Search results for: high strength stirrups
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6628

Search results for: high strength stirrups

5848 Nonlinear Modeling and Analysis of AAC infilled Sandwich Panels for out of Plane Loads

Authors: Al-Kashif M., Abdel-Mooty M., Fahmy E., Abou Zeid M., Haroun M.

Abstract:

Sandwich panels are widely used in the construction industry for their ease of assembly, light weight and efficient thermal performance. They are composed of two RC thin outer layers separated by an insulating inner layer. In this research the inner insulating layer is made of lightweight Autoclaved Aerated Concrete (AAC) blocks which has good thermal insulation properties and yet possess reasonable mechanical strength. The shear strength of the AAC infill is relied upon to replace the traditionally used insulating foam and to provide the shear capacity of the panel. A comprehensive experimental program was conducted on full scale sandwich panels subjected to bending. In this paper, detailed numerical modeling of the tested sandwich panels is reported. Nonlinear 3-D finite element modeling of the composite action of the sandwich panel is developed using ANSYS. Solid elements with different crashing and cracking capabilities and different constitutive laws were selected for the concrete and the AAC. Contact interface elements are used in this research to adequately model the shear transfer at the interface between the different layers. The numerical results showed good correlation with the experimental ones indicating the adequacy of the model in estimating the loading capacity of panels.

Keywords: Autoclaved Aerated Concrete, Concrete Sandwich Panels, Finite Element Modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3059
5847 A Systematic Approach for Identifying Turning Center Capabilities with Vertical Machining Center in Milling Operation

Authors: J. Chen, N. Hundal

Abstract:

Conventional machining is a form of subtractive manufacturing, in which a collection of material-working processes utilizing power-driven machine tools are used to remove undesired material to achieve a desired geometry. This paper presents an approach for comparison between turning center and vertical machining center by optimization of cutting parameters at cylindrical workpieces leading to minimum surface roughness by using taguchi methodology. Aluminum alloy was taken to conduct experiments due to its unique high strength-weight ratio that is maintained at elevated temperatures and their exceptional corrosion resistance. During testing, the effects of the cutting parameters on the surface roughness were investigated. Additionally, by using taguchi methodology for each of the cutting parameters (spindle speed, depth of cut, insert diameter, and feed rate) minimum surface roughness for the process of turn-milling was determined according to the cutting parameters. A confirmation experiment demonstrates the effectiveness of taguchi method.

Keywords: Surface roughness, taguchi parameter design, turning center, turn-milling operations, vertical machining center.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2506
5846 Valorization of Waste Dates in South Algeria: Biofuel Production

Authors: Insaf Mehani, Bachir Bouchekima

Abstract:

In Algeria, the conditioning units of dates, generate significant quantities of waste arising from sorting deviations. This biomass, until then considered as a waste with high impact on the environment can be transformed into high value added product. It is possible to develop common dates of low commercial value, and put on the local and international market a new generation of products with high added values such as bio ethanol. Besides its use in chemical synthesis, bio ethanol can be blended with gasoline to produce a clean fuel while improving the octane.

Keywords: Bioenergy, dates, bioethanol, valorisation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1433
5845 Differential Analysis: Crew Resource Management and Profiles on the Balanced Inventory of Desirable Responding

Authors: Charalambos C. Cleanthous, Ryan Sain, Tabitha Black, Stephen Vera, Suzanne Milton

Abstract:

A concern when administering questionnaires is whether the participant is providing information that is accurate. The results may be invalid because the person is trying to present oneself in an unrealistic positive manner referred to as ‘faking good’, or in an unrealistic negative manner known as ‘faking bad’. The Balanced Inventory of Desirable Responding (BIDR) was used to assess commercial pilots’ responses on the two subscales of the BIDR: impression management (IM) and self-deceptive enhancement (SDE) that result in high or low scores. Thus, the BIDR produces four valid profiles: IM low and SDE low, IM high and SDE low, IM low and SDE high, and IM high and SDE high. The various profiles were used to compare the respondents’ answers to crew resource management (CRM) items developed from the USA Federal Aviation Administration’s (FAA) guidelines for CRM composition and training. Of particular interest were the results on the IM subscale. The comparisons between those scoring high (lying or faking) versus those low on the IM suggest that there were significant differences regarding their views of the various dimensions of CRM. One of the more disconcerting conclusions is that the high IM scores suggest that the pilots were trying to impress rather than honestly answer the questions regarding their CRM training and practice.

