Search results for: optical potential parameters
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6313

Search results for: optical potential parameters

5503 Dimension Free Rigid Point Set Registration in Linear Time

Authors: Jianqin Qu

Abstract:

This paper proposes a rigid point set matching algorithm in arbitrary dimensions based on the idea of symmetric covariant function. A group of functions of the points in the set are formulated using rigid invariants. Each of these functions computes a pair of correspondence from the given point set. Then the computed correspondences are used to recover the unknown rigid transform parameters. Each computed point can be geometrically interpreted as the weighted mean center of the point set. The algorithm is compact, fast, and dimension free without any optimization process. It either computes the desired transform for noiseless data in linear time, or fails quickly in exceptional cases. Experimental results for synthetic data and 2D/3D real data are provided, which demonstrate potential applications of the algorithm to a wide range of problems.

Keywords: Covariant point, point matching, dimension free, rigid registration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 675
5502 Assessment of Sediment Remediation Potential using Microbial Fuel Cell Technology

Authors: S. W. Hong, Y. S. Choi, T. H. Chung, J. H. Song, H. S. Kim

Abstract:

Bio-electrical responses obtained from freshwater sediments by employing microbial fuel cell (MFC) technology were investigated in this experimental study. During the electricity generation, organic matter in the sediment was microbially oxidized under anaerobic conditions with an electrode serving as a terminal electron acceptor. It was found that the sediment organic matter (SOM) associated with electrochemically-active electrodes became more humified, aromatic, and polydispersed, and had a higher average molecular weight, together with the decrease in the quantity of SOM. The alteration of characteristics of the SOM was analogous to that commonly observed in the early stage of SOM diagenetic process (i.e., humification). These findings including an elevation of the sediment redox potential present a possibility of the MFC technology as a new soil/sediment remediation technique based on its potential benefits: non-destructive electricity generation and bioremediation.

Keywords: Anaerobic oxidation, microbial fuel cell, remediation, sediment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2029
5501 Cannabidiol Treatment Ameliorates Acetaminophen-Induced Hepatotoxicity in Mice

Authors: Amr A. Fouad, Waleed H. Albuali, Iyad Jresat

Abstract:

The possible therapeutic effect of cannabidiol, the major non-psychotropic Cannabis constituent, was investigated against acute hepatotoxicity induced by a single oral dose of acetaminophen (500mg/kg) in mice. Cannabidiol (two intraperitoneal injections, 5mg/kg, each) was given 1 hour and 12 hours following acetaminophen administration. Acetaminophen administration caused significant elevations of serum alanine aminotransferase, and hepatic malondialdehyde, and nitric oxide levels, and a significant decrease in hepatic reduced glutathione. Cannabidiol significantly attenuated the deterioration in the measured biochemical parameters resulted from acetaminophen administration. Also, histopathological examination showed that cannabidiol markedly attenuated ameliorated acetaminophen-induced liver tissue damage. These results emphasize that cannabidiol represents a potential therapeutic option to protect against acetaminophen hepartotoxicity which is a common clinical problem.

Keywords: cannabidiol, acetaminophen, liver, mice.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2863
5500 Treatment of Olive Mill Wastewater by Electrocoagulation Processes and Water Resources Management

Authors: Walid K. M. Bani Salameh, Hesham Ahmad, Mohammad Al-Shannag

Abstract:

In Jordan having deficit atmospheric precipitation, an increase in water demand occurs during summer months. Jordan can be regarded with a relatively high potential for wastewater recycling and reuse. The main purpose of this paper was to investigate the removal of total suspended solids (TSS) and chemical oxygen demand (COD) for olive mill wastewater (OMW) by electrocoagulation (EC) process. In the combination of electrocoagulation by using coupled iron–aluminum electrodes, the optimum working pH was found to be around 6. Results indicated that the electrocoagulation process allowed removal of TSS and COD of about 82.5% and 47.5%, respectively at 45 mA/cm2 after 70 minutes by using coupled iron–aluminum electrodes. It was demonstrated that the maximum TSS and COD removals were obtained at some optimum experimental parameters for current density, pH, and reaction time.

