Search results for: transient signal
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1523

Search results for: transient signal

773 Defect Prevention and Detection of DSP-software

Authors: Deng Shiwei

Abstract:

The users are now expecting higher level of DSP(Digital Signal Processing) software quality than ever before. Prevention and detection of defect are critical elements of software quality assurance. In this paper, principles and rules for prevention and detection of defect are suggested, which are not universal guidelines, but are useful for both novice and experienced DSP software developers.

Keywords: defect detection, defect prevention, DSP-software, software development, software testing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1778
772 3D Frictionless Contact Case between the Structure of E-Bike and the Ground

Authors: Lele Zhang, HuiLeng Choo, Alexander Konyukhov, Shuguang Li

Abstract:

China is currently the world's largest producer and distributor of electric bicycle (e-bike). The increasing number of e-bikes on the road is accompanied by rising injuries and even deaths of e-bike drivers. Therefore, there is a growing need to improve the safety structure of e-bikes. This 3D frictionless contact analysis is a preliminary, but necessary work for further structural design improvement of an e-bike. The contact analysis between e-bike and the ground was carried out as follows: firstly, the Penalty method was illustrated and derived from the simplest spring-mass system. This is one of the most common methods to satisfy the frictionless contact case; secondly, ANSYS static analysis was carried out to verify finite element (FE) models with contact pair (without friction) between e-bike and the ground; finally, ANSYS transient analysis was used to obtain the data of the penetration p(u) of e-bike with respect to the ground. Results obtained from the simulation are as estimated by comparing with that from theoretical method. In the future, protective shell will be designed following the stability criteria and added to the frame of e-bike. Simulation of side falling of the improvedsafety structure of e-bike will be confirmed with experimental data.

Keywords: Frictionless contact, penalty method, e-bike, finite element.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2084
771 Heat Transfer Modeling in Multi-Layer Cookware using Finite Element Method

Authors: Mohammad Reza Sedighi, Behnam Nilforooshan Dardashti

Abstract:

The high temperature degree and uniform Temperature Distribution (TD) on surface of cookware which contact with food are effective factors for improving cookware application. Additionally, the ability of pan material in retaining the heat and nonreactivity with foods are other significant properties. It is difficult for single material to meet a wide variety of demands such as superior thermal and chemical properties. Multi-Layer Plate (MLP) makes more regular TD. In this study the main objectives are to find the best structure (single or multi-layer) and materials to provide maximum temperature degree and uniform TD up side surface of pan. And also heat retaining of used metals with goal of improving the thermal quality of pan to economize the energy. To achieve this aim were employed Finite Element Method (FEM) for analyzing transient thermal behavior of applied materials. The analysis has been extended for different metals, we achieved the best temperature profile and heat retaining in Copper/ Stainless Steel MLP.

Keywords: Cookware, Energy optimization, Heat retaining, Laminated plate, Temperature distribution

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2363
770 Simulation of Non-Linear Behavior of Shear Wall under Seismic Loading

Authors: M. A. Ghorbani, M. Pasbani Khiavi

Abstract:

The seismic response of steel shear wall system considering nonlinearity effects using finite element method is investigated in this paper. The non-linear finite element analysis has potential as usable and reliable means for analyzing of civil structures with the availability of computer technology. In this research the large displacements and materially nonlinear behavior of shear wall is presented with developing of finite element code. A numerical model based on the finite element method for the seismic analysis of shear wall is presented with developing of finite element code in this research. To develop the finite element code, the standard Galerkin weighted residual formulation is used. Two-dimensional plane stress model and total Lagrangian formulation was carried out to present the shear wall response and the Newton-Raphson method is applied for the solution of nonlinear transient equations. The presented model in this paper can be developed for analysis of civil engineering structures with different material behavior and complicated geometry.