Keywords: USA commercial pilots, crew resource management, faking, social desirability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 914
5844 High Energy Dual-Wavelength Mid-Infrared Extracavity KTA Optical Parametric Oscillator

Authors: Hongjun Liu, Qibing Sun, Nan Huang, Shaolan Zhu, Wei Zhao

Abstract:

A high energy dual-wavelength extracavity KTA optical parametric oscillator (OPO) with excellent stability and beam quality, which is pumped by a Q-switched single-longitudinal-mode Nd:YAG laser, has been demonstrated based on a type II noncritical phase matching (NCPM) KTA crystal. The maximum pulse energy of 10.2 mJ with the output stability of better than 4.1% rms at 3.467 μm is obtained at the repetition rate of 10 Hz and pulse width of 2 ns, and the 11.9 mJ of 1.535 μm radiation is obtained simultaneously. This extracavity NCPM KTA OPO is very useful when high energy, high beam quality and smooth time domain are needed.

Keywords: mid-infrared laser, OPO, dual-wavelength laser

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2043
5843 Application Problems of Anchor Dowels in Reinforced Concrete Shear Wall and Frame Connections

Authors: Musa H. Arslan

Abstract:

Strengthening of the existing seismically deficient reinforced concrete (RC) buildings is an important issue in earthquake prone regions. Addition of RC shear wall as infill or external walls into the structural system has been a commonly preferred strengthening technique since the Big Erzincan Earthquake occurred in Turkey, 1992. The newly added rigid infill walls act primarily as shear walls and relieve the non-ductile existing frames from being subjected to large shear demands providing that new RC inner or external walls are adequately anchored to the existing weak RC frame. The performance of the RC shear walls-RC weak frame connections by steel anchor dowels depends on some parameters such as compressive strength of the existing RC frame concrete, diameter and embedment length of anchored rebar, type of rebar, yielding stress of bar, properties of used chemicals, position of the anchor bars in RC. In this study, application problems of the steel anchor dowels have been checked with some field studies such as tensile test. Two different RC buildings which will be strengthened were selected, and before strengthening, some tests have been performed in the existing RC buildings. According to the field observation and experimental studies, if the concrete compressive strength is lower than 10 MPa, the performance of the anchors is reduced by 70%.

Keywords: Anchor dowel, concrete, damage, reinforced concrete, shear wall, frame.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1423
5842 Optimization of Fiber Rich Gluten-Free Cookie Formulation by Response Surface Methodology

Authors: Bahadur Singh Hathan, B. L. Prassana

Abstract:

Most of the commercial gluten free products are nutritionally inferior when compared to gluten containing counterparts as manufacturers most often use the refined flours and starches. So it is possible that people on gluten free diet have low intake of fibre content. The foxtail millet flour and copra meal are gluten free and have high fibre and protein contents. The formulation of fibre rich gluten free cookies was optimized by response surface methodology considering independent process variables as proportion of Foxtail millet (Setaria italica) flour in mixed flour, fat content and guar gum. The sugar, sodium chloride, sodium bicarbonates and water were added in fixed proportion as 60, 1.0, 0.4 and 20% of mixed flour weight, respectively. Optimum formulation obtained for maximum spread ratio, fibre content, surface L-value, overall acceptability and minimum breaking strength were 80% foxtail millet flour in mixed flour, 42.8 % fat content and 0.05% guar gum.

Keywords: Copra meal flour, Fiber rich gluten-free cookies, Foxtail millet flour, Optimization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2334
5841 Investigating the Effectiveness of Self-Shading Strategy on Overall Thermal Transfer Value and Window Size in High Rise Buildings

Authors: Mansour Nikpour, Mohd Zin kandar, Mohammad Ghomeshi, Nima Moeinzadeh, Mohsen Ghasemi

Abstract:

So much energy is used in high rise buildings to fulfill the basic needs of users such as lighting and thermal comfort. Malaysia has hot and humid climate, buildings especially high rise buildings receive unnecessary solar radiation that cause more solar heat gain. Energy use specially electricity consumption in high rise buildings has increased. There have been growing concerns about energy consumption and its effect on environment. Building, energy and the environment are important issues that the designers should consider to them. Self protected form is one of possible ways against the impact of solar radiation in high rise buildings. The Energy performance of building envelopes was investigated in term of the Overall Thermal Transfer Value (OTTV ).In this paper, the amount of OTTV reduction was calculated through OTTV Equations to clear the effectiveness of self shading strategy on minimizing energy consumption for cooling interior spaces in high rise buildings which has considerable envelope areas against solar radiation. Also increasing the optimum window area was investigated using self-shading strategy in designing high rise buildings. As result, the significant reduction in OTTV was shown based on WWR.In addition slight increase was demonstrated in WWR that can influence on visible comfort interior spaces.

