Search results for: Water Absorption and Permeability
1992 Surfactant Stabilized Nanoemulsion: Characterization and Application in Enhanced Oil Recovery
Authors: Ajay Mandal, Achinta Bera
Abstract:
Nanoemulsions are a class of emulsions with a droplet size in the range of 50–500 nm and have attracted a great deal of attention in recent years because it is unique characteristics. The physicochemical properties of nanoemulsion suggests that it can be successfully used to recover the residual oil which is trapped in the fine pore of reservoir rock by capillary forces after primary and secondary recovery. Oil-in-water nanoemulsion which can be formed by high-energy emulsification techniques using specific surfactants can reduce oil-water interfacial tension (IFT) by 3-4 orders of magnitude. The present work is aimed on characterization of oil-inwater nanoemulsion in terms of its phase behavior, morphological studies; interfacial energy; ability to reduce the interfacial tension and understanding the mechanisms of mobilization and displacement of entrapped oil blobs by lowering interfacial tension both at the macroscopic and microscopic level. In order to investigate the efficiency of oil-water nanoemulsion in enhanced oil recovery (EOR), experiments were performed to characterize the emulsion in terms of their physicochemical properties and size distribution of the dispersed oil droplet in water phase. Synthetic mineral oil and a series of surfactants were used to prepare oil-in-water emulsions. Characterization of emulsion shows that it follows pseudo-plastic behaviour and drop size of dispersed oil phase follows lognormal distribution. Flooding experiments were also carried out in a sandpack system to evaluate the effectiveness of the nanoemulsion as displacing fluid for enhanced oil recovery. Substantial additional recoveries (more than 25% of original oil in place) over conventional water flooding were obtained in the present investigation.Keywords: Nanoemulsion, Characterization, Enhanced Oil Recovery, Particle Size Distribution
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 50301991 The South African Polycentric Water Resource Governance-Management Nexus: Parlaying an Institutional Agent and Structured Social Engagement
Authors: J. H. Boonzaaier, A. C. Brent
Abstract:
South Africa, a water scarce country, experiences the phenomenon that its life supporting natural water resources is seriously threatened by the users that are totally dependent on it. South Africa is globally applauded to have of the best and most progressive water laws and policies. There are however growing concerns regarding natural water resource quality deterioration and a critical void in the management of natural resources and compliance to policies due to increasing institutional uncertainties and failures. These are in accordance with concerns of many South African researchers and practitioners that call for a change in paradigm from talk to practice and a more constructive, practical approach to governance challenges in the management of water resources. A qualitative theory-building case study through longitudinal action research was conducted from 2014 to 2017. The research assessed whether a strategic positioned institutional agent can be parlayed to facilitate and execute WRM on catchment level by engaging multiple stakeholders in a polycentric setting. Through a critical realist approach a distinction was made between ex ante self-deterministic human behaviour in the realist realm, and ex post governance-management in the constructivist realm. A congruence analysis, including Toulmin’s method of argumentation analysis, was utilised. The study evaluated the unique case of a self-steering local water management institution, the Impala Water Users Association (WUA) in the Pongola River catchment in the northern part of the KwaZulu-Natal Province of South Africa. Exploiting prevailing water resource threats, it expanded its ancillary functions from 20,000 to 300,000 ha. Embarking on WRM activities, it addressed natural water system quality assessments, social awareness, knowledge support, and threats, such as: soil erosion, waste and effluent into water systems, coal mining, and water security dimensions; through structured engagement with 21 different catchment stakeholders. By implementing a proposed polycentric governance-management model on a catchment scale, the WUA achieved to fill the void. It developed a foundation and capacity to protect the resilience of the natural environment that is critical for freshwater resources to ensure long-term water security of the Pongola River basin. Further work is recommended on appropriate statutory delegations, mechanisms of sustainable funding, sufficient penetration of knowledge to local levels to catalyse behaviour change, incentivised support from professionals, back-to-back expansion of WUAs to alleviate scale and cost burdens, and the creation of catchment data monitoring and compilation centres.