Keywords: Olive Mill Wastewater, Electrode, Electrocoagulation (EC), TSS, COD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2721
5499 Calculation Analysis of an Axial Compressor Supersonic Stage Impeller

Authors: Y. B. Galerkin, E. Y. Popova, K. V. Soldatova

Abstract:

There is an evident trend to elevate pressure ratio of a single stage of a turbo compressors - axial compressors in particular. Whilst there was an opinion recently that a pressure ratio 1,9 was a reasonable limit, later appeared information on successful modeling tested of stages with pressure ratio up to 2,8. The authors recon that lack of information on high pressure stages makes actual a study of rational choice of design parameters before high supersonic flow problems solving. The computer program of an engineering type was developed. Below is presented a sample of its application to study possible parameters of the impeller of the stage with pressure ratio 3,0. Influence of two main design parameters on expected efficiency, periphery blade speed and flow structure is demonstrated. The results had lead to choose a variant for further analysis and improvement by CFD methods.

Keywords: Supersonic stage, impeller, efficiency, flow rate coefficient, work coefficient, loss coefficient, oblique shock, direct shock.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2653
5498 Theoretical and Experimental Analysis of Hard Material Machining

Authors: Rajaram Kr. Gupta, Bhupendra Kumar, T. V. K. Gupta, D. S. Ramteke

Abstract:

Machining of hard materials is a recent technology for direct production of work-pieces. The primary challenge in machining these materials is selection of cutting tool inserts which facilitates an extended tool life and high-precision machining of the component. These materials are widely for making precision parts for the aerospace industry. Nickel-based alloys are typically used in extreme environment applications where a combination of strength, corrosion resistance and oxidation resistance material characteristics are required. The present paper reports the theoretical and experimental investigations carried out to understand the influence of machining parameters on the response parameters. Considering the basic machining parameters (speed, feed and depth of cut) a study has been conducted to observe their influence on material removal rate, surface roughness, cutting forces and corresponding tool wear. Experiments are designed and conducted with the help of Central Composite Rotatable Design technique. The results reveals that for a given range of process parameters, material removal rate is favorable for higher depths of cut and low feed rate for cutting forces. Low feed rates and high values of rotational speeds are suitable for better finish and higher tool life.

Keywords: Speed, feed, depth of cut, roughness, cutting force, flank wear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1965
5497 Video Quality assessment Measure with a Neural Network

Authors: H. El Khattabi, A. Tamtaoui, D. Aboutajdine

Abstract:

In this paper, we present the video quality measure estimation via a neural network. This latter predicts MOS (mean opinion score) by providing height parameters extracted from original and coded videos. The eight parameters that are used are: the average of DFT differences, the standard deviation of DFT differences, the average of DCT differences, the standard deviation of DCT differences, the variance of energy of color, the luminance Y, the chrominance U and the chrominance V. We chose Euclidean Distance to make comparison between the calculated and estimated output.

Keywords: video, neural network MLP, subjective quality, DCT, DFT, Retropropagation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1801
5496 Towards a Systematic Evaluation of Web Design

Authors: Ivayla Trifonova, Naoum Jamous, Holger Schrödl

Abstract:

A good web design is a prerequisite for a successful business nowadays, especially since the internet is the most common way for people to inform themselves. Web design includes the optical composition, the structure, and the user guidance of websites. The importance of each website leads to the question if there is a way to measure its usefulness. The aim of this paper is to suggest a methodology for the evaluation of web design. The desired outcome is to have an evaluation that is concentrated on a specific website and its target group.

Keywords: Evaluation methodology, factor analysis, target group, web design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1261
5495 Characterization of ZrO2/PEG Composite Film as Immobilization Matrix for Glucose Oxidase

Authors: N. M. Ahmad, J. Abdullah, N. I. Ramli, S. Abd Rahman, N. E. Azmi, Z. Hamzah, A. Saat, N. H. Rahman

Abstract:

A biosensor based on glucose oxidase (GOx) immobilized onto nanoparticles zirconium oxide with polyethylene nanocomposite for glucose monitoring has been designed. The CTAB/PEG/ZrO2/GOx nanocomposite was deposited onto screen printed carbon paste (SPCE) electrode via spin coating technique. The properties of CTAB/PEG/ZrO2/GOx were study using scanning electron microscopy (SEM). The SPE modified with the CTAB/PEG/ZrO2/GOx showed electrocatalytical response to the oxidation of glucose when ferrocene carboxaldehyde was used as an artificial redox mediator, which was studied by cyclic voltammetry (CV). Several parameters such as working potential, effect of pH and effect of ZrO2/PEG layers that governed the analytical performance of the biosensor, have been studied. The biosensor was applied to detect glucose with a linear range of 0.4 to 2.0 mmol L−1 with good repetability and reproducibility.