Keywords: Self-shading strategy, high rise buildings, Overall thermal transfer value (OTTV ), Window to wall ratio (WWR).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2797
5840 A New Approach for Recoverable Timestamp Ordering Schedule

Authors: Hassan M. Najadat

Abstract:

A new approach for timestamp ordering problem in serializable schedules is presented. Since the number of users using databases is increasing rapidly, the accuracy and needing high throughput are main topics in database area. Strict 2PL does not allow all possible serializable schedules and so does not result high throughput. The main advantages of the approach are the ability to enforce the execution of transaction to be recoverable and the high achievable performance of concurrent execution in central databases. Comparing to Strict 2PL, the general structure of the algorithm is simple, free deadlock, and allows executing all possible serializable schedules which results high throughput. Various examples which include different orders of database operations are discussed.

Keywords: Concurrency control, schedule, timestamp, transaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2063
5839 The Experimental Measurement of the LiBr Concentration of a Solar Absorption Machine

Authors: N. Hatraf, L. Merabeti, Z. Neffeh, W. Taane

Abstract:

The excessive consumption of fossil energies (electrical energy) during summer caused by the technological development involves more and more climate warming.

In order to reduce the worst impact of gas emissions produced from classical air conditioning, heat driven solar absorption chiller is pretty promising; it consists on using solar as motive energy which is clean and environmentally friendly to provide cold.

Solar absorption machine is composed by four components using Lithium Bromide /water as a refrigerating couple. LiBr- water is the most promising in chiller applications due to high safety, high volatility ratio, high affinity, high stability and its high latent heat. The lithium bromide solution is constitute by the salt lithium bromide which absorbs water under certain conditions of pressure and temperature however if the concentration of the solution is high in the absorption chillers; which exceed 70%, the solution will crystallize.

The main aim of this article is to study the phenomena of the crystallization and to evaluate how the dependence between the electric conductivity and the concentration which should be controlled.

Keywords: Absorption chillers, crystallization, experimental results, Lithium Bromide solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3739
5838 Carbide Structure and Fracture Toughness of High Speed Tool Steels

Authors: Jung-Ho Moon, Tae Kwon Ha

Abstract:

In the present study, M2 high speed steels were fabricated by using electro-slag rapid remelting process. Carbide structure was analysed and the fracture toughness and hardness were also measured after austenitization treatment at 1190 and 1210oC followed by tempering treatment at 535oC for billets with various diameters from 16 to 60 mm. Electro-slag rapid remelting (ESRR) process is an advanced ESR process combined by continuous casting and successfully employed in this study to fabricate a sound M2 high speed ingot. Three other kinds of commercial M2 high speed steels, produced by traditional method, were also analysed for comparison. Distribution and structure of eutectic carbides of the ESRR billet were found to be comparable to those of commercial alloy and so was the fracture toughness.

Keywords: High speed tool steel, eutectic carbide, microstructure, hardness, fracture toughness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2502
5837 Microstructure and Mechanical Properties of Duplex Stainless steel for Anchor Bolt Application

Authors: Gil Hwan Na , Woo Young Jung , Tae Kwon Ha

Abstract:

Most buildings have been using anchor bolts commonly for installing outdoor advertising structures. Anchor bolts of common carbon steel are widely used and often installed indiscriminately by inadequate installation standards. In the area where strong winds frequently blow, falling accidents of outdoor advertising structures can occur and cause a serious disaster, which is very dangerous and to be prevented. In this regard, the development of high-performance anchor bolts is urgently required. In the present study, 25Cr-8Ni-1.5Si-1Mn-0.4C alloy was produced by traditional vacuum induction melting (VIM) for the application of anchor bolt. The alloy composition is revealed as a duplex microstructure from thermodynamic phase analysis by FactSage® and confirmed by metallographic experiment. Addition of Nitrogen to the alloy was found to reduce the ferritic phase domain and significantly increase the hardness and the tensile strength. Microstructure observation revealed mixed structure of austenite and ferrite with fine carbide distributed along the grain and phase boundaries.