Keywords: Institutional agent, water governance, polycentric water resource management, water resource management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7471990 Assessing the Viability of Solar Water Pumps Economically, Socially and Environmentally in Soan Valley, Punjab
Authors: Zenab Naseem, Sadia Imran
Abstract:
One of the key solutions to the climate change crisis is to develop renewable energy resources, such as solar and wind power and biogas. This paper explores the socioeconomic and environmental viability of solar energy, based on a case study of the Soan Valley Development Program. Under this project, local farmers were provided solar water pumps at subsidized rates. These have been functional for the last seven years and have gained popularity among the local communities. The study measures the economic viability of using solar energy in agriculture, based on data from 36 households, of which 12 households each use diesel, electric and solar water pumps. Our findings are based on the net present value of each technology type. We also carry out a qualitative assessment of the social impact of solar water pumps relative to diesel and electric pumps. Finally, we conduct an environmental impact assessment, using the lifecycle assessment approach. All three analyses indicate that solar energy is a viable alternative to diesel and electricity.Keywords: Alternative energy sources, pollution control adoption and costs, solar energy pumps, sustainable development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26261989 Improving Power Plant Efficiency using Water Droplet Injection in Air Condensers
Authors: Mohammad Javadi, A. Golshani, Amir Mahdi Ghasemi, Morteza Anbarsooz, M. Moghiman
Abstract:
Observations show that power plant efficiency decreases in hot summer days. Water droplet injection in air condensers is suggested in order to decrease the inlet air temperature. Nozzle arrangement, injected water flow rate and droplets diameter effects on evaporation rate and the resulting air temperature are investigated using numerical simulation. Decreasing the diameter of injected droplets and increasing the number of injecting nozzles, decreases the outlet air temperature. Also a more uniform air temperature can be obtained using more injecting nozzles. Numerical results are in good agreement with analytical results.Keywords: Power, air condenser, evaporation, droplet injection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18851988 Evaluation of Stormwater Quantity and Quality Control through Constructed Mini Wet Pond: A Case Study
Authors: Y. S. Liew, K. A. Puteh Ariffin, M. A. Mohd Nor
Abstract:
One of the Best Management Practices (BMPs) promoted in Urban Stormwater Management Manual for Malaysia (MSMA) published by the Department of Irrigation and Drainage (DID) in 2001 is through the construction of wet ponds in new development projects for water quantity and quality control. Therefore, this paper aims to demonstrate a case study on evaluation of a constructed mini wet pond located at Sekolah Rendah Kebangsaan Seksyen 2, Puchong, Selangor, Malaysia in both stormwater quantity and quality aspect particularly to reduce the peak discharge by temporary storing and gradual release of stormwater runoff from an outlet structure or other release mechanism. The evaluation technique will be using InfoWorks Collection System (CS) as the numerical modeling approach for water quantity aspect. Statistical test by comparing the correlation coefficient (R2), mean error (ME), mean absolute error (MAE) and root mean square error (RMSE) were used to evaluate the model in simulating the peak discharge changes. Results demonstrated that there will be a reduction in peak flow at 11 % to 15% and time to peak flow is slower by 5 minutes through a wet pond. For water quality aspect, a survey on biological indicator of water quality carried out depicts that the pond is within the range of rather clean to clean water with the score of 5.3. This study indicates that a constructed wet pond with wetland facilities is able to help in managing water quantity and stormwater generated pollution at source, towards achieving ecologically sustainable development in urban areas.
Keywords: Wet pond, Retention Facilities, Best Management Practices (BMP), Urban Stormwater Management Manual for Malaysia (MSMA).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25271987 Hydro-Geochemistry of Qare-Sou Catchment and Gorgan Gulf, Iran: Examining Spatial and Temporal Distribution of Major Ions and Determining the River’s Hydro-Chemical Type
Authors: Milad Kurdi, Hadi Farhadian, Teymour Eslamkish
Abstract:
This study examined the hydro-geochemistry of Qare-Sou catchment and Gorgan Gulf in order to determine the spatial distribution of major ions. In this regard, six hydrometer stations in the catchment and four stations in Gorgan Gulf were chosen and the samples were collected. Results of spatial and temporal distribution of major ions have shown similar variation trends for calcium, magnesium, and bicarbonate ions. Also, the spatial trend of chloride, sulfate, sodium and potassium ions were same as Electrical Conductivity (EC) and Total Dissolved Solid (TDS). In Nahar Khoran station, the concentrations of ions were more than other stations which may be related to human activities and the role of geology. The Siah Ab station’s ions showed high concentration which is may be related to the station’s close proximity to Gorgan Gulf and the return of water to Qare-Sou River. In order to determine the interaction of water and rock, the Gibbs diagram was used and the results showed that water of the river falls in the rock range and it is affected more by weathering and reaction between water and stone and less by evaporation and crystallization. Assessment of the quality of river water by using graphic methods indicated that the type of water in this area is Ca-HCO3-Mg. Major ions concentration in Qare-Sou in the universal average was more than but not more than the allowed limit by the World Health Organization and China Standard Organization. A comparison of ions concentration in Gorgan Gulf, seas and oceans showed that the pH in Gorgan Gulf was more than the other seas but in Gorgan Gulf the concentration of anion and cation was less than other seas.
Keywords: Hydro-geochemistry, Qare-Sou River, Gorgan Gulf, major ions, Gibbs diagram, water quality, graphical methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17501986 Urban Development from the Perspective of Lou Gang Polder System: Taihu Lake, Huzhou as an Example
Authors: Wei Bin Shen
Abstract:
Lou Gang world irrigation project heritage in Taihu Lake is a systematic irrigation project integrating water conservancy, ecology and culture. Through the methods of historical documents and field investigation, this paper deeply analyzes the formation history, connotation and value of Lou Gang polder system: Lou Gang heritage, describes in detail the relationship between Lou Gang polder system in Taihu Lake and the development and evolution of Huzhou City, and initially explores the protection and Utilization Strategies of Lou Gang water conservancy cultural heritage resources in Taihu Lake from the current situation.