Keywords: Finite element, steel shear wall, nonlinear, earthquake

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1821
769 Model Reduction of Linear Systems by Conventional and Evolutionary Techniques

Authors: S. Panda, S. K. Tomar, R. Prasad, C. Ardil

Abstract:

Reduction of Single Input Single Output (SISO) continuous systems into Reduced Order Model (ROM), using a conventional and an evolutionary technique is presented in this paper. In the conventional technique, the mixed advantages of Mihailov stability criterion and continued fraction expansions (CFE) technique is employed where the reduced denominator polynomial is derived using Mihailov stability criterion and the numerator is obtained by matching the quotients of the Cauer second form of Continued fraction expansions. In the evolutionary technique method Particle Swarm Optimization (PSO) is employed to reduce the higher order model. PSO method is based on the minimization of the Integral Squared Error (ISE) between the transient responses of original higher order model and the reduced order model pertaining to a unit step input. Both the methods are illustrated through numerical example.

Keywords: Reduced Order Modeling, Stability, Continued Fraction Expansions, Mihailov Stability Criterion, Particle Swarm Optimization, Integral Squared Error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1908
768 Nonlinear Analysis of Shear Wall Using Finite Element Model

Authors: M. A. Ghorbani, M. Pasbani Khiavi, F. Rezaie Moghaddam

Abstract:

In the analysis of structures, the nonlinear effects due to large displacement, large rotation and materially-nonlinear are very important and must be considered for the reliable analysis. The non-linear fmite element analysis has potential as usable and reliable means for analyzing of civil structures with the availability of computer technology. In this research the large displacements and materially nonlinear behavior of shear wall is presented with developing of fmite element code using the standard Galerkin weighted residual formulation. Two-dimensional plane stress model was carried out to present the shear wall response. Total Lagangian formulation, which is computationally more effective, is used in the formulation of stiffness matrices and the Newton-Raphson method is applied for the solution of nonlinear transient equations. The details of the program formulation are highlighted and the results of the analyses are presented, along with a comparison of the response of the structure with Ansys software results. The presented model in this paper can be developed for nonlinear analysis of civil engineering structures with different material behavior and complicated geometry.

Keywords: Finite element, large displacements, materially nonlinear, shear wall.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1727
767 Multiscale Syntheses of Knee Collateral Ligament Stresses: Aggregate Mechanics as a Function of Molecular Properties

Authors: Raouf Mbarki, Fadi Al Khatib, Malek Adouni

Abstract:

Knee collateral ligaments play a significant role in restraining excessive frontal motion (varus/valgus rotations). In this investigation, a multiscale frame was developed based on structural hierarchies of the collateral ligaments starting from the bottom (tropocollagen molecule) to up where the fibred reinforced structure established. Experimental data of failure tensile test were considered as the principal driver of the developed model. This model was calibrated statistically using Bayesian calibration due to the high number of unknown parameters. Then the model is scaled up to fit the real structure of the collateral ligaments and simulated under realistic boundary conditions. Predications have been successful in describing the observed transient response of the collateral ligaments during tensile test under pre- and post-damage loading conditions. Collateral ligaments maximum stresses and strengths were observed near to the femoral insertions, a results that is in good agreement with experimental investigations. Also for the first time, damage initiation and propagation were documented with this model as a function of the cross-link density between tropocollagen molecules.

Keywords: Multiscale model, tropocollagen, fibrils, ligaments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 578
766 Experimental Study of Fuel Tank Filling

Authors: Maurizio Mastroianni, Lou Savoni, Paul Henshaw, Gary W. Rankin

Abstract:

The refueling of a transparent rectangular fuel tank fitted with a standard filler pipe and roll-over valve was experimentally studied. A fuel-conditioning cart, capable of handling fuels of different Reid vapor pressure at a constant temperature, was used to dispense fuel at the desired rate. The experimental protocol included transient recording of the tank and filler tube pressures while video recording the flow patterns in the filler tube and tank during the refueling process. This information was used to determine the effect of changes in the vent tube diameter, fuel-dispense flow rate and fuel Reid vapor pressure on the pressure-time characteristics and the occurrence of premature fuel filling shut-off and fuel spill-back. Pressure-time curves for the case of normal shut-off demonstrated the classic, three-phase characteristic noted in the literature. The variation of the maximum values of tank dome and filler tube pressures are analyzed in relation to the occurrence of premature shut-off.