Keywords: Anchor bolt, Duplex stainless steel, FactSage®, Hardness, Thermodynamic phase analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2841
5836 Complex Network Approach to International Trade of Fossil Fuel

Authors: Semanur Soyyiğit Kaya, Ercan Eren

Abstract:

Energy has a prominent role for development of nations. Countries which have energy resources also have strategic power in the international trade of energy since it is essential for all stages of production in the economy. Thus, it is important for countries to analyze the weaknesses and strength of the system. On the other side, international trade is one of the fields that are analyzed as a complex network via network analysis. Complex network is one of the tools to analyze complex systems with heterogeneous agents and interaction between them. A complex network consists of nodes and the interactions between these nodes. Total properties which emerge as a result of these interactions are distinct from the sum of small parts (more or less) in complex systems. Thus, standard approaches to international trade are superficial to analyze these systems. Network analysis provides a new approach to analyze international trade as a network. In this network, countries constitute nodes and trade relations (export or import) constitute edges. It becomes possible to analyze international trade network in terms of high degree indicators which are specific to complex networks such as connectivity, clustering, assortativity/disassortativity, centrality, etc. In this analysis, international trade of crude oil and coal which are types of fossil fuel has been analyzed from 2005 to 2014 via network analysis. First, it has been analyzed in terms of some topological parameters such as density, transitivity, clustering etc. Afterwards, fitness to Pareto distribution has been analyzed via Kolmogorov-Smirnov test. Finally, weighted HITS algorithm has been applied to the data as a centrality measure to determine the real prominence of countries in these trade networks. Weighted HITS algorithm is a strong tool to analyze the network by ranking countries with regards to prominence of their trade partners. We have calculated both an export centrality and an import centrality by applying w-HITS algorithm to the data. As a result, impacts of the trading countries have been presented in terms of high-degree indicators.

Keywords: Complex network approach, fossil fuel, international trade, network theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2368
5835 An EEG Case Study of Arithmetical Reasoning by Four Individuals Varying in Imagery and Mathematical Ability: Implications for Mathematics Education

Authors: Mark Rousell, Di Catherwood, Graham Edgar

Abstract:

The main issue of interest here is whether individuals who differ in arithmetical reasoning ability and levels of imagery ability display different brain activity during the conduct of mental arithmetical reasoning tasks. This was a case study of four participants who represented four extreme combinations of Maths –Imagery abilities: ie., low-low, high-high, high-low, low-high respectively. As the Ps performed a series of 60 arithmetical reasoning tasks, 128-channel EEG recordings were taken and the pre-response interval subsequently analysed using EGI GeosourceTM software. The P who was high in both imagery and maths ability showed peak activity prior to response in BA7 (superior parietal cortex) but other Ps did not show peak activity in this region. The results are considered in terms of the diverse routes that may be employed by individuals during the conduct of arithmetical reasoning tasks and the possible implications of this for mathematics education.

Keywords: Arithmetic, imagery, EEG, education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2046
5834 Comparison of FAHP and TOPSIS for Evacuation Capability Assessment of High-rise Buildings

Authors: Peng Mei, Yan-Jun Qi, Yu Cui, Song Lu, He-Ping Zhang

Abstract:

A lot of computer-based methods have been developed to assess the evacuation capability (EC) of high-rise buildings. Because softwares are time-consuming and not proper for on scene applications, we adopted two methods, fuzzy analytic hierarchy process (FAHP) and technique for order preference by similarity to an ideal solution (TOPSIS), for EC assessment of a high-rise building in Jinan. The EC scores obtained with the two methods and the evacuation time acquired with Pathfinder 2009 for floors 47-60 of the building were compared with each other. The results show that FAHP performs better than TOPSIS for EC assessment of high-rise buildings, especially in the aspect of dealing with the effect of occupant type and distance to exit on EC, tackling complex problem with multi-level structure of criteria, and requiring less amount of computation. However, both FAHP and TOPSIS failed to appropriately handle the situation where the exit width changes while occupants are few.

Keywords: Evacuation capability assessment, FAHP, high-rise buildings, TOPSIS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1602
5833 Breakdown of LDPE Film under Heavy Water Absorption

Authors: Eka PW, T. Okazaki, Y. Murakami, N., Hozumi, M. Nagao

Abstract:

The breakdown strength characteristic of Low Density Polyethylene films (LDPE) under DC voltage application and the effect of water absorption have been studied. Mainly, our experiment was investigated under two conditions; dry and heavy water absorption. Under DC ramp voltage, the result found that the breakdown strength under heavy water absorption has a lower value than dry condition. In order to clarify the effect, the temperature rise of film was observed using non contact thermograph until the occurrence of the electrical breakdown and the conduction current of the sample was also measured in correlation with the thermograph measurement. From the observations, it was shown that under the heavy water absorption, the hot spot in the samples appeared at lower voltage. At the same voltage the temperature of the hot spot and conduction current was higher than that under the dry condition. The measurement result has a good correlation between the existence of a critical field for conduction current and thermograph observation. In case of the heavy water absorption, the occurrence of the threshold field was earlier than the dry condition as result lead to higher of conduction current and the temperature rise appears after threshold field was significantly increased in increasing of field. The higher temperature rise was caused by the higher current conduction as the result the insulation leads to breakdown to the lower field application.