Keywords: Lou Gang, protection strategy, urban evolution, water conservancy cultural heritage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7361985 Evaluation of Chlorophyll Content and Chlorophyll Fluorescence Parameters and Relationships between Chlorophyll a, b and Chlorophyll Content Index under Water Stress in Olea europaea cv. Dezful
Authors: E. Khaleghi, K. Arzani, N. Moallemi, M. Barzegar
Abstract:
This study was conducted to determine effect of water stress on chlorophyll content and chlorophyll fluorescence parameter in young `Dezful- olive trees. Three irrigation regimes (40% ETcrop, 65% ETcrop and 100% ETcrop) were used. After irrigation treatments were applied, some of biochemical parameters including chlorophyll a, b, total chlorophyll, chlorophyll fluorescence and also chlorophyll content index (C.C.I) were measured. Results of Analysis of variance showed that irrigation treatments had significant effect on chlorophylla, total chlorophyll (chl a+b), C.C.I and Fv/Fm ratio. The amount of decreased chlorophyll a and total chlorophyll in plants were received 40% ETcrop were 51.55% and 46.86%, respectively, compared with 100% ETcrop.
Keywords: Evatarnspiration (ETcrop), Chlorophyll Content, Chlorophyll Fluorescence, Water stress, Olive
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 57641984 Thermodynamic Analysis of Ammonia-Water Based Regenerative Rankine Cycle with Partial Evaporation
Authors: Kyoung Hoon Kim
Abstract:
A thermodynamic analysis of a partial evaporating Rankine cycle with regeneration using zeotropic ammonia-water mixture as a working fluid is presented in this paper. The thermodynamic laws were applied to evaluate the system performance. Based on the thermodynamic model, the effects of the vapor quality and the ammonia mass fraction on the system performance were extensively investigated. The results showed that thermal efficiency has a peak value with respect to the vapor quality as well as the ammonia mass fraction. The partial evaporating ammonia based Rankine cycle has a potential to improve recovery of low-grade finite heat source.
Keywords: Ammonia-water, Rankine cycle, partial evaporating, thermodynamic performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10671983 An Approach for Coagulant Dosage Optimization Using Soft Jar Test: A Case Study of Bangkhen Water Treatment Plant
Authors: Ninlawat Phuangchoke, Waraporn Viyanon, Setta Sasananan
Abstract:
The most important process of the water treatment plant process is coagulation, which uses alum and poly aluminum chloride (PACL). Therefore, determining the dosage of alum and PACL is the most important factor to be prescribed. This research applies an artificial neural network (ANN), which uses the Levenberg–Marquardt algorithm to create a mathematical model (Soft Jar Test) for chemical dose prediction, as used for coagulation, such as alum and PACL, with input data consisting of turbidity, pH, alkalinity, conductivity, and, oxygen consumption (OC) of the Bangkhen Water Treatment Plant (BKWTP), under the authority of the Metropolitan Waterworks Authority of Thailand. The data were collected from 1 January 2019 to 31 December 2019 in order to cover the changing seasons of Thailand. The input data of ANN are divided into three groups: training set, test set, and validation set. The coefficient of determination and the mean absolute errors of the alum model are 0.73, 3.18 and the PACL model are 0.59, 3.21, respectively.
Keywords: Soft jar test, jar test, water treatment plant process, artificial neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6641982 Diversity and Structure of Trichoptera Communities and Water Quality Variables in Streams, Northern Thailand
Authors: T. Prommi, P. Thamsenanupap
Abstract:
The influence of physicochemical water quality parameters on the abundance and diversity of caddisfly larvae was studied in seven sampling stations in Mae Tao and Mae Ku watersheds, Mae Sot District, Tak Province, northern Thailand. The streams: MK2 and MK8 as reference site, and impacted streams (MT1-MT5) were sampled bi-monthly during July 2011 to May 2012. A total of 4,584 individual of caddisfly larvae belonging to 10 family and 17 genera were found. The larvae of family Hydropsychidae were the most abundance, followed by Philopotamidae, Odontoceridae, and Leptoceridae, respectively. The genus Cheumatopsyche, Hydropsyche, and Chimarra were the most abundance genera in this study. Results of CCA ordination showed the total dissolved solids, sulfate, water temperature, dissolved oxygen and pH were the most important physicochemical factors to affect distribution of caddisflies communities. Changes in the caddisfly fauna may indicate changes in physicochemical factors owing to agricultural pollution, urbanization, or other human activities. Results revealed that the order Trichoptera, identified to species or genus, can be potentially used to assess environmental water quality status in freshwater ecosystems.Keywords: Caddisfly larvae, environmental variables, diversity, streams.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21201981 Heavy Metal Contamination of the Landscape at the ─¢ubietová Deposit (Slovakia)
Authors: Peter Andráš, Adam Lichý, Jana Rusková, Lenka Matúšková
Abstract:
The heavy metal contamination of the technogenous sediments and soils at the investigated dump-field show irregular planar distribution. Also the heavy metal content in the surface water, drainage water and in the groundwater was studied both in the dry as well as during the rainy periods. The cementation process causes substitution of iron by copper. Natural installation and development of plant species was observed at the old mine waste dumps, specific to the local chemical conditions such as low content of essential nutrients and high content of heavy metals. The individual parts of the plant tissues (roots, branches/stems, leaves/needles, flowers/ fruits) are contaminated by heavy metals and tissues are damaged differently, respectively.Keywords: Contamination, dump-field, heavy metals, plants, sediment, water.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30831980 Effect of Operating Conditions on Forward Osmosis for Nutrient Rejection Using Magnesium Chloride as a Draw Solution
Authors: Yatnanta Padma Devia, Tsuyoshi Imai, Takaya Higuchi, Ariyo Kanno, Koichi Yamamoto, Masahiko Sekine
Abstract:
Advanced treatments such as forward osmosis (FO) can be used to separate or reject nutrients from secondary treated effluents. Forward osmosis uses the chemical potential across the membrane, which is the osmotic pressure gradient, to induce water to flow through the membrane from a feed solution (FS) into a draw solution (DS). The performance of FO is affected by the membrane characteristics, composition of the FS and DS, and operating conditions. The aim of this study was to investigate the optimum velocity and temperature for nutrient rejection and water flux performance in FO treatments. MgCl2 was used as the DS in the FO process. The results showed that higher cross flow velocities yielded higher water fluxes. High rejection of nutrients was achieved by using a moderate cross flow velocity at 0.25 m/s. Nutrient rejection was insensitive to temperature variation, whereas water flux was significantly impacted by it. A temperature of 25°C was found to be good for nutrient rejection.Keywords: Cross flow velocity, forward osmosis, magnesium chloride, temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26781979 Numerical Analysis of Flow through Abrasive Water Suspension Jet: The Effect of Garnet, Aluminum Oxide and Silicon Carbide Abrasive on Skin Friction Coefficient Due To Wall Shear and Jet Exit Kinetic Energy
Authors: Deepak D, Anjaiah D, Yagnesh Sharma N.
Abstract:
It is well known that the abrasive particles in the abrasive water suspension has significant effect on the erosion characteristics of the inside surface of the nozzle. Abrasive particles moving with the flow cause severe skin friction effect, there by altering the nozzle diameter due to wear which in turn reflects on the life of the nozzle for effective machining. Various commercial abrasives are available for abrasive water jet machining. The erosion characteristic of each abrasive is different. In consideration of this aspect, in the present work, the effect of abrasive materials namely garnet, aluminum oxide and silicon carbide on skin friction coefficient due to wall shear stress and jet kinetic energy has been analyzed. It is found that the abrasive material of lower density produces a relatively higher skin friction effect and higher jet exit kinetic energy.Keywords: Abrasive water suspension jet, Skin friction coefficient, Jet kinetic energy, Particulate loading, Stokes number.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21871978 Study of Heat Transfer of Nanofluids in a Circular Tube
Authors: M. Amoura, M. Alloti, A. Mouassi, N. Zeraibi
Abstract:
Heat transfer behavior of three different types of nanofluids flowing through a horizontal tube under laminar regime has been investigated numerically. The wall of tube is maintained at constant temperature. Al2O3-water, CuO-water and TiO2-water are used with different Reynolds number and different volume fraction. The numerical results of heat transfer indicate that the Nusselt number of nanofluids is larger than that of the base fluid. The Pressure loss coefficient decreases by increasing Reynolds number for all types of nanofluids. Results of Nusselt number enhancement and pressure loss coefficient enhancement indicate that Al2O3 nanoparticules give the best results in term of thermal-hydrolic properties.
Keywords: Heat transfer, Laminar flow, Nanofluid, Numerical study.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30671977 Biosorption of Heavy Metals Contaminating the Wonderfonteinspruit Catchment Area using Desmodesmus sp.
Authors: P.P. Diale, E. Muzenda, T.S. Matambo, D. Glasser, D. Hildebrandt, J. Zimba
Abstract:
A vast array of biological materials, especially algae have received increasing attention for heavy metal removal. Algae have been proven to be cheaper, more effective for the removal of metallic elements in aqueous solutions. A fresh water algal strain was isolated from Zoo Lake, Johannesburg, South Africa and identified as Desmodesmus sp. This paper investigates the efficacy of Desmodesmus sp.in removing heavy metals contaminating the Wonderfonteinspruit Catchment Area (WCA) water bodies. The biosorption data fitted the pseudo-second order and Langmuir isotherm models. The Langmuir maximum uptakes gave the sequence: Mn2+>Ni2+>Fe2+. The best results for kinetic study was obtained in concentration 120 ppm for Fe3+ and Mn2+, whilst for Ni2+ was at 20 ppm, which is about the same concentrations found in contaminated water in the WCA (Fe3+115 ppm, Mn2+ 121 ppm and Ni2+ 26.5 ppm).
