Search results for: Underwater Sensor Network.
2485 Trustworthy Link Failure Recovery Algorithm for Highly Dynamic Mobile Adhoc Networks
Authors: Y. Harold Robinson, M. Rajaram
Abstract:
The Trustworthy link failure recovery algorithm is introduced in this paper, to provide the forwarding continuity even with compound link failures. The ephemeral failures are common in IP networks and it also has some proposals based on local rerouting. To ensure forwarding continuity, we are introducing the compound link failure recovery algorithm, even with compound link failures. For forwarding the information, each packet carries a blacklist, which is a min set of failed links encountered along its path, and the next hop is chosen by excluding the blacklisted links. Our proposed method describes how it can be applied to ensure forwarding to all reachable destinations in case of any two or more link or node failures in the network. After simulating with NS2 contains lot of samples proved that the proposed protocol achieves exceptional concert even under elevated node mobility using Trustworthy link Failure Recovery Algorithm.Keywords: Wireless Sensor Networks, Predistribution Scheme, Cryptographic Techniques.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18752484 A Methodology for Definition of Road Networks in Rural Areas of Nepal
Authors: J. K. Shrestha, A. Benta, R. B. Lopes, N. Lopes
Abstract:
This work provides a practical method for the development of rural road networks in rural areas of developing countries. The proposed methodology enables to determine obligatory points in the rural road network maximizing the number of settlements that have access to basic services within a given maximum distance. The proposed methodology is simple and practical, hence, highly applicable to real-world scenarios, as demonstrated in the definition of the road network for the rural areas of Nepal.Keywords: Minimum spanning tree, nodal points, rural road network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28852483 Hypergraph Models of Metabolism
Authors: Nicole Pearcy, Jonathan J. Crofts, Nadia Chuzhanova
Abstract:
In this paper, we employ a directed hypergraph model to investigate the extent to which environmental variability influences the set of available biochemical reactions within a living cell. Such an approach avoids the limitations of the usual complex network formalism by allowing for the multilateral relationships (i.e. connections involving more than two nodes) that naturally occur within many biological processes. More specifically, we extend the concept of network reciprocity to complex hyper-networks, thus enabling us to characterise a network in terms of the existence of mutual hyper-connections, which may be considered a proxy for metabolic network complexity. To demonstrate these ideas, we study 115 metabolic hyper-networks of bacteria, each of which can be classified into one of 6 increasingly varied habitats. In particular, we found that reciprocity increases significantly with increased environmental variability, supporting the view that organism adaptability leads to increased complexities in the resultant biochemical networks.
Keywords: Complexity, hypergraphs, reciprocity, metabolism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24582482 Performance Evaluation of Neural Network Prediction for Data Prefetching in Embedded Applications
Authors: Sofien Chtourou, Mohamed Chtourou, Omar Hammami
Abstract:
Embedded systems need to respect stringent real time constraints. Various hardware components included in such systems such as cache memories exhibit variability and therefore affect execution time. Indeed, a cache memory access from an embedded microprocessor might result in a cache hit where the data is available or a cache miss and the data need to be fetched with an additional delay from an external memory. It is therefore highly desirable to predict future memory accesses during execution in order to appropriately prefetch data without incurring delays. In this paper, we evaluate the potential of several artificial neural networks for the prediction of instruction memory addresses. Neural network have the potential to tackle the nonlinear behavior observed in memory accesses during program execution and their demonstrated numerous hardware implementation emphasize this choice over traditional forecasting techniques for their inclusion in embedded systems. However, embedded applications execute millions of instructions and therefore millions of addresses to be predicted. This very challenging problem of neural network based prediction of large time series is approached in this paper by evaluating various neural network architectures based on the recurrent neural network paradigm with pre-processing based on the Self Organizing Map (SOM) classification technique.Keywords: Address, data set, memory, prediction, recurrentneural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16772481 Avoiding Pin Ball Routing Problem in Network Mobility Hand-Off Management
Authors: M. Dinakaran, P. Balasubramanie
Abstract:
With the demand of mobility by users, wireless technologies have become the hotspot developing arena. Internet Engineering Task Force (IETF) working group has developed Mobile IP to support node mobility. The concept of node mobility indicates that in spite of the movement of the node, it is still connected to the internet and all the data transactions are preserved. It provides location-independent access to Internet. After the incorporation of host mobility, network mobility has undergone intense research. There are several intricacies faced in the real world implementation of network mobility significantly the problem of nested networks and their consequences. This article is concerned regarding a problem of nested network called pinball route problem and proposes a solution to eliminate the above problem. The proposed mechanism is implemented using NS2 simulation tool and it is found that the proposed mechanism efficiently reduces the overload caused by the pinball route problem.Keywords: Mobile IP, Pinball routing problem, NEMO