Keywords: experimental study, fuel tank filling, premature shutoff, spill-back

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4181
765 Harmonic Analysis and Performance Improvement of a Wind Energy Conversions System with Double Output Induction Generator

Authors: M. Sedighizadeh, A. Rezazadeh

Abstract:

Wind turbines with double output induction generators can operate at variable speed permitting conversion efficiency maximization over a wide range of wind velocities. This paper presents the performance analysis of a wind driven double output induction generator (DOIG) operating at varying shafts speed. A periodic transient state analysis of DOIG equipped with two converters is carried out using a hybrid induction machine model. This paper simulates the harmonic content of waveforms in various points of drive at different speeds, based on the hybrid model (dqabc). Then the sinusoidal and trapezoidal pulse-width–modulation control techniques are used in order to improve the power factor of the machine and to weaken the injected low order harmonics to the supply. Based on the frequency spectrum, total harmonics distortion, distortion factor and power factor. Finally advantages of sinusoidal and trapezoidal pulse width modulation techniques are compared.

Keywords: DOIG, Harmonic Analysis, Wind.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1782
764 Improving the Voltage Level in High Voltage Direct Current Systems by Using Modular Multilevel Converter

Authors: G. Kishor Babu, B. Madhu Kiran

Abstract:

This paper presented an intend scheme of Modular-Multilevel-Converter (MMC) levels for move towering the practical conciliation flanked by the precision and divisional competence. The whole process is standard by a Thevenin-equivalent 133-level MMC model. Firstly the computation scheme of the fundamental limit imitation time step is offered to faithfully represent each voltage level of waveforms. Secondly the earlier industrial Improved Analytic Hierarchy Process (IAHP) is adopted to integrate the relative errors of all the input electrical factors interested in one complete virtual fault on each converter level. Thirdly the stable AC and DC ephemeral condition in virtual faults effects of all the forms stabilize and curve integral stand on the standard form. Finally the optimal MMC level will be obtained by the drown curves and it will give individual weights allowing for the precision and efficiency. And the competence and potency of the scheme are validated by model on MATLAB Simulink.

Keywords: Modular multilevel converter, improved analytic hierarchy process, ac and dc transient, high voltage direct current, voltage sourced converter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 571
763 Investigations of Natural Convective Heat Transfer in Rectangular Thermal Passages

Authors: Hussain H. Al-Kayiem, Ahmed K. Hussein, Toh Seng Peow

Abstract:

The evaluation of the convective heat transfer of flow in passages with rectangular cross section is still of interest for the heat transfer investigators, as in the air heater solar collectors. The aim of this paper is to present investigation results on the natural convection heat transfer in a solar air heater. The effect of the channel length as heat transfer surface and the inclination of the passage were investigated. The results were obtained experimentally and theoretically. For that, an experimental test rig was fabricated with channel lengths of 1m, 1.5m, and 2m. For each length, the air outlet and inlet temperatures, absorber and cover temperatures, solar radiation intensity and air flow rate were measured at 10o, 30o, 50o, 70o, and 90o tilt angles. Measurements were recorded every 2 hours interval to investigate the transient behavior of the system. The experimental and theoretical results are presented in terms of Nu number versus Ra number and discussed. The percentages of differences between experimental and theoretical results are within the margin of 6% to 13%, effectively. It is recommended to extend the investigation to study the same configurations with different artificial surface roughing by ribs or pins.

Keywords: Convective heat transfer, Flat plate, Natural convection, Passage flow, Solar energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2050
762 Design and Analysis of Fault Tolerate feature of n-Phase Induction Motor Drive

Authors: G. Renuka Devi

Abstract:

This paper presents design and analysis of fault tolerate feature of n-phase induction motor drive. The n-phase induction motor (more than 3-phases) has a number of advantages over conventional 3-phase induction motor, it has low torque pulsation with increased torque density, more fault tolerant feature, low current ripple with increased efficiency. When increasing the number of phases, it has reduced current per phase without increasing per phase voltage, resulting in an increase in the total power rating of n-phase motors in the same volume machine. In this paper, the theory of operation of a multi-phase induction motor is discussed. The detailed study of d-q modeling of n-phase induction motors is elaborated. The d-q model of n-phase (5, 6, 7, 9 and 12) induction motors is developed in a MATLAB/Simulink environment. The steady state and dynamic performance of the multi-phase induction motor is studied under varying load conditions. Comparison of 5-phase induction is presented under normal and fault conditions.