Keywords: Biosorption, Green algae, Heavy metals, Remediation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20551976 Experimental Investigation of the Influence of Cement on Soil-Municipal Solid Incineration Fly Ash Mix Properties
Authors: G. Aouf, D. Tabbal, A. Sabsabi, R. Aouf
Abstract:
The aim of this study is to assess the viability of utilizing Municipal Solid Waste Incineration Fly Ash (MSWIFA) with Ordinary Portland cement as soil reinforcement materials for geotechnical engineering applications. A detailed experimental program is carried out followed by analysis of results. Soil samples were prepared by adding cement to MSWIFA-soil mix at different percentages. Then, a series of laboratory tests were performed namely: Sieve analysis, Atterberg limits tests, Unconfined compression test, and Proctor tests. A parametric study is conducted to investigate the effect of adding the cement at different percentages on the unconfined compression strength, maximum dry density (MDD), and optimum moisture content (OMC) of clayey soil-MSWIFA. The variations of admixtures’ contents were 10%, 20%, and 30% for MSWIFA by dry total weight of soil and 10%, 15%, and 20% for Portland cement by dry total weight of the mix. The test results reveal that adding MSWIFA to the soil up to 20% increased the MDD of the mixture and decreased the OMC, then an opposite trend for results were found when the percentage of MSWIFA exceeds 20%. This is due to the low specific gravity of MSWIFA and to the greater water absorption of MSWIFA. The laboratory tests also indicate that the Unconfined Compression Test values were found to be increased for all the mixtures with curing periods of 7, 14, and 28 days. It is also observed that the cement increased the strength of the finished product of the mix of soil and MSWIFA.
Keywords: Clayey soil, cement, Municipal Solid Waste Incineration Fly Ash, MSWIFA, unconfined compression strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3491975 A Numerical and Experimental Analysis of the Performance of a Combined Solar Unit for Air Conditioning and Water Desalination
Authors: Zied Guidara, Alexander Morgenstern, Aref Younes Maalej
Abstract:
In this paper, a desiccant solar unit for air conditioning and desalination is presented first. Secondly, a dynamic modelling study of the desiccant wheel is developed. After that, a simulation study and an experimental investigation of the behaviour of desiccant wheel are developed. The experimental investigation is done in the chamber of commerce in Freiburg-Germany. Indeed, the variations of calculated and measured temperatures and specific humidity of dehumidified and rejected air are presented where a good agreement is found when comparing the model predictions with experimental data under the considered range of operating conditions. Finally, the study of the compartments of desalination and water condensation shows that the unit can produce an acceptable quantity of water at the same time of the air conditioning operation.Keywords: Air conditioning, desalination, condensation, design, desiccant wheel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19971974 Genetic Programming: Principles, Applications and Opportunities for Hydrological Modelling
Authors: Oluwaseun K. Oyebode, Josiah A. Adeyemo
Abstract:
Hydrological modelling plays a crucial role in the planning and management of water resources, most especially in water stressed regions where the need to effectively manage the available water resources is of critical importance. However, due to the complex, nonlinear and dynamic behaviour of hydro-climatic interactions, achieving reliable modelling of water resource systems and accurate projection of hydrological parameters are extremely challenging. Although a significant number of modelling techniques (process-based and data-driven) have been developed and adopted in that regard, the field of hydrological modelling is still considered as one that has sluggishly progressed over the past decades. This is majorly as a result of the identification of some degree of uncertainty in the methodologies and results of techniques adopted. In recent times, evolutionary computation (EC) techniques have been developed and introduced in response to the search for efficient and reliable means of providing accurate solutions to hydrological related problems. This paper presents a comprehensive review of the underlying principles, methodological needs and applications of a promising evolutionary computation modelling technique – genetic programming (GP). It examines the specific characteristics of the technique which makes it suitable to solving hydrological modelling problems. It discusses the opportunities inherent in the application of GP in water related-studies such as rainfall estimation, rainfall-runoff modelling, streamflow forecasting, sediment transport modelling, water quality modelling and groundwater modelling among others. Furthermore, the means by which such opportunities could be harnessed in the near future are discussed. In all, a case for total embracement of GP and its variants in hydrological modelling studies is made so as to put in place strategies that would translate into achieving meaningful progress as it relates to modelling of water resource systems, and also positively influence decision-making by relevant stakeholders.
Keywords: Computational modelling, evolutionary algorithms, genetic programming, hydrological modelling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33291973 Flow Measurement Using Magnetic Meters in Large Underground Cooling Water Pipelines
Authors: Humanyun Zahir, Irtsam Ghazi
Abstract:
This paper outlines the basic installation and operation of magnetic inductive flow velocity sensors on large underground cooling water pipelines. Research on the effects of cathodic protection as well as into other factors that might influence the overall performance of the meter is presented in this paper. The experiments were carried out on an immersion type magnetic meter specially used for flow measurement of cooling water pipeline. An attempt has been made in this paper to outline guidelines that can ensure accurate measurement related to immersion type magnetic meters on underground pipelines.