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18482480 A Video Watermarking Algorithm Based on Chaotic and Wavelet Neural Network
Authors: Jiadong Liang
Abstract:
This paper presented a video watermarking algorithm based on wavelet chaotic neural network. First, to enhance binary image’s security, the algorithm encrypted it with double chaotic based on Arnold and Logistic map, Then, the host video was divided into some equal frames and distilled the key frame through chaotic sequence which generated by Logistic. Meanwhile, we distilled the low frequency coefficients of luminance component and self-adaptively embedded the processed image watermark into the low frequency coefficients of the wavelet transformed luminance component with the wavelet neural network. The experimental result suggested that the presented algorithm has better invisibility and robustness against noise, Gaussian filter, rotation, frame loss and other attacks.
Keywords: Video watermark, double chaotic encryption, wavelet neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10542479 Application of the Neural Network to the Synthesis of Vertical Dipole Antenna over Imperfect Ground
Authors: Kais Hafsaoui
Abstract:
In this paper, we propose to study the synthesis of the vertical dipole antenna over imperfect ground. The synthesis implementation-s method for this type of antenna permits to approach the appropriated radiance-s diagram. The used approach is based on neural network. Our main contribution in this paper is the extension of a synthesis model of this vertical dipole antenna over imperfect ground.Keywords: Vertical dipole antenna, imperfect ground, neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12082478 Estimation of Shock Velocity and Pressure of Detonations and Finding Their Flow Parameters
Authors: Mahmoud Zarrini, R. N. Pralhad
Abstract:
In this paper, mathematical modeling of detonation in the ground is studied. Estimation of flow parameters such as velocity, maximum velocity, acceleration, maximum acceleration, shock pressure as a result of an explosion in the ground have been computed in an appropriate dynamic model approach. The variation of these parameters with the diameter of detonation place (L), density of earth or stone (¤ü), time decay of detonation (T), peak pressure (Pm), and time (t) have been analyzed. The model has been developed from the concept of underwater explosions [Refs. [1]-[3]] with appropriate changes to the present model requirements.
Keywords: Shock velocity, detonation, shock acceleration, shock pressure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13022477 Persian Printed Numeral Characters Recognition Using Geometrical Central Moments and Fuzzy Min-Max Neural Network
Authors: Hamid Reza Boveiri
Abstract:
In this paper, a new proposed system for Persian printed numeral characters recognition with emphasis on representation and recognition stages is introduced. For the first time, in Persian optical character recognition, geometrical central moments as character image descriptor and fuzzy min-max neural network for Persian numeral character recognition has been used. Set of different experiments on binary images of regular, translated, rotated and scaled Persian numeral characters has been done and variety of results has been presented. The best result was 99.16% correct recognition demonstrating geometrical central moments and fuzzy min-max neural network are adequate for Persian printed numeral character recognition.Keywords: Fuzzy min-max neural network, geometrical centralmoments, optical character recognition, Persian digits recognition, Persian printed numeral characters recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17282476 Face Recognition using Radial Basis Function Network based on LDA
Authors: Byung-Joo Oh
Abstract:
This paper describes a method to improve the robustness of a face recognition system based on the combination of two compensating classifiers. The face images are preprocessed by the appearance-based statistical approaches such as Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). LDA features of the face image are taken as the input of the Radial Basis Function Network (RBFN). The proposed approach has been tested on the ORL database. The experimental results show that the LDA+RBFN algorithm has achieved a recognition rate of 93.5%
Keywords: Face recognition, linear discriminant analysis, radial basis function network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21252475 Internet Bandwidth Network Quality Management: The Case Study of Telecom Organization of Thailand
Authors: Sriaroonnirun Sittha, Rotchanakitumnuai Siriluck
Abstract:
This paper addresses a current problem that occurs among Thai internet service providers with regard to bandwidth network quality management. The IPSTAR department of Telecom Organization of Thailand public company (TOT); the largest internet service provider in Thailand, is the case study to analyze the problem that exists. The Internet bandwidth network quality management (iBWQM) framework is mainly applied to the problem that has been found. Bandwidth management policy (BMP) and quality of service (QoS) are two antecedents of iBWQM. This paper investigates internet user behavior, marketing demand and network operation views in order to determine bandwidth management policy (e.g. quota management, scheduling and malicious management). The congestion of bandwidth is also analyzed to enhance quality of service (QoS). Moreover, the iBWQM framework is able to improve the quality of service and increase bandwidth utilization, minimize complaint rate concerns to slow speed, and provide network planning guidelines through Thai Internet services providers.