Keywords: Nanocomposite, Nanoparticles, Modified SPE, Ferrocenecarboxaldehyde.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2247
5494 Influence of Kinematic, Physical and Mechanical Structure Parameters on Aeroelastic GTU Shaft Vibrations in Magnetic Bearings

Authors: Evgeniia V. Mekhonoshina, Vladimir Ya. Modorskii, Vasilii Yu. Petrov

Abstract:

At present, vibrations of rotors of gas transmittal unit evade sustainable forecasting. This paper describes elastic oscillation modes in resilient supports and rotor impellers modeled during computational experiments with regard to interference in the system of gas-dynamic flow and compressor rotor. Verification of aeroelastic approach was done on model problem of interaction between supersonic jet in shock tube with deformed plate. ANSYS 15.0 engineering analysis system was used as a modeling tool of numerical simulation in this paper. Finite volume method for gas dynamics and finite elements method for assessment of the strain stress state (SSS) components were used as research methods. Rotation speed and material’s elasticity modulus varied during calculations, and SSS components and gas-dynamic parameters in the dynamic system of gas-dynamic flow and compressor rotor were evaluated. The analysis of time dependence demonstrated that gas-dynamic parameters near the rotor blades oscillate at 200 Hz, and SSS parameters at the upper blade edge oscillate four times higher, i.e. with blade frequency. It has been detected that vibration amplitudes correction in the test points at magnetic bearings by aeroelasticity may correspond up to 50%, and about -π/4 for phases.

Keywords: Centrifugal compressor, aeroelasticity, interdisciplinary calculation, oscillation phase displacement, vibration, nonstationarity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1308
5493 Arterial Stiffness Detection Depending on Neural Network Classification of the Multi- Input Parameters

Authors: Firas Salih, Luban Hameed, Afaf Kamil, Armin Bolz

Abstract:

Diagnostic and detection of the arterial stiffness is very important; which gives indication of the associated increased risk of cardiovascular diseases. To make a cheap and easy method for general screening technique to avoid the future cardiovascular complexes , due to the rising of the arterial stiffness ; a proposed algorithm depending on photoplethysmogram to be used. The photoplethysmograph signals would be processed in MATLAB. The signal will be filtered, baseline wandering removed, peaks and valleys detected and normalization of the signals should be achieved .The area under the catacrotic phase of the photoplethysmogram pulse curve is calculated using trapezoidal algorithm ; then will used in cooperation with other parameters such as age, height, blood pressure in neural network for arterial stiffness detection. The Neural network were implemented with sensitivity of 80%, accuracy 85% and specificity of 90% were got from the patients data. It is concluded that neural network can detect the arterial STIFFNESS depending on risk factor parameters.

Keywords: Arterial stiffness, area under the catacrotic phase of the photoplethysmograph pulse, neural network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1641
5492 Chemical Characterization and Prebiotic Effect of Water-Soluble Polysaccharides from Zizyphus lotus Leaves

Authors: Zakaria Boual, Abdellah Kemassi, Toufik Chouana, Philippe Michaud, Mohammed Didi Ould El Hadj

Abstract:

In order to investigate the prebiotic potential of oligosaccharides prepared by chemical hydrolysis of water-soluble polysaccharides (WSP) from Zizyphus lotus leaves, the effect of oligosaccharides on bacterial growth was studied. The chemical composition of WSP was evaluated by colorimetric assays revealed the average values: 7.05±0.73% proteins and 86.21±0.74% carbohydrates, among them 64.81±0.42% is neutral sugar and the rest 16.25±1.62% is uronic acids. The characterization of monosaccharides was determined by high performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) was found to be composed of galactose (23.95%), glucose (21.30%), rhamnose (20.28%), arabinose (9.55%), and glucuronic acid (22.95%). The effects of oligosaccharides on the growth of lactic acid bacteria were compared with those of fructooligosaccharide (RP95). The oligosaccharides concentration was 1g/L of Man, Rogosa, Sharpe broth. Bacterial growth was assessed during 2, 4.5, 6.5, 9, 12, 16 and 24 h by measuring the optical density of the cultures at 600 nm (OD600) and pH values. During fermentation, pH in broth cultures decreased from 6.7 to 5.87±0.15. The enumeration of lactic acid bacteria indicated that oligosaccharides led to a significant increase in bacteria (P≤0.05) compared to the control. The fermentative metabolism appeared to be faster on RP95 than on oligosaccharides from Zizyphus lotus leaves. Both RP95 and oligosaccharides showed clear prebiotic effects, but had differences in fermentation kinetics because of to the different degree of polymerization. This study shows the prebiotic effectiveness of oligosaccharides, and provides proof for the selection of leaves of Zizyphus lotus for use as functional food ingredients.

Keywords: Zizyphus lotus, polysaccharides, characterization, prebiotic effects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2416
5491 Improving Human Hand Localization in Indoor Environment by Using Frequency Domain Analysis

Authors: Wipassorn Vinicchayakul, Pichaya Supanakoon, Sathaporn Promwong

Abstract:

A human’s hand localization is revised by using radar cross section (RCS) measurements with a minimum root mean square (RMS) error matching algorithm on a touchless keypad mock-up model. RCS and frequency transfer function measurements are carried out in an indoor environment on the frequency ranged from 3.0 to 11.0 GHz to cover federal communications commission (FCC) standards. The touchless keypad model is tested in two different distances between the hand and the keypad. The initial distance of 19.50 cm is identical to the heights of transmitting (Tx) and receiving (Rx) antennas, while the second distance is 29.50 cm from the keypad. Moreover, the effects of Rx angles relative to the hand of human factor are considered. The RCS input parameters are compared with power loss parameters at each frequency. From the results, the performance of the RCS input parameters with the second distance, 29.50 cm at 3 GHz is better than the others.

Keywords: Radar cross section (RCS), fingerprint-based localization, minimum root mean square (RMS) error matching algorithm, touchless keypad model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1345
5490 Selection of Intensity Measure in Probabilistic Seismic Risk Assessment of a Turkish Railway Bridge

Authors: M. F. Yilmaz, B. Ö. Çağlayan

Abstract:

Fragility curve is an effective common used tool to determine the earthquake performance of structural and nonstructural components. Also, it is used to determine the nonlinear behavior of bridges. There are many historical bridges in the Turkish railway network; the earthquake performances of these bridges are needed to be investigated. To derive fragility curve Intensity measures (IMs) and Engineering demand parameters (EDP) are needed to be determined. And the relation between IMs and EDP are needed to be derived. In this study, a typical simply supported steel girder riveted railway bridge is studied. Fragility curves of this bridge are derived by two parameters lognormal distribution. Time history analyses are done for selected 60 real earthquake data to determine the relation between IMs and EDP. Moreover, efficiency, practicality, and sufficiency of three different IMs are discussed. PGA, Sa(0.2s) and Sa(1s), the most common used IMs parameters for fragility curve in the literature, are taken into consideration in terms of efficiency, practicality and sufficiency.

Keywords: Railway bridges, earthquake performance, fragility analyses, selection of intensity measures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 883
5489 Event Related Potentials in Terms of Visual and Auditory Stimuli

Authors: Seokbeen Lim, KyeongSeok Sim, DaKyeong Shin, Gilwon Yoon

Abstract:

Event-related potential (ERP) is one of the useful tools for investigating cognitive reactions. In this study, the potential of ERP components detected after auditory and visual stimuli was examined. Subjects were asked to respond upon stimuli that were of three categories; Target, Non-Target and Standard stimuli. The ERP after stimulus was measured. In the experiment of visual evoked potentials (VEPs), the subjects were asked to gaze at a center point on the monitor screen where the stimuli were provided by the reversal pattern of the checkerboard. In consequence of the VEP experiments, we observed consistent reactions. Each peak voltage could be measured when the ensemble average was applied. Visual stimuli had smaller amplitude and a longer latency compared to that of auditory stimuli. The amplitude was the highest with Target and the smallest with Standard in both stimuli.