Keywords: Magnetic Induction, Flow meter, Faradays law, Immersion, Cathodic protection, Anode, Cathode. Flange, Grounding, Plant information management system, Electrodes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26781972 Effects of Heavy Pumping and Artificial Groundwater Recharge Pond on the Aquifer System of Langat Basin, Malaysia
Authors: R. May, K. Jinno, I. Yusoff
Abstract:
The paper aims at evaluating the effects of heavy groundwater withdrawal and artificial groundwater recharge of an ex-mining pond to the aquifer system of the Langat Basin through the three-dimensional (3D) numerical modeling. Many mining sites have been left behind from the massive mining exploitations in Malaysia during the England colonization era and from the last few decades. These sites are able to accommodate more than a million cubic meters of water from precipitation, runoff, groundwater, and river. Most of the time, the mining sites are turned into ponds for recreational activities. In the current study, an artificial groundwater recharge from an ex-mining pond in the Langat Basin was proposed due to its capacity to store >50 million m3 of water. The location of the pond is near the Langat River and opposite a steel company where >4 million gallons of groundwater is withdrawn on a daily basis. The 3D numerical simulation was developed using the Groundwater Modeling System (GMS). The calibrated model (error about 0.7 m) was utilized to simulate two scenarios (1) Case 1: artificial recharge pond with no pumping and (2) Case 2: artificial pond with pumping. The results showed that in Case 1, the pond played a very important role in supplying additional water to the aquifer and river. About 90,916 m3/d of water from the pond, 1,173 m3/d from the Langat River, and 67,424 m3/d from the direct recharge of precipitation infiltrated into the aquifer system. In Case 2, due to the abstraction of groundwater from a company, it caused a steep depression around the wells, river, and pond. The result of the water budget showed an increase rate of inflow in the pond and river with 92,493m3/d and 3,881m3/d respectively. The outcome of the current study provides useful information of the aquifer behavior of the Langat Basin.
Keywords: Groundwater and surface water interaction, groundwater modeling, GMS, artificial recharge pond, ex-mining site.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26551971 Use of Recycled PVB as a Protection against Carbonation
Authors: Michael Tupý, Vít Petránek
Abstract:
The paper is focused on testing of the poly(vinyl butyral) (PVB) layer which had the function of a CO2 insulating protection against concrete and mortar carbonation. The barrier efficiency of PVB was verified by the measurement of diffusion characteristics. Two different types of PVB were tested; original extruded PVB sheet and PVB sheet made from PVB dispersion which was obtained from recycled windshields. The work deals with the testing CO2 diffusion when polymer sheets were exposed to a CO2 atmosphere (10% v/v CO2) with 0% RH. The excellent barrier capability against CO2 permeability of original and also recycled types of PVB layers was observed. This application of PVB waste can bring advantageous use in civil engineering and significant environmental contribution.
Keywords: Windshield, Poly(vinyl butyral), Mortar, Diffusion, Carbonatation, Polymer waste.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37091970 River Flow Prediction Using Nonlinear Prediction Method
Authors: N. H. Adenan, M. S. M. Noorani
Abstract:
River flow prediction is an essential to ensure proper management of water resources can be optimally distribute water to consumers. This study presents an analysis and prediction by using nonlinear prediction method involving monthly river flow data in Tanjung Tualang from 1976 to 2006. Nonlinear prediction method involves the reconstruction of phase space and local linear approximation approach. The phase space reconstruction involves the reconstruction of one-dimensional (the observed 287 months of data) in a multidimensional phase space to reveal the dynamics of the system. Revenue of phase space reconstruction is used to predict the next 72 months. A comparison of prediction performance based on correlation coefficient (CC) and root mean square error (RMSE) have been employed to compare prediction performance for nonlinear prediction method, ARIMA and SVM. Prediction performance comparisons show the prediction results using nonlinear prediction method is better than ARIMA and SVM. Therefore, the result of this study could be used to develop an efficient water management system to optimize the allocation water resources.