Keywords: Internet bandwidth management, Internet serviceprovider, Internet usage behavior, Quality of Service.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26572474 Zigbee Based Wireless Energy Surveillance System for Energy Savings
Authors: Won-Ho Kim, Chang-Ho Hyun, Moon-Jung Kim
Abstract:
In this paper, zigbee communication based wireless energy surveillance system is presented. The proposed system consists of multiple energy surveillance devices and an energy surveillance monitor. Each different standby power-off value of electric device is set automatically by using learning function of energy surveillance device. Thus adaptive standby power-off function provides user convenience and it maximizes the energy savings. Also, power consumption monitoring function is helpful to reduce inefficient energy consumption in home. The zigbee throughput simulator is designed to evaluate minimum transmission power and maximum allowable information quantity in the proposed system. The test result of prototype has been satisfied all the requirements. The proposed system has confirmed that can be used as an intelligent energy surveillance system for energy savings in home or office.
Keywords: Energy monitoring system, Energy surveillance system, Energy sensor network, Energy savings.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16762473 Classification of Computer Generated Images from Photographic Images Using Convolutional Neural Networks
Authors: Chaitanya Chawla, Divya Panwar, Gurneesh Singh Anand, M. P. S Bhatia
Abstract:
This paper presents a deep-learning mechanism for classifying computer generated images and photographic images. The proposed method accounts for a convolutional layer capable of automatically learning correlation between neighbouring pixels. In the current form, Convolutional Neural Network (CNN) will learn features based on an image's content instead of the structural features of the image. The layer is particularly designed to subdue an image's content and robustly learn the sensor pattern noise features (usually inherited from image processing in a camera) as well as the statistical properties of images. The paper was assessed on latest natural and computer generated images, and it was concluded that it performs better than the current state of the art methods.Keywords: Image forensics, computer graphics, classification, deep learning, convolutional neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11812472 An Efficient Digital Baseband ASIC for Wireless Biomedical Signals Monitoring
Authors: Kah-Hyong Chang, Xin Liu, Jia Hao Cheong, Saisundar Sankaranarayanan, Dexing Pang, Hongzhao Zheng
Abstract:
A digital baseband Application-Specific Integrated Circuit (ASIC) (yclic Redundancy Checkis developed for a microchip transponder to transmit signals and temperature levels from biomedical monitoring devices. The transmission protocol is adapted from the ISO/IEC 11784/85 standard. The module has a decimation filter that employs only a single adder-subtractor in its datapath. The filtered output is coded with cyclic redundancy check and transmitted through backscattering Load Shift Keying (LSK) modulation to a reader. Fabricated using the 0.18-μm CMOS technology, the module occupies 0.116 mm2 in chip area (digital baseband: 0.060 mm2, decimation filter: 0.056 mm2), and consumes a total of less than 0.9 μW of power (digital baseband: 0.75 μW, decimation filter: 0.14 μW).Keywords: Biomedical sensor, decimation filter, Radio Frequency Integrated Circuit (RFIC) baseband, temperature sensor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16202471 MITAutomatic ECG Beat Tachycardia Detection Using Artificial Neural Network
Authors: R. Amandi, A. Shahbazi, A. Mohebi, M. Bazargan, Y. Jaberi, P. Emadi, A. Valizade
Abstract:
The application of Neural Network for disease diagnosis has made great progress and is widely used by physicians. An Electrocardiogram carries vital information about heart activity and physicians use this signal for cardiac disease diagnosis which was the great motivation towards our study. In our work, tachycardia features obtained are used for the training and testing of a Neural Network. In this study we are using Fuzzy Probabilistic Neural Networks as an automatic technique for ECG signal analysis. As every real signal recorded by the equipment can have different artifacts, we needed to do some preprocessing steps before feeding it to our system. Wavelet transform is used for extracting the morphological parameters of the ECG signal. The outcome of the approach for the variety of arrhythmias shows the represented approach is superior than prior presented algorithms with an average accuracy of about %95 for more than 7 tachy arrhythmias.Keywords: Fuzzy Logic, Probabilistic Neural Network, Tachycardia, Wavelet Transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22932470 Artificial Neural Network Models of the Ruminal pH in Holstein Steers