Keywords: Auditory stimulus, EEG, event related potential, oddball task, visual stimulus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1243
5488 Roundness Deviation Measuring Strategy at Coordination Measuring Machines and Conventional Machines

Authors: Lenka Ocenasova, Bartosz Gapinski, Robert Cep, Linda Gregova, Branimir Barisic, Jana Novakova, Lenka Petrkovska

Abstract:

Today technological process makes possible surface control of producing parts which is needful for product quality guarantee. Geometrical structure of part surface includes form, proportion, accuracy to shape, accuracy to size, alignment and surface topography (roughness, waviness, etc.). All these parameters are dependence at technology, production machine parameters, material properties, but also at human, etc. Every parameters approves at total part accuracy, it is means at accuracy to shape. One of the most important accuracy to shape element is roundness. This paper will be deals by comparison of roughness deviations at coordination measuring machines and at special single purpose machines. Will describing measuring by discreet method (discontinuous) and scanning method (continuous) at coordination measuring machines and confrontation with reference method using at single purpose machines.

Keywords: Coordinating Measuring Machines (CMM), Measuring Strategy, Roughness Deviation, Accuracy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2361
5487 Automated Vehicle Traffic Control Tower: A Solution to Support the Next Level Automation

Authors: Xiaoyun Zhao, Rami Darwish, Anna Pernestål

Abstract:

Automated vehicles (AVs) have the potential to enhance road capacity, improving road safety and traffic efficiency. Research and development on AVs have been going on for many years. However, when the complicated traffic rules and real situations interacted, AVs fail to make decisions on contradicting situations, and are not able to have control in all conditions due to highly dynamic driving scenarios. This limits AVs’ usage and restricts the full potential benefits that they can bring. Furthermore, regulations, infrastructure development, and public acceptance cannot keep up at the same pace as technology breakthroughs. Facing these challenges, this paper proposes automated vehicle traffic control tower (AVTCT) acting as a safe, efficient and integrated solution for AV control. It introduces a concept of AVTCT for control, management, decision-making, communication and interaction with various aspects in transportation. With the prototype demonstrations and simulations, AVTCT has the potential to overcome the control challenges with AVs and can facilitate AV reaching their full potential. Possible functionalities, benefits as well as challenges of AVTCT are discussed, which set the foundation for the conceptual model, simulation and real application of AVTCT.

Keywords: Automated vehicle, connectivity and automation, intelligent transport system, traffic control, traffic safety.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1057
5486 Optimization of Springback Prediction in U-Channel Process Using Response Surface Methodology

Authors: Muhamad Sani Buang, Shahrul Azam Abdullah, Juri Saedon

Abstract:

There is not much effective guideline on development of design parameters selection on spring back for advanced high strength steel sheet metal in U-channel process during cold forming process. This paper presents the development of predictive model for spring back in U-channel process on advanced high strength steel sheet employing Response Surface Methodology (RSM). The experimental was performed on dual phase steel sheet, DP590 in Uchannel forming process while design of experiment (DoE) approach was used to investigates the effects of four factors namely blank holder force (BHF), clearance (C) and punch travel (Tp) and rolling direction (R) were used as input parameters using two level values by applying Full Factorial design (24 ). From a statistical analysis of variant (ANOVA), result showed that blank holder force (BHF), clearance (C) and punch travel (Tp) displayed significant effect on spring back of flange angle (β2 ) and wall opening angle (β1 ), while rolling direction (R) factor is insignificant. The significant parameters are optimized in order to reduce the spring back behavior using Central Composite Design (CCD) in RSM and the optimum parameters were determined. A regression model for spring back was developed. The effect of individual parameters and their response was also evaluated. The results obtained from optimum model are in agreement with the experimental values.  

Keywords: Advance high strength steel, U-channel process, Springback, Design of Experiment, Optimization, Response Surface Methodology (RSM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2290
5485 A Formulation of the Latent Class Vector Model for Pairwise Data

Authors: Tomoya Okubo, Kuninori Nakamura, Shin-ichi Mayekawa

Abstract:

In this research, a latent class vector model for pairwise data is formulated. As compared to the basic vector model, this model yields consistent estimates of the parameters since the number of parameters to be estimated does not increase with the number of subjects. The result of the analysis reveals that the model was stable and could classify each subject to the latent classes representing the typical scales used by these subjects.