Keywords: Low density polyethylene, heavy water absorption, conduction current, temperature rise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1863
5832 Material and Parameter Analysis of the PolyJet Process for Mold Making Using Design of Experiments

Authors: A. Kampker, K. Kreisköther, C. Reinders

Abstract:

Since additive manufacturing technologies constantly advance, the use of this technology in mold making seems reasonable. Many manufacturers of additive manufacturing machines, however, do not offer any suggestions on how to parameterize the machine to achieve optimal results for mold making. The purpose of this research is to determine the interdependencies of different materials and parameters within the PolyJet process by using design of experiments (DoE), to additively manufacture molds, e.g. for thermoforming and injection molding applications. Therefore, the general requirements of thermoforming molds, such as heat resistance, surface quality and hardness, have been identified. Then, different materials and parameters of the PolyJet process, such as the orientation of the printed part, the layer thickness, the printing mode (matte or glossy), the distance between printed parts and the scaling of parts, have been examined. The multifactorial analysis covers the following properties of the printed samples: Tensile strength, tensile modulus, bending strength, elongation at break, surface quality, heat deflection temperature and surface hardness. The key objective of this research is that by joining the results from the DoE with the requirements of the mold making, optimal and tailored molds can be additively manufactured with the PolyJet process. These additively manufactured molds can then be used in prototyping processes, in process testing and in small to medium batch production.

Keywords: Additive manufacturing, design of experiments, mold making, PolyJet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1705
5831 Heat Treatment and Rest-Inserted Exercise Enhances EMG Activity of the Lower Limb

Authors: Jae Kyun Bang, Sung Jae Hwang, Chang Yong Ko, Chi Hyun Kim

Abstract:

Prolonged immobilization leads to significant weakness and atrophy of the skeletal muscle and can also impair the recovery of muscle strength following injury. Therefore, it is important to minimize the period under immobilization and accelerate the return to normal activity. This study examined the effects of heat treatment and rest-inserted exercise on the muscle activity of the lower limb during knee flexion/extension. Twelve healthy subjects were assigned to 4 groups that included: (1) heat treatment + rest-inserted exercise; (2) heat + continuous exercise; (3) no heat + rest-inserted exercise; and (4) no heat + continuous exercise. Heat treatment was applied for 15 mins prior to exercise. Continuous exercise groups performed knee flexion/extension at 0.5 Hz for 300 cycles without rest whereas rest-inserted exercise groups performed the same exercise but with 2 mins rest inserted every 60 cycles of continuous exercise. Changes in the rectus femoris and hamstring muscle activities were assessed at 0, 1, and 2 weeks of treatment by measuring the electromyography signals of isokinetic maximum voluntary contraction. Significant increases in both the rectus femoris and hamstring muscles were observed after 2 weeks of treatment only when both heat treatment and rest-inserted exercise were performed. These results suggest that combination of various treatment techniques, such as heat treatment and rest-inserted exercise, may expedite the recovery of muscle strength following immobilization.

Keywords: Electromyography, Heat Treatment, Muscle, Rest-Inserted Exercise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1851
5830 Finite Element Modeling and Mechanical Properties of Aluminum Proceed by Equal Channel Angular Pressing Process

Authors: F. Al-Mufadi, F. Djavanroodi

Abstract:

During the last decade ultrafine grained (UFG) and nano-structured (NS) materials have experienced a rapid development. In this research work finite element analysis has been carried out to investigate the plastic strain distribution in equal channel angular process (ECAP). The magnitudes of Standard deviation (S. D.) and inhomogeneity index (Ci) were compared for different ECAP passes. Verification of a three-dimensional finite element model was performed with experimental tests. Finally the mechanical property including impact energy of ultrafine grained pure commercially pure Aluminum produced by severe plastic deformation method has been examined. For this aim, equal channel angular pressing die with the channel angle, outer corner angle and channel diameter of 90°, 20° and 20mm had been designed and manufactured. Commercial pure Aluminum billets were ECAPed up to four passes by route BC at the ambient temperature. The results indicated that there is a great improvement at the hardness measurement, yield strength and ultimate tensile strength after ECAP process. It is found that the magnitudes of HV reach 67HV from 21HV after the final stage of process. Also, about 330% and 285% enhancement at the YS and UTS values have been obtained after the fourth pass as compared to the as-received conditions, respectively. On the other hand, the elongation to failure and impact energy have been reduced by 23% and 50% after imposing four passes of ECAP process, respectively.