Authors: Alireza Vakili, Mohsen Danesh Mesgaran, Majid Abdollazade
Abstract:
In this study four Holstein steers with rumen fistula fed 7 kg of dry matter (DM) of diets differing in concentrate to alfalfa hay ratios as 60:40, 70:30, 80:20, and 90:10 in a 4 × 4 latin square design. The pH of the ruminal fluid was measured before the morning feeding (0.0 h) to 8 h post feeding. In this study, a two-layered feed-forward neural network trained by the Levenberg-Marquardt algorithm was used for modelling of ruminal pH. The input variables of the network were time, concentrate to alfalfa hay ratios (C/F), non fiber carbohydrate (NFC) and neutral detergent fiber (NDF). The output variable was the ruminal pH. The modeling results showed that there was excellent agreement between the experimental data and predicted values, with a high determination coefficient (R2 >0.96). Therefore, we suggest using these model-derived biological values to summarize continuously recorded pH data.Keywords: Ruminal pH, Artificial Neural Network (ANN), Non Fiber Carbohydrate, Neutral Detergent Fiber.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15362469 Planar Plasmonic Terahertz Waveguides for Sensor Applications
Authors: Maidul Islam, Dibakar Roy Chowdhury, Gagan Kumar
Abstract:
We investigate sensing capabilities of a planar plasmonic THz waveguide. The waveguide is comprised of one dimensional array of periodically arranged sub wavelength scale corrugations in the form of rectangular dimples in order to ensure the plasmonic response. The THz waveguide transmission is observed for polyimide (as thin film) substance filling the dimples. The refractive index of the polyimide film is varied to examine various sensing parameters such as frequency shift, sensitivity and Figure of Merit (FoM) of the fundamental plasmonic resonance supported by the waveguide. In efforts to improve sensing characteristics, we also examine sensing capabilities of a plasmonic waveguide having V shaped corrugations and compare results with that of rectangular dimples. The proposed study could be significant in developing new terahertz sensors with improved sensitivity utilizing the plasmonic waveguides.
Keywords: Terahertz, plasmonic, sensor, sub-wavelength structures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12242468 Pattern Classification of Back-Propagation Algorithm Using Exclusive Connecting Network
Authors: Insung Jung, Gi-Nam Wang
Abstract:
The objective of this paper is to a design of pattern classification model based on the back-propagation (BP) algorithm for decision support system. Standard BP model has done full connection of each node in the layers from input to output layers. Therefore, it takes a lot of computing time and iteration computing for good performance and less accepted error rate when we are doing some pattern generation or training the network. However, this model is using exclusive connection in between hidden layer nodes and output nodes. The advantage of this model is less number of iteration and better performance compare with standard back-propagation model. We simulated some cases of classification data and different setting of network factors (e.g. hidden layer number and nodes, number of classification and iteration). During our simulation, we found that most of simulations cases were satisfied by BP based using exclusive connection network model compared to standard BP. We expect that this algorithm can be available to identification of user face, analysis of data, mapping data in between environment data and information.Keywords: Neural network, Back-propagation, classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16582467 New Multisensor Data Fusion Method Based on Probabilistic Grids Representation
Authors: Zhichao Zhao, Yi Liu, Shunping Xiao
Abstract:
A new data fusion method called joint probability density matrix (JPDM) is proposed, which can associate and fuse measurements from spatially distributed heterogeneous sensors to identify the real target in a surveillance region. Using the probabilistic grids representation, we numerically combine the uncertainty regions of all the measurements in a general framework. The NP-hard multisensor data fusion problem has been converted to a peak picking problem in the grids map. Unlike most of the existing data fusion method, the JPDM method dose not need association processing, and will not lead to combinatorial explosion. Its convergence to the CRLB with a diminishing grid size has been proved. Simulation results are presented to illustrate the effectiveness of the proposed technique.