Keywords: finite mixture models, latent class analysis, Thrustone's paired comparison method, vector model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1206
5484 Identifying Knowledge Gaps in Incorporating Toxicity of Particulate Matter Constituents for Developing Regulatory Limits on Particulate Matter

Authors: Ananya Das, Arun Kumar, Gazala Habib, Vivekanandan Perumal

Abstract:

Regulatory bodies has proposed limits on Particulate Matter (PM) concentration in air; however, it does not explicitly indicate the incorporation of effects of toxicities of constituents of PM in developing regulatory limits. This study aimed to provide a structured approach to incorporate toxic effects of components in developing regulatory limits on PM. A four-step human health risk assessment framework consists of - (1) hazard identification (parameters: PM and its constituents and their associated toxic effects on health), (2) exposure assessment (parameters: concentrations of PM and constituents, information on size and shape of PM; fate and transport of PM and constituents in respiratory system), (3) dose-response assessment (parameters: reference dose or target toxicity dose of PM and its constituents), and (4) risk estimation (metric: hazard quotient and/or lifetime incremental risk of cancer as applicable). Then parameters required at every step were obtained from literature. Using this information, an attempt has been made to determine limits on PM using component-specific information. An example calculation was conducted for exposures of PM2.5 and its metal constituents from Indian ambient environment to determine limit on PM values. Identified data gaps were: (1) concentrations of PM and its constituents and their relationship with sampling regions, (2) relationship of toxicity of PM with its components.

Keywords: Air, component-specific toxicity, human health risks, particulate matter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1176
5483 Using Degree of Adaptive (DOA) Model for Partner Selection in Supply Chain

Authors: Habibollah Javanmard

Abstract:

In order to reduce cost, increase quality, and for timely supplying production systems has considerably taken the advantages of supply chain management and these advantages are also competitive. Selection of appropriate supplier has an important role in improvement and efficiency of systems. The models of supplier selection which have already been used by researchers have considered selection one or more suppliers from potential suppliers but in this paper selecting one supplier as partner from one supplier that have minimum one period supplying to buyer is considered. This paper presents a conceptual model for partner selection and application of Degree of Adoptive (DOA) model for final selection. The attributes weight in this model is prepared through AHP model. After making the descriptive model, determining the attributes and measuring the parameters of the adaptive is examined in an auto industry of Iran(Zagross Khodro co.) and results are presented.

Keywords: Partnership, Degree of Adaptive, AHP, SupplyChain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1666
5482 Prediction Modeling of Compression Properties of a Knitted Sportswear Fabric Using Response Surface Method

Authors: Jawairia Umar, Tanveer Hussain, Zulfiqar Ali, Muhammad Maqsood

Abstract:

Different knitted structures and knitted parameters play a vital role in the stretch and recovery management of compression sportswear in addition to the materials use to generate this stretch and recovery behavior of the fabric. The present work was planned to predict the different performance indicators of a compression sportswear fabric with some ground parameters i.e. base yarn stitch length (polyester as base yarn and spandex as plating yarn involve to make a compression fabric) and linear density of the spandex which is a key material of any sportswear fabric. The prediction models were generated by response surface method for performance indicators such as stretch & recovery percentage, compression generated by the garment on body, total elongation on application of high power force and load generated on certain percentage extension in fabric. Certain physical properties of the fabric were also modeled using these two parameters.

Keywords: Compression, sportswear, stretch and recovery, statistical model, kikuhime.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2040
5481 Artificial Neural Network Modeling of a Closed Loop Pulsating Heat Pipe

Authors: Vipul M. Patel, Hemantkumar B. Mehta

Abstract:

Technological innovations in electronic world demand novel, compact, simple in design, less costly and effective heat transfer devices. Closed Loop Pulsating Heat Pipe (CLPHP) is a passive phase change heat transfer device and has potential to transfer heat quickly and efficiently from source to sink. Thermal performance of a CLPHP is governed by various parameters such as number of U-turns, orientations, input heat, working fluids and filling ratio. The present paper is an attempt to predict the thermal performance of a CLPHP using Artificial Neural Network (ANN). Filling ratio and heat input are considered as input parameters while thermal resistance is set as target parameter. Types of neural networks considered in the present paper are radial basis, generalized regression, linear layer, cascade forward back propagation, feed forward back propagation; feed forward distributed time delay, layer recurrent and Elman back propagation. Linear, logistic sigmoid, tangent sigmoid and Radial Basis Gaussian Function are used as transfer functions. Prediction accuracy is measured based on the experimental data reported by the researchers in open literature as a function of Mean Absolute Relative Deviation (MARD). The prediction of a generalized regression ANN model with spread constant of 4.8 is found in agreement with the experimental data for MARD in the range of ±1.81%.