Keywords: SPD, ECAP, FEM, Pure Al, Mechanical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2494
5829 Photoluminescence Properties of β-FeSi2 on Cu- or Au-coated Si

Authors: Kensuke Akiyama, Satoru Kaneko, Takeshi Ozawa, Kazuya Yokomizo, Masaru Itakura

Abstract:

The photoluminescence (PL) at 1.55 μm from semiconducting β-FeSi2 has attracted a noticeable interest for silicon-based optoelectronic applications. Moreover, its high optical absorption coefficient (higher than 105 cm-1 above 1.0 eV) allows this semiconducting material to be used as photovoltanics devices. A clear PL spectrum for β-FeSi2 was observed by Cu or Au coating on Si(001). High-crystal-quality β-FeSi2 with a low-level nonradiative center was formed on a Cu- or Au- reated Si layer. This method of deposition can be applied to other materials requiring high crystal quality.

Keywords: iron silicide, semiconductor, epitaxial, photoluminescence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2589
5828 Effect of Non-Metallic Inclusion from the Continuous Casting Process on the Multi-Stage Forging Process and the Tensile Strength of the Bolt: A Case Study

Authors: Tomasz Dubiel, Tadeusz Balawender, Mirosław Osetek

Abstract:

The paper presents the influence of non-metallic inclusions on the multi-stage forging process and the mechanical properties of the dodecagon socket bolt used in the automotive industry. The detected metallurgical defect was so large that it directly influenced the mechanical properties of the bolt and resulted in failure to meet the requirements of the mechanical property class. In order to assess the defect, an X-ray examination and metallographic examination of the defective bolt were performed, showing exogenous non-metallic inclusion. The size of the defect on the cross section was 0.531 mm in width and 1.523 mm in length; the defect was continuous along the entire axis of the bolt. In analysis, a finite element method (FEM) simulation of the multi-stage forging process was designed, taking into account a non-metallic inclusion parallel to the sample axis, reflecting the studied case. The process of defect propagation due to material upset in the head area was analyzed. The final forging stage in shaping the dodecagonal socket and filling the flange area was particularly studied. The effect of the defect was observed to significantly reduce the effective cross-section as a result of the expansion of the defect perpendicular to the axis of the bolt. The mechanical properties of products with and without the defect were analyzed. In the first step, the hardness test confirmed that the required value for the mechanical class 8.8 of both bolt types was obtained. In the second step, the bolts were subjected to a static tensile test. The bolts without the defect gave a positive result, while all 10 bolts with the defect gave a negative result, achieving a tensile strength below the requirements. Tensile strength tests were confirmed by metallographic tests and FEM simulation with perpendicular inclusion spread in the area of the head. The bolts were damaged directly under the bolt head, which is inconsistent with the requirements of ISO 898-1. It has been shown that non-metallic inclusions with orientation in accordance with the axis of the bolt can directly cause loss of functionality and these defects should be detected even before assembling in the machine element.

Keywords: continuous casting, multi-stage forging, non-metallic inclusion, upset bolt head

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 515
5827 Effect of Using Stone Cutting Waste on the Compression Strength and Slump Characteristics of Concrete

Authors: Kamel K. Alzboon, Khalid N.Mahasneh

Abstract:

The aim of this work is to study the possible use of stone cutting sludge waste in concrete production, which would reduce both the environmental impact and the production cost .Slurry sludge was used a source of water in concrete production, which was obtained from Samara factory/Jordan, The physico-chemical and mineralogical characterization of the sludge was carried out to identify the major components and to compare it with the typical sand used to produce concrete. Samples analysis showed that 96% of slurry sludge volume is water, so it should be considered as an important source of water. Results indicated that the use of slurry sludge as water source in concrete production has insignificant effect on compression strength, while it has a sharp effect on the slump values. Using slurry sludge with a percentage of 25% of the total water content obtained successful concrete samples regarding slump and compression tests. To clarify slurry sludge, settling process can be used to remove the suspended solid. A settling period of 30 min. obtained 99% removal efficiency. The clarified water is suitable for using in concrete mixes, which reduce water consumption, conserve water recourses, increase the profit, reduce operation cost and save the environment. Additionally, the dry sludge could be used in the mix design instead of the fine materials with sizes < 160 um. This application could conserve the natural materials and solve the environmental and economical problem caused by sludge accumulation.