Keywords: Cramer-Rao lower bound (CRLB), data fusion, probabilistic grids, joint probability density matrix, localization, sensor network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18082466 Control Chart Pattern Recognition Using Wavelet Based Neural Networks
Authors: Jun Seok Kim, Cheong-Sool Park, Jun-Geol Baek, Sung-Shick Kim
Abstract:
Control chart pattern recognition is one of the most important tools to identify the process state in statistical process control. The abnormal process state could be classified by the recognition of unnatural patterns that arise from assignable causes. In this study, a wavelet based neural network approach is proposed for the recognition of control chart patterns that have various characteristics. The procedure of proposed control chart pattern recognizer comprises three stages. First, multi-resolution wavelet analysis is used to generate time-shape and time-frequency coefficients that have detail information about the patterns. Second, distance based features are extracted by a bi-directional Kohonen network to make reduced and robust information. Third, a back-propagation network classifier is trained by these features. The accuracy of the proposed method is shown by the performance evaluation with numerical results.
Keywords: Control chart pattern recognition, Multi-resolution wavelet analysis, Bi-directional Kohonen network, Back-propagation network, Feature extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24832465 A Novel Approach to Allocate Channels Dynamically in Wireless Mesh Networks
Authors: Y. Harold Robinson, M. Rajaram
Abstract:
Wireless mesh networking is rapidly gaining in popularity with a variety of users: from municipalities to enterprises, from telecom service providers to public safety and military organizations. This increasing popularity is based on two basic facts: ease of deployment and increase in network capacity expressed in bandwidth per footage; WMNs do not rely on any fixed infrastructure. Many efforts have been used to maximizing throughput of the network in a multi-channel multi-radio wireless mesh network. Current approaches are purely based on either static or dynamic channel allocation approaches. In this paper, we use a hybrid multichannel multi radio wireless mesh networking architecture, where static and dynamic interfaces are built in the nodes. Dynamic Adaptive Channel Allocation protocol (DACA), it considers optimization for both throughput and delay in the channel allocation. The assignment of the channel has been allocated to be codependent with the routing problem in the wireless mesh network and that should be based on passage flow on every link. Temporal and spatial relationship rises to re compute the channel assignment every time when the pattern changes in mesh network, channel assignment algorithms assign channels in network. In this paper a computing path which captures the available path bandwidth is the proposed information and the proficient routing protocol based on the new path which provides both static and dynamic links. The consistency property guarantees that each node makes an appropriate packet forwarding decision and balancing the control usage of the network, so that a data packet will traverse through the right path.
Keywords: Wireless mesh network, spatial time division multiple access, hybrid topology, timeslot allocation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18412464 Contribution to the Study of Thermal Conductivity of Porous Silicon Used In Thermal Sensors
Authors: A. Ould-Abbas, M. Bouchaour, , M. Madani, D. Trari, O. Zeggai, M. Boukais, N.-E.Chabane-Sari
Abstract:
The porous silicon (PS), formed from the anodization of a p+ type substrate silicon, consists of a network organized in a pseudo-column as structure of multiple side ramifications. Structural micro-topology can be interpreted as the fraction of the interconnected solid phase contributing to thermal transport. The reduction of dimensions of silicon of each nanocristallite during the oxidation induced a reduction in thermal conductivity. Integration of thermal sensors in the Microsystems silicon requires an effective insulation of the sensor element. Indeed, the low thermal conductivity of PS consists in a very promising way in the fabrication of integrated thermal Microsystems.In this work we are interesting in the measurements of thermal conductivity (on the surface and in depth) of PS by the micro-Raman spectroscopy. The thermal conductivity is studied according to the parameters of anodization (initial doping and current density. We also, determine porosity of samples by spectroellipsometry.Keywords: micro-Raman spectroscopy, mono-crysatl silicon, porous silicon, thermal conductivity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18952463 The Optimal Placement of Capacitor in Order to Reduce Losses and the Profile of Distribution Network Voltage with GA, SA
Authors: Limouzade E., Joorabian M.