Keywords: River flow, nonlinear prediction method, phase space, local linear approximation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23651969 Strategy in Controlling Rice-Field Conversion in Pangkep Regency, South Sulawesi, Indonesia
Authors: Nurliani, Ida Rosada
Abstract:
The national rice consumption keeps increasing along with raising income of the households and the rapid growth of population. However, food availability, particularly rice, is limited. Impacts of rice-field conversion have run cumulatively, as we can see on potential losses of rice and crops production, as well as work opportunity that keeps increasing year-by-year. Therefore, it requires policy recommendation to control rice-field conversion through economic, social, and ecological approaches. The research was a survey method intended to: (1) Identify internal factors; quality and productivity of the land as the cause of land conversion, (2) Identify external factors of land conversion, value of the rice-field and the competitor’s land, workforce absorption, and regulation, as well as (3) Formulate strategies in controlling rice-field conversion. Population of the research was farmers who applied land conversion at Pangkep Regency, South Sulawesi. Samples were determined using the incidental sampling method. Data analysis used productivity analysis, land quality analysis, total economic value analysis, and SWOT analysis. Results of the research showed that the quality of rice-field was low as well as productivity of the grains (unhulled-rice). So that, average productivity of the grains and quality of rice-field were low as well. Total economic value of rice-field was lower than the economic value of the embankment. Workforce absorption value on rice-field was higher than on the embankment. Strategies in controlling such rice-field conversion can be done by increasing rice-field productivity, improving land quality, applying cultivation technique of specific location, improving the irrigation lines, and socializing regulation and sanction about the transfer of land use.
Keywords: Land conversion, quality of rice-field, land economic value, strategy in controlling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13141968 Modelling Phytoremediation Rates of Aquatic Macrophytes in Aquaculture Effluent
Authors: E. A. Kiridi, A. O. Ogunlela
Abstract:
Pollutants from aquacultural practices constitute environmental problems and phytoremediation could offer cheaper environmentally sustainable alternative since equipment using advanced treatment for fish tank effluent is expensive to import, install, operate and maintain, especially in developing countries. The main objective of this research was, therefore, to develop a mathematical model for phytoremediation by aquatic plants in aquaculture wastewater. Other objectives were to evaluate the retention times on phytoremediation rates using the model and to measure the nutrient level of the aquaculture effluent and phytoremediation rates of three aquatic macrophytes, namely; water hyacinth (Eichornia crassippes), water lettuce (Pistial stratoites) and morning glory (Ipomea asarifolia). A completely randomized experimental design was used in the study. Approximately 100 g of each macrophyte were introduced into the hydroponic units and phytoremediation indices monitored at 8 different intervals from the first to the 28th day. The water quality parameters measured were pH and electrical conductivity (EC). Others were concentration of ammonium–nitrogen (NH4+ -N), nitrite- nitrogen (NO2- -N), nitrate- nitrogen (NO3- -N), phosphate –phosphorus (PO43- -P), and biomass value. The biomass produced by water hyacinth was 438.2 g, 600.7 g, 688.2 g and 725.7 g at four 7–day intervals. The corresponding values for water lettuce were 361.2 g, 498.7 g, 561.2 g and 623.7 g and for morning glory were 417.0 g, 567.0 g, 642.0 g and 679.5g. Coefficient of determination was greater than 80% for EC, TDS, NO2- -N, NO3- -N and 70% for NH4+ -N using any of the macrophytes and the predicted values were within the 95% confidence interval of measured values. Therefore, the model is valuable in the design and operation of phytoremediation systems for aquaculture effluent.
Keywords: Phytoremediation, macrophytes, hydroponic unit, aquaculture effluent, mathematical model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16221967 Optimization of a Bioremediation Strategy for an Urban Stream of Matanza-Riachuelo Basin
Authors: María D. Groppa, Andrea Trentini, Myriam Zawoznik, Roxana Bigi, Carlos Nadra, Patricia L. Marconi
Abstract:
In the present work, a remediation bioprocess based on the use of a local isolate of the microalgae Chlorella vulgaris immobilized in alginate beads is proposed. This process was shown to be effective for the reduction of several chemical and microbial contaminants present in Cildáñez stream, a water course that is part of the Matanza-Riachuelo Basin (Buenos Aires, Argentina). The bioprocess, involving the culture of the microalga in autotrophic conditions in a stirred-tank bioreactor supplied with a marine propeller for 6 days, allowed a significant reduction of Escherichia coli and total coliform numbers (over 95%), as well as of ammoniacal nitrogen (96%), nitrates (86%), nitrites (98%), and total phosphorus (53%) contents. Pb content was also significantly diminished after the bioprocess (95%). Standardized cytotoxicity tests using Allium cepa seeds and Cildáñez water pre- and post-remediation were also performed. Germination rate and mitotic index of onion seeds imbibed in Cildáñez water subjected to the bioprocess was similar to that observed in seeds imbibed in distilled water and significantly superior to that registered when untreated Cildáñez water was used for imbibition. Our results demonstrate the potential of this simple and cost-effective technology to remove urban-water contaminants, offering as an additional advantage the possibility of an easy biomass recovery, which may become a source of alternative energy.