Keywords: Concrete, recycle, sludge, slurry waste, stone cutting waste, waste.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3536
5826 Thermal Cracking Respone of Reinforced Concrete Beam to Gradient Temperature

Authors: L. Dahmani, M.Kouane

Abstract:

In this paper are illustrated the principal aspects connected with the numerical evaluation of thermal stress induced by high gradient temperature in the concrete beam. The reinforced concrete beam has many advantages over steel beam, such as high resistance to high temperature, high resistance to thermal shock, Better resistance to fatigue and buckling, strong resistance against, fire, explosion, etc. The main drawback of the reinforced concrete beam is its poor resistance to tensile stresses. In order to investigate the thermal induced tensile stresses, a numerical model of a transient thermal analysis is presented for the evaluation of thermo-mechanical response of concrete beam to the high temperature, taking into account the temperature dependence of the thermo physical properties of the concrete like thermal conductivity and specific heat.

Keywords: Cracking, Gradient Temperature, Reinforced Concrete beam, Thermo-mechanical analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3670
5825 Design and Performance Evaluation of Hybrid Corrugated-GFRP Infill Panels

Authors: WooYoung Jung, HoYoung Son

Abstract:

This study presented to reduce earthquake damage and emergency rehabilitation of critical structures such as schools, hightech factories, and hospitals due to strong ground motions associated with climate changes. Regarding recent trend, a strong earthquake causes serious damage to critical structures and then the critical structure might be influenced by sequence aftershocks (or tsunami) due to fault plane adjustments. Therefore, in order to improve seismic performance of critical structures, retrofitted or strengthening study of the structures under aftershocks sequence after emergency rehabilitation of the structures subjected to strong earthquakes is widely carried out. Consequently, this study used composite material for emergency rehabilitation of the structure rather than concrete and steel materials because of high strength and stiffness, lightweight, rapid manufacturing, and dynamic performance. Also, this study was to develop or improve the seismic performance or seismic retrofit of critical structures subjected to strong ground motions and earthquake aftershocks, by utilizing GFRP-Corrugated Infill Panels (GCIP).

Keywords: Composite material, GFRP, Infill Panel, Aftershock, Seismic Retrofitting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2259
5824 Reactive Absorption of Hydrogen Sulfide in Aqueous Ferric Sulfate Solution

Authors: Z. Gholami, M. Torabi Angaji, F. Gholami, S. A. Razavi Alavi

Abstract:

Many commercial processes are available for the removal of H2S from gaseous streams. The desulfurization of gas streams using aqueous ferric sulfate solution as washing liquor is studied. Apart from sulfur, only H2O is generated in the process, and consequently, no waste treatment facilities are required. A distinct advantage of the process is that the reaction of H2S with is so rapid and complete that there remains no danger of discharging toxic waste gas. In this study, the reactive absorption of hydrogen sulfide into aqueous ferric sulfate solution has been studied and design calculations for equipments have been done and effective operation parameters on this process considered. Results show that high temperature and low pressure are suitable for absorption reaction. Variation of hydrogen sulfide concentration and Fe3+ concentration with time in absorption reaction shown that the reaction of ferric sulfate and hydrogen sulfide is first order with respect to the both reactant. At low Fe2(SO4)3 concentration the absorption rate of H2S increase with increasing the Fe2(SO4)3 concentration. At higher concentration a decrease in the absorption rate was found. At higher concentration of Fe2(SO4)3, the ionic strength and viscosity of solution increase remarkably resulting in a decrease of solubility, diffusivity and hence absorption rate.

Keywords: Absorption, Fe2(SO4)3, H2S, Reactive Absorption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3919
5823 Performance of Concrete Grout under Aggressive Chloride Environment in Sabah

Authors: S. Imbin, S. Dullah, H. Asrah, P. S. Kumar, M. E. Rahman, M. A. Mannan

Abstract:

Service life of existing reinforced concrete (RC) structures in coastal towns of Sabah has been affected very much. Concrete crack, spalling of concrete cover and reinforcement rusting of RC buildings are seen even within 5 years of construction in Sabah. Hence, in this study a new mix design of concrete grout was developed using locally available materials and investigated under two curing conditions and workability, compressive strength, Accelerated Mortar Bar Test (AMBT), water absorption, volume of permeable voids (VPV), Sorptivity and 90-days salt ponding test were conducted. The compressive strength of concrete grout at the age 90 days was found to be 44.49 N/mm2 under water curing. It was observed that the percentage of mortar bar length change was below 1% for developed concrete grout. The water absorption of the concrete grout was in between the range of 0.88 % to 3.60 % under two different curing up to the age 90 days. It was also observed that the VPV of concrete was in the range of 0 % to 9.75 and 2.44% to 13.05% under water curing and site curing respectively. It was found that the Sorptivity of the concrete grout under water curing at the age of 28 days is 0.211mm/√min and at the age 90 day are 0.067 mm/√min. The chloride content decreased greatly, 90% after a depth of 15 mm. It was noticed that the site cured samples showed higher chloride contents near surface compared to water cured samples. This investigation suggested that the developed mix design of concrete grout using locally available construction materials can be used for crack repairing of existing RC structures in Sabah.