Keywords: d-q model, dynamic Response, fault tolerant feature, matlab/simulink, multi-phase induction motor, transient response.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 546
761 Developing a Regulator for Improving the Operation Modes of the Electrical Drive Motor

Authors: Baghdasaryan Marinka

Abstract:

The operation modes of the synchronous motors used in the production processes are greatly conditioned by the accidentally changing technological and power indices.  As a result, the electrical drive synchronous motor may appear in irregular operation regimes. Although there are numerous works devoted to the development of the regulator for the synchronous motor operation modes, their application for the motors working in the irregular modes is not expedient. In this work, to estimate the issues concerning the stability of the synchronous electrical drive system, the transfer functions of the electrical drive synchronous motors operating in the synchronous and induction modes have been obtained.  For that purpose, a model for investigating the frequency characteristics has been developed in the LabView environment. Frequency characteristics for assessing the transient process of the electrical drive system, operating in the synchronous and induction modes have been obtained, and based on their assessment, a regulator for improving the operation modes of the motor has been proposed. The proposed regulator can be successfully used to prevent the irregular modes of the electrical drive synchronous motor, as well as to estimate the operation state of the drive motor of the mechanism with a changing load.

Keywords: Electrical drive system, synchronous motor, regulator, stability, transition process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 680
760 Thermo-Mechanical Analysis of Dissimilar Al/Cu Foil Single Lap Joints Made by Composite Metal Foil Manufacturing

Authors: Javaid Butt, Habtom Mebrahtu, Hassan Shirvani

Abstract:

The paper presents an additive manufacturing process for the production of metal and composite parts. It is termed as composite metal foil manufacturing and is a combination of laminated object manufacturing and brazing techniques. The process has been described in detail and is being used to produce dissimilar aluminum to copper foil single lap joints. A three dimensional finite element model has been developed to study the thermo-mechanical characteristics of the dissimilar Al/Cu single lap joint. The effects of thermal stress and strain have been analyzed by carrying out transient thermal analysis on the heated plates used to join the two 0.1mm thin metal foils. Tensile test has been carried out on the foils before joining and after the single Al/Cu lap joints are made, they are subjected to tensile lap-shear test to analyze the effect of heat on the foils. The analyses are designed to assess the mechanical integrity of the foils after the brazing process and understand whether or not the heat treatment has an effect on the fracture modes of the produced specimens.

Keywords: Brazing, Laminated Object Manufacturing, Tensile Lap-Shear Test, Thermo-Mechanical Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1882
759 Compression and Filtering of Random Signals under Constraint of Variable Memory

Authors: Anatoli Torokhti, Stan Miklavcic

Abstract:

We study a new technique for optimal data compression subject to conditions of causality and different types of memory. The technique is based on the assumption that some information about compressed data can be obtained from a solution of the associated problem without constraints of causality and memory. This allows us to consider two separate problem related to compression and decompression subject to those constraints. Their solutions are given and the analysis of the associated errors is provided.

Keywords: stochastic signals, optimization problems in signal processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1318
758 CdS Quantum Dots as Fluorescent Probes for Detection of Naphthalene

Authors: Zhengyu Yan, Yan Yu, Jianqiu Chen

Abstract:

A novel sensing system has been designed for naphthalene detection based on the quenched fluorescence signal of CdS quantum dots. The fluorescence intensity of the system reduced significantly after adding CdS quantum dots to the water pollution model because of the fluorescent static quenching f mechanism. Herein, we have demonstrated the facile methodology can offer a convenient and low analysis cost with the recovery rate as 97.43%-103.2%, which has potential application prospect.