Keywords: Bioreactor, bioremediation, Chlorella vulgaris, Matanza-Riachuelo basin, microalgae.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8461966 Development of a Double Coating Technique for Recycled Concrete Aggregates Used in Hot-mix Asphalt
Authors: Abbaas I. Kareem, H. Nikraz
Abstract:
The use of recycled concrete aggregates (RCAs) in hot-mix asphalt (HMA) production could ease natural aggregate shortage and maintain sustainability in modern societies. However, it was the attached cement mortar and other impurities that make the RCAs behave differently than high-quality aggregates. Therefore, different upgrading treatments were suggested to enhance its properties before being used in HMA production. Disappointedly, some of these treatments had caused degradation to some RCA properties. In order to avoid degradation, a coating technique is developed. This technique is based on combining of two main treatments, so it is named as double coating technique (DCT). Dosages of 0%, 20%, 40% and 60% uncoated RCA, RCA coated with Cement Slag Paste (CSP), and Double Coated Recycled Concrete Aggregates (DCRCAs) in place of granite aggregates were evaluated. The results indicated that the DCT improves strength and reduces water absorption of the DCRCAs compared with uncoated RCAs and RCA coated with CSP. In addition, the DCRCA asphalt mixtures exhibit stability values higher than those obtained for mixes made with granite aggregates, uncoated RCAs and RCAs coated with CSP. Also, the DCRCA asphalt mixtures require less bitumen to achieve the optimum bitumen content (OBC) than those manufactured with uncoated RCA and RCA-coated with CSP. Although the results obtained were encouraging, more testing is required in order to examine the effect of the DCT on performance properties of DCRCA- asphalt mixtures such as rutting and fatigue.
Keywords: Recycled concrete aggregates, hot mix asphalt, double coating technique, aggregate crashed value, Marshall parameters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8421965 Development of Sustainable Farming Compartment with Treated Wastewater in Abu Dhabi
Authors: Jongwan Eun, Sam Helwany, Lakshyana K. C.
Abstract:
The United Arab Emirates (UAE) is significantly dependent on desalinated water and groundwater resource, which is expensive and highly energy intensive. Despite the scarce water resource, stagnates only 54% of the recycled water was reused in 2012, and due to the lack of infrastructure to reuse the recycled water, the portion is expected to decrease with growing water usage. In this study, an “Oasis” complex comprised of Sustainable Farming Compartments (SFC) was proposed for reusing treated wastewater. The wastewater is used to decrease the ambient temperature of the SFC via an evaporative cooler. The SFC prototype was designed, built, and tested in an environmentally controlled laboratory and field site to evaluate the feasibility and effectiveness of the SFC subjected to various climatic conditions in Abu Dhabi. Based on the experimental results, the temperature drop achieved in the SFC in the laboratory and field site were5 ̊C from 22 ̊C and 7- 15 ̊C (from 33-45 ̊C to average 28 ̊C at relative humidity < 50%), respectively. An energy simulation using TRNSYS was performed to extend and validate the results obtained from the experiment. The results from the energy simulation and experiments show statistically close agreement. The total power consumption of the SFC system was approximately three and a half times lower than that of an electrical air conditioner. Therefore, by using treated wastewater, the SFC has a promising prospect to solve Abu Dhabi’s ecological concern related to desertification and wind erosion.Keywords: Ecological farming system, energy simulation, evaporative cooling system, treated wastewater, temperature, humidity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13151964 Simulation of Sloshing-Shear Mixed Shallow Water Waves (II) Numerical Solutions
Authors: Weihao Chung, Iau-Teh Wang, Yu-Hsi Hu
Abstract:
This is the second part of the paper. It, aside from the core subroutine test reported previously, focuses on the simulation of turbulence governed by the full STF Navier-Stokes equations on a large scale. Law of the wall is found plausible in this study as a model of the boundary layer dynamics. Model validations proceed to include velocity profiles of a stationary turbulent Couette flow, pure sloshing flow simulations, and the identification of water-surface inclination due to fluid accelerations. Errors resulting from the irrotational and hydrostatic assumptions are explored when studying a wind-driven water circulation with no shakings. Illustrative examples show that this numerical strategy works for the simulation of sloshing-shear mixed flow in a 3-D rigid rectangular base tank.Keywords: potential flow theory, sloshing flow, space-timefiltering, order of accuracy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14921963 Effect of Domestic Treated Wastewater use on Three Varieties of Quinoa (Chenopodium quinoa) under Semi Arid Conditions
Authors: El Youssfi L., Choukr-Allah R., Zaafrani M., Mediouni T., Ba Samba M., Hirich A
Abstract:
The purpose of this work was to study the effect of the irrigation using waste water with various electric conductivities (T(0,92ds/m), EC3 (3ds/m) and EC6 (6ds/m) on three varieties of quinoa cultivated in a field south of Morocco. The follow up of the evolution of the chemical and agronomic parameters throughout the culture made it possible to determine the responses to the saline stress in arid conditions. Results showed that the salinity caused the depression of plant-s height, and reduced the fresh and dry weight in the different parts of the three varieties plants. The increase of the irrigation water EC didn-t affect the yield for the varieties. Thus, quinoa resisted to salinity and proved a behavior of a facultative halophyte crop. In fact, the cultivation of this using treated wastewater is feasible especially in arid areas for a sustainable use of water resources.Keywords: Quinoa, salinity, semi-arid, treated wastewater.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1908