Abstract:
Most of the losses in a power system relate to the distribution sector which always has been considered. From the important factors which contribute to increase losses in the distribution system is the existence of radioactive flows. The most common way to compensate the radioactive power in the system is the power to use parallel capacitors. In addition to reducing the losses, the advantages of capacitor placement are the reduction of the losses in the release peak of network capacity and improving the voltage profile. The point which should be considered in capacitor placement is the optimal placement and specification of the amount of the capacitor in order to maximize the advantages of capacitor placement. In this paper, a new technique has been offered for the placement and the specification of the amount of the constant capacitors in the radius distribution network on the basis of Genetic Algorithm (GA). The existing optimal methods for capacitor placement are mostly including those which reduce the losses and voltage profile simultaneously. But the retaliation cost and load changes have not been considered as influential UN the target function .In this article, a holistic approach has been considered for the optimal response to this problem which includes all the parameters in the distribution network: The price of the phase voltage and load changes. So, a vast inquiry is required for all the possible responses. So, in this article, we use Genetic Algorithm (GA) as the most powerful method for optimal inquiry.Keywords: Genetic Algorithm (GA), capacitor placement, voltage profile, network losses, Simulating Annealing (SA), distribution network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15392462 Traffic Load based Performance Analysis of DSR and STAR Routing Protocol
Authors: Rani Astya, S.C. Sharma
Abstract:
The wireless adhoc network is comprised of wireless node which can move freely and are connected among themselves without central infrastructure. Due to the limited transmission range of wireless interfaces, in most cases communication has to be relayed over intermediate nodes. Thus, in such multihop network each node (also called router) is independent, self-reliant and capable to route the messages over the dynamic network topology. Various protocols are reported in this field and it is very difficult to decide the best one. A key issue in deciding which type of routing protocol is best for adhoc networks is the communication overhead incurred by the protocol. In this paper STAR a table driven and DSR on demand protocols based on IEEE 802.11 are analyzed for their performance on different performance measuring metrics versus varying traffic CBR load using QualNet 5.0.2 network simulator.Keywords: Adhoc networks, wireless networks, CBR, routingprotocols, route discovery, simulation, performance evaluation, MAC, IEEE 802.11, STAR, DSR
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19002461 A Novel QoS Optimization Architecture for 4G Networks
Authors: Aaqif Afzaal Abbasi, Javaid Iqbal, Akhtar Nawaz Malik
Abstract:
4G Communication Networks provide heterogeneous wireless technologies to mobile subscribers through IP based networks and users can avail high speed access while roaming across multiple wireless channels; possible by an organized way to manage the Quality of Service (QoS) functionalities in these networks. This paper proposes the idea of developing a novel QoS optimization architecture that will judge the user requirements and knowing peak times of services utilization can save the bandwidth/cost factors. The proposed architecture can be customized according to the network usage priorities so as to considerably improve a network-s QoS performance.Keywords: QoS, Network Coverage Boundary, ServicesArchives Units (SAU), Cumulative Services Archives Units (CSAU).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20252460 Split-Pipe Design of Water Distribution Network Using Simulated Annealing
Authors: J. Tospornsampan, I. Kita, M. Ishii, Y. Kitamura
Abstract:
In this paper a procedure for the split-pipe design of looped water distribution network based on the use of simulated annealing is proposed. Simulated annealing is a heuristic-based search algorithm, motivated by an analogy of physical annealing in solids. It is capable for solving the combinatorial optimization problem. In contrast to the split-pipe design that is derived from a continuous diameter design that has been implemented in conventional optimization techniques, the split-pipe design proposed in this paper is derived from a discrete diameter design where a set of pipe diameters is chosen directly from a specified set of commercial pipes. The optimality and feasibility of the solutions are found to be guaranteed by using the proposed method. The performance of the proposed procedure is demonstrated through solving the three well-known problems of water distribution network taken from the literature. Simulated annealing provides very promising solutions and the lowest-cost solutions are found for all of these test problems. The results obtained from these applications show that simulated annealing is able to handle a combinatorial optimization problem of the least cost design of water distribution network. The technique can be considered as an alternative tool for similar areas of research. Further applications and improvements of the technique are expected as well.Keywords: Combinatorial problem, Heuristics, Least-cost design, Looped network, Pipe network, Optimization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26832459 A POX Controller Module to Prepare a List of Flow Header Information Extracted from SDN Traffic