Keywords: ANN models, CLPHP, filling ratio, generalized regression, spread constant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1173
5480 An Experimental Design Approach to Determine Effects of The Operating Parameters on The Rate of Ru promoted Ir Carbonylation of Methanol

Authors: Vahid Hosseinpour, Mohammad Kazemini, Alireza Mohammadrezaee

Abstract:

carbonylation of methanol in homogenous phase is one of the major routesfor production of acetic acid. Amongst group VIII metal catalysts used in this process iridium has displayed the best capabilities. To investigate effect of operating parameters like: temperature, pressure, methyl iodide, methyl acetate, iridium, ruthenium, and water concentrations on the reaction rate, experimental design for this system based upon central composite design (CCD) was utilized. Statistical rate equation developed by this method contained individual, interactions and curvature effects of parameters on the reaction rate. The model with p-value less than 0.0001 and R2 values greater than 0.9; confirmeda satisfactory fitness of the experimental and theoretical studies. In other words, the developed model and experimental data obtained passed all diagnostic tests establishing this model as a statistically significant.

Keywords: Acetic Acid, Carbonylation of Methanol, Central Composite Design, Experimental Design, Iridium/Ruthenium

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3646
5479 CFD Investigation of the Effects of Re-Entrant Combustion Chamber Geometry in a HSDI Diesel Engine

Authors: Raouf Mobasheri, Zhijun Peng

Abstract:

A CFD simulation has applied to explore the effects of combustion chamber geometry on engine performance and pollutant emissions in a HSDI diesel engine. Three ITs (Injection Timing) at 2.65 CA BTDC, 0.65 CA BTDC and 1.35 CA ATDC, all with 30 crank angle pilot separations has firstly considered to identify the optimum IT for achieving the minimum amount of pollutant emissions. In order to investigate the effect of combustion chamber, thirteen different piston bowl configurations have been designed and analyzed. For all the studied cases, compression ratio, squish bowl volume and the amount of injected fuel were kept constant to assure that variation in the engine performance were only caused by geometric parameters. The results showed that by changing the geometric parameters on piston bowl, the amount of emission pollutants can be decreased while the other performance parameters of engine remain constant.

Keywords: HSDI Diesel Engine, Combustion Chamber Geometry, Pilot Injection, Injection Timing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4175
5478 Numerical Optimization of Pin-Fin Heat Sink with Forced Cooling

Authors: Y. T. Yang, H. S. Peng, H. T. Hsu

Abstract:

This study presents the numerical simulation of optimum pin-fin heat sink with air impinging cooling by using Taguchi method. 9 L ( 4 3 ) orthogonal array is selected as a plan for the four design-parameters with three levels. The governing equations are discretized by using the control-volume-based-finite-difference method with a power-law scheme on the non-uniform staggered grid. We solved the coupling of the velocity and the pressure terms of momentum equations using SIMPLEC algorithm. We employ the k −ε two-equations turbulence model to describe the turbulent behavior. The parameters studied include fin height H (35mm-45mm), inter-fin spacing a , b , and c (2 mm-6.4 mm), and Reynolds number ( Re = 10000- 25000). The objective of this study is to examine the effects of the fin spacings and fin height on the thermal resistance and to find the optimum group by using the Taguchi method. We found that the fin spacings from the center to the edge of the heat sink gradually extended, and the longer the fin’s height the better the results. The optimum group is 3 1 2 3 H a b c . In addition, the effects of parameters are ranked by importance as a , H , c , and b .

