (ANN-RBF), Logistic Regression (LR) and finally Support Vector Machines (SVM). For each method, different parameters were analyzed in order to obtain different results when the best of each technique was compared. Initially the data were coded in thermometer code (numerical attributes) or dummy coding (for nominal attributes). The methods were then evaluated for each parameter and the best result of each technique was compared in terms of accuracy, false positives, false negatives, true positives and true negatives. This comparison showed that the best method, in terms of accuracy, was ANN-RBF (79.20% for non-defaulter classification, 97.74% for defaulters and 75.37% for the temporarily defaulter classification). However, the best accuracy does not always represent the best technique. For instance, on the classification of temporarily defaulters, this technique, in terms of false positives, was surpassed by SVM, which had the lowest rate (0.07%) of false positive classifications. All these intrinsic details are discussed considering the results found, and an overview of what was presented is shown in the conclusion of this study.

Keywords: Artificial Neural Networks, ANNs, classifier algorithms, credit risk assessment, logistic regression, machine learning, support vector machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1300
990 Robot Movement Using the Trust Region Policy Optimization

Authors: Romisaa Ali

Abstract:

The Policy Gradient approach is a subset of the Deep Reinforcement Learning (DRL) combines Deep Neural Networks (DNN) with Reinforcement Learning (RL). This approach finds the optimal policy of robot movement, based on the experience it gains from interaction with its environment. Unlike previous policy gradient algorithms, which were unable to handle the two types of error variance and bias introduced by the DNN model due to over- or underestimation, this algorithm is capable of handling both types of error variance and bias. This article will discuss the state-of-the-art SOTA policy gradient technique, trust region policy optimization (TRPO), by applying this method in various environments compared to another policy gradient method, the Proximal Policy Optimization (PPO), to explain their robust optimization, using this SOTA to gather experience data during various training phases after observing the impact of hyper-parameters on neural network performance.

Keywords: Deep neural networks, deep reinforcement learning, Proximal Policy Optimization, state-of-the-art, trust region policy optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 200
989 An Anatomically-Based Model of the Nerves in the Human Foot

Authors: Muhammad Zeeshan UlHaque, Peng Du, Leo K. Cheng, Marc D. Jacobs

Abstract:

Sensory nerves in the foot play an important part in the diagnosis of various neuropathydisorders, especially in diabetes mellitus.However, a detailed description of the anatomical distribution of the nerves is currently lacking. A computationalmodel of the afferent nerves inthe foot may bea useful tool for the study of diabetic neuropathy. In this study, we present the development of an anatomically-based model of various major sensory nerves of the sole and dorsal sidesof the foot. In addition, we presentan algorithm for generating synthetic somatosensory nerve networks in the big-toe region of a right foot model. The algorithm was based on a modified version of the Monte Carlo algorithm, with the capability of being able to vary the intra-epidermal nerve fiber density in differentregionsof the foot model. Preliminary results from the combinedmodel show the realistic anatomical structure of the major nerves as well as the smaller somatosensory nerves of the foot. The model may now be developed to investigate the functional outcomes of structural neuropathyindiabetic patients.

Keywords: Diabetic neuropathy, Finite element modeling, Monte Carlo Algorithm, Somatosensory nerve networks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2344
988 Modeling the Symptom-Disease Relationship by Using Rough Set Theory and Formal Concept Analysis

Authors: Mert Bal, Hayri Sever, Oya Kalıpsız

Abstract:

Medical Decision Support Systems (MDSSs) are sophisticated, intelligent systems that can provide inference due to lack of information and uncertainty. In such systems, to model the uncertainty various soft computing methods such as Bayesian networks, rough sets, artificial neural networks, fuzzy logic, inductive logic programming and genetic algorithms and hybrid methods that formed from the combination of the few mentioned methods are used. In this study, symptom-disease relationships are presented by a framework which is modeled with a formal concept analysis and theory, as diseases, objects and attributes of symptoms. After a concept lattice is formed, Bayes theorem can be used to determine the relationships between attributes and objects. A discernibility relation that forms the base of the rough sets can be applied to attribute data sets in order to reduce attributes and decrease the complexity of computation.

Keywords: Formal Concept Analysis, Rough Set Theory, Granular Computing, Medical Decision Support System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1820