Authors: Wisam H. Muragaa, Kamaruzzaman Seman, Mohd Fadzli Marhusin
Abstract:
Software Defined Networking (SDN) is a paradigm designed to facilitate the way of controlling the network dynamically and with more agility. Network traffic is a set of flows, each of which contains a set of packets. In SDN, a matching process is performed on every packet coming to the network in the SDN switch. Only the headers of the new packets will be forwarded to the SDN controller. In terminology, the flow header fields are called tuples. Basically, these tuples are 5-tuple: the source and destination IP addresses, source and destination ports, and protocol number. This flow information is used to provide an overview of the network traffic. Our module is meant to extract this 5-tuple with the packets and flows numbers and show them as a list. Therefore, this list can be used as a first step in the way of detecting the DDoS attack. Thus, this module can be considered as the beginning stage of any flow-based DDoS detection method.
Keywords: Matching, OpenFlow tables, POX controller, SDN, table-miss.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12282458 Analysis on Fun Elements of the SNG in ANIPANG
Authors: Jangwon Lee, Joonsung Yoon
Abstract:
This study analyzes on the Social Network Game (SNG), ANIPANG, in order to discover its unique fun elements, so that suggest new methodologies for development of SNGs. ANIPANG is the most popular SNG in the South Korea on 2012. Recently, the game industry is paying close attention to mobile-based SNGs due to the rapid prevalence of smart-phones and social network services. However, SNGs are not online games simply. Although the fun of most online games is the victory through competition with other players or the game system, the fun of SNG is the communication through the collaboration with other players. Thus, features of users and environments of game should be considered for the game industry and for the fun of SNG to users.Keywords: Social Network Game, Casual user, Fun, ANIPANG.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16062457 Use of Radial Basis Function Neural Network for Bearing Pressure Prediction of Strip Footing on Reinforced Granular Bed Overlying Weak Soil
Authors: Srinath Shetty K., Shivashankar R., Rashmi P. Shetty
Abstract:
Earth reinforcing techniques have become useful and economical to solve problems related to difficult grounds and provide satisfactory foundation performance. In this context, this paper uses radial basis function neural network (RBFNN) for predicting the bearing pressure of strip footing on reinforced granular bed overlying weak soil. The inputs for the neural network models included plate width, thickness of granular bed and number of layers of reinforcements, settlement ratio, water content, dry density, cohesion and angle of friction. The results indicated that RBFNN model exhibited more than 84 % prediction accuracy, thereby demonstrating its application in a geotechnical problem.
Keywords: Bearing pressure, granular bed, radial basis function neural network, strip footing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19482456 Accelerating Integer Neural Networks On Low Cost DSPs
Authors: Thomas Behan, Zaiyi Liao, Lian Zhao, Chunting Yang
Abstract:
In this paper, low end Digital Signal Processors (DSPs) are applied to accelerate integer neural networks. The use of DSPs to accelerate neural networks has been a topic of study for some time, and has demonstrated significant performance improvements. Recently, work has been done on integer only neural networks, which greatly reduces hardware requirements, and thus allows for cheaper hardware implementation. DSPs with Arithmetic Logic Units (ALUs) that support floating or fixed point arithmetic are generally more expensive than their integer only counterparts due to increased circuit complexity. However if the need for floating or fixed point math operation can be removed, then simpler, lower cost DSPs can be used. To achieve this, an integer only neural network is created in this paper, which is then accelerated by using DSP instructions to improve performance.Keywords: Digital Signal Processor (DSP), Integer Neural Network(INN), Low Cost Neural Network, Integer Neural Network DSPImplementation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1800