Keywords: Heat sink, Optimum, Electronics cooling, CFD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3694
5477 Identifying the Kinematic Parameters of Hexapod Machine Tool

Authors: M. M. Agheli, M. J. Nategh

Abstract:

Hexapod Machine Tool (HMT) is a parallel robot mostly based on Stewart platform. Identification of kinematic parameters of HMT is an important step of calibration procedure. In this paper an algorithm is presented for identifying the kinematic parameters of HMT using inverse kinematics error model. Based on this algorithm, the calibration procedure is simulated. Measurement configurations with maximum observability are decided as the first step of this algorithm for a robust calibration. The errors occurring in various configurations are illustrated graphically. It has been shown that the boundaries of the workspace should be searched for the maximum observability of errors. The importance of using configurations with sufficient observability in calibrating hexapod machine tools is verified by trial calibration with two different groups of randomly selected configurations. One group is selected to have sufficient observability and the other is in disregard of the observability criterion. Simulation results confirm the validity of the proposed identification algorithm.

Keywords: Calibration, Hexapod Machine Tool (HMT), InverseKinematics Error Model, Observability, Parallel Robot, ParameterIdentification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2356
5476 Bearing Behavior of a Hybrid Monopile Foundation for Offshore Wind Turbines

Authors: Zicheng Wang

Abstract:

Offshore wind energy provides a huge potential for the expansion of renewable energies to the coastal countries. High demands are required concerning the shape and type of foundations for offshore wind turbines (OWTs) to find an economically, technically and environmentally-friendly optimal solution. A promising foundation concept is the hybrid foundation system, which consists of a steel plate attached to the outer side of a hollow steel pipe pile. In this study, the bearing behavior of a large diameter foundation is analyzed using a 3-dimensional finite element (FE) model. Non-linear plastic soil behavior is considered. The results of the numerical simulations are compared to highlight the priority of the hybrid foundation to the conventional monopile foundation.

Keywords: Hybrid foundation system, mechanical parameters, plastic soil behaviors, numerical simulations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 610
5475 Experiment Study on the Plasma Parameters Measurement in Backflow Region of Ion Thruster

Authors: Tian Kai, Yang Sheng-sheng, Li De-tian, Miao Yu-jun, Xue Yu-xiong Wang Yi, Yan Ze-dong, Ma Ya-li, ZHuang Jian-hong

Abstract:

The charge-exchange xenon (CEX) ion generated by ion thruster can backflow to the surface of spacecraft and threaten to the safety of spacecraft operation. In order to evaluate the effects of the induced plasma environment in backflow regions on the spacecraft, we designed a spherical single Langmuir probe of 5.8cm in diameter for measuring low-density plasma parameters in backflow region of ion thruster. In practice, the tests are performed in a two-dimensional array (40cm×60cm) composed of 20 sites. The experiment results illustrate that the electron temperature ranges from 3.71eV to 3.96eV, with the mean value of 3.82eV and the standard deviation of 0.064eV. The electron density ranges from 8.30×1012/m3 to 1.66×1013/m3, with the mean value of 1.30×1013/m3 and the standard deviation of 2.15×1012/m3. All data is analyzed according to the “ideal" plasma conditions of Maxwellian distributions.

Keywords: Langmuir Probe, Plasma parameters, Ion thruster, Backflow region.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1941
5474 The Analysis of Defects Prediction in Injection Molding

Authors: Mehdi Moayyedian, Kazem Abhary, Romeo Marian

Abstract:

This paper presents an evaluation of a plastic defect in injection molding before it occurs in the process; it is known as the short shot defect. The evaluation of different parameters which affect the possibility of short shot defect is the aim of this paper. The analysis of short shot possibility is conducted via SolidWorks Plastics and Taguchi method to determine the most significant parameters. Finite Element Method (FEM) is employed to analyze two circular flat polypropylene plates of 1 mm thickness. Filling time, part cooling time, pressure holding time, melt temperature and gate type are chosen as process and geometric parameters, respectively. A methodology is presented herein to predict the possibility of the short-shot occurrence. The analysis determined melt temperature is the most influential parameter affecting the possibility of short shot defect with a contribution of 74.25%, and filling time with a contribution of 22%, followed by gate type with a contribution of 3.69%. It was also determined the optimum level of each parameter leading to a reduction in the possibility of short shot are gate type at level 1, filling time at level 3 and melt temperature at level 3. Finally, the most significant parameters affecting the possibility of short shot were determined to be melt temperature, filling time, and gate type.

Keywords: Injection molding, plastic defects, short shot, Taguchi method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1523