Keywords: Concrete grout, Salt ponding, Sorptivity, Water absorption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2832
5822 A Single Switch High Step-Up DC/DC Converter with Zero Current Switching Condition

Authors: Rahil Samani, Saeed Soleimani, Ehsan Adib, Majid Pahlevani

Abstract:

This paper presents an inverting high step-up DC/DC converter. Basically, this high step-up DC/DC converter is an appealing interface for solar applications. The proposed topology takes advantage of using coupled inductors. Due to the leakage inductances of these coupled inductors, the power MOSFET has the zero current switching (ZCS) condition, which results in decreased switching losses. This will substantially improve the overall efficiency of the power converter. Furthermore, employing coupled inductors has led to a higher voltage gain. Theoretical analysis and experimental results of a 100W 20V/220V prototype are presented to verify the superior performance of the proposed DC/DC converter.

Keywords: Coupled inductors, high step-up DC/DC converter, zero-current switching, cuk converter, sepic converter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 693
5821 Fatigue Tests of New Assembly Bolt Connections for Perspective Temporary Steel Railway Bridges

Authors: Marcela Karmazínová, Michal Štrba, Milan Pilgr

Abstract:

The paper deals with the problems of the actual behavior, failure mechanism and load-carrying capacity of the special bolt connection developed and intended for the assembly connections of truss main girders of perspective railway temporary steel bridges. Within the framework of this problem solution, several types of structural details of assembly joints have been considered as the conceptual structural design. Based on the preliminary evaluation of advantages or disadvantages of these ones, in principle two basic structural configurations – so-called “tooth” and “splice-plate” connections have been selected for the subsequent detailed investigation. This investigation is mainly based on the experimental verification of the actual behavior, strain and failure mechanism and corresponding strength of the connection, and on its numerical modeling using FEM. This paper is focused only on the cyclic loading (fatigue) tests results of “splice-plate” connections and their evaluation, which have already been finished. Simultaneously with the fatigue tests, the static loading tests have been realized too, but these ones, as well as FEM numerical modeling, are not the subject of this paper.

Keywords: Bolt assembly connection, Cyclic loading, Failure mechanisms, Fatigue strength, Steel structure, Structural detail category, Temporary railway bridge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2152
5820 Vibration Damping of High-Chromium Ferromagnetic Steel

Authors: Satish BM, Girish BM , Mahesh K

Abstract:

The aim of the present work is to study the effect of annealing on the vibration damping capacity of high-chromium (16%) ferromagnetic steel. The alloys were prepared from raw materials of 99.9% purity melted in a high frequency induction furnace under high vacuum. The samples were heat-treated in vacuum at various temperatures (800 to 1200ºC) for 1 hour followed by slow cooling (120ºC/h). The inverted torsional pendulum method was used to evaluate the vibration damping capacity. The results indicated that the vibration damping capacity of the alloys is influenced by annealing and there exists a critical annealing temperature after 1000ºC. The damping capacity increases quickly below the critical temperature since the magnetic domains move more easily.

Keywords: Vibration, Damping, Ferromagnetic, Steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2138
5819 Influence of p-y curves on Buckling Capacity of Pile Foundation

Authors: Praveen Huded M., Suresh R. Dash

Abstract:

Pile foundations are one of the most preferred deep foundation systems for high rise or heavily loaded structures. In many instances, the failure of the pile founded structures in liquefiable soils had been observed even in many recent earthquakes. Failure of pile foundation have occurred because of buckling, as the pile behaves as an unsupported slender structural element once the surrounding soil liquefies. However, the buckling capacity depends on the depth of soil liquefied and its residual strength. Hence it is essential to check the pile against the possible buckling failure. Beam on non-linear Winkler Foundation is one of the efficient methods to model the pile-soil behavior in liquefiable soil. The pile-soil interaction is modelled through p-y springs, there are different p-y curves available for modeling liquefiable soil. In the present work, the influence of two such p-y curves on the buckling capacity of pile foundation is studied considering the initial geometric and non-linear behavior of pile foundation. The proposed method is validated against experimental results. A significant difference in the buckling capacity is observed for the two p-y curves used in the analysis. A parametric study is conducted to understand the influence of pile flexural rigidity, different initial geometric imperfections, and different soil relative densities on the buckling capacity of pile foundation.

Keywords: pile foundation, liquefaction, buckling load, non-linear p-y curve

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 629