Keywords: CdS quantum dots, modification, detection, naphthalene.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1254
757 On Discretization of Second-order Derivatives in Smoothed Particle Hydrodynamics

Authors: R. Fatehi, M.A. Fayazbakhsh, M.T. Manzari

Abstract:

Discretization of spatial derivatives is an important issue in meshfree methods especially when the derivative terms contain non-linear coefficients. In this paper, various methods used for discretization of second-order spatial derivatives are investigated in the context of Smoothed Particle Hydrodynamics. Three popular forms (i.e. "double summation", "second-order kernel derivation", and "difference scheme") are studied using one-dimensional unsteady heat conduction equation. To assess these schemes, transient response to a step function initial condition is considered. Due to parabolic nature of the heat equation, one can expect smooth and monotone solutions. It is shown, however in this paper, that regardless of the type of kernel function used and the size of smoothing radius, the double summation discretization form leads to non-physical oscillations which persist in the solution. Also, results show that when a second-order kernel derivative is used, a high-order kernel function shall be employed in such a way that the distance of inflection point from origin in the kernel function be less than the nearest particle distance. Otherwise, solutions may exhibit oscillations near discontinuities unlike the "difference scheme" which unconditionally produces monotone results.

Keywords: Heat conduction, Meshfree methods, Smoothed ParticleHydrodynamics (SPH), Second-order derivatives.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3068
756 An Experimental and Numerical Investigation on Gas Hydrate Plug Flow in the Inclined Pipes and Bends

Authors: M. M. Shabani, O. J. Nydal, R. Larsen

Abstract:

Gas hydrates can agglomerate and block multiphase oil and gas pipelines when water is present at hydrate forming conditions. Using "Cold Flow Technology", the aim is to condition gas hydrates so that they can be transported as a slurry mixture without a risk of agglomeration. During the pipeline shut down however, hydrate particles may settle in bends and build hydrate plugs. An experimental setup has been designed and constructed to study the flow of such plugs at start up operations. Experiments have been performed using model fluid and model hydrate particles. The propagations of initial plugs in a bend were recorded with impedance probes along the pipe. The experimental results show a dispersion of the plug front. A peak in pressure drop was also recorded when the plugs were passing the bend. The evolutions of the plugs have been simulated by numerical integration of the incompressible mass balance equations, with an imposed mixture velocity. The slip between particles and carrier fluid has been calculated using a drag relation together with a particle-fluid force balance.

Keywords: Cold Flow Technology, Gas Hydrate Plug Flow Experiments, One Dimensional Incompressible Two Fluid Model, Slurry Flow in Inclined Pipes and Bends, Transient Slurry Flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2088
755 Taguchi Robust Design for Optimal Setting of Process Wastes Parameters in an Automotive Parts Manufacturing Company

Authors: Charles Chikwendu Okpala, Christopher Chukwutoo Ihueze

Abstract:

As a technique that reduces variation in a product by lessening the sensitivity of the design to sources of variation, rather than by controlling their sources, Taguchi Robust Design entails the designing of ideal goods, by developing a product that has minimal variance in its characteristics and also meets the desired exact performance. This paper examined the concept of the manufacturing approach and its application to brake pad product of an automotive parts manufacturing company. Although the firm claimed that only defects, excess inventory, and over-production were the few wastes that grossly affect their productivity and profitability, a careful study and analysis of their manufacturing processes with the application of Single Minute Exchange of Dies (SMED) tool showed that the waste of waiting is the fourth waste that bedevils the firm. The selection of the Taguchi L9 orthogonal array which is based on the four parameters and the three levels of variation for each parameter revealed that with a range of 2.17, that waiting is the major waste that the company must reduce in order to continue to be viable. Also, to enhance the company’s throughput and profitability, the wastes of over-production, excess inventory, and defects with ranges of 2.01, 1.46, and 0.82, ranking second, third, and fourth respectively must also be reduced to the barest minimum. After proposing -33.84 as the highest optimum Signal-to-Noise ratio to be maintained for the waste of waiting, the paper advocated for the adoption of all the tools and techniques of Lean Production System (LPS), and Continuous Improvement (CI), and concluded by recommending SMED in order to drastically reduce set up time which leads to unnecessary waiting.

Keywords: Taguchi Robust Design, signal to noise ratio, Single Minute Exchange of Dies, lean production system, waste.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 951
754 Classifying Turbomachinery Blade Mode Shapes Using Artificial Neural Networks

Authors: Ismail Abubakar, Hamid Mehrabi, Reg Morton

Abstract:

Currently, extensive signal analysis is performed in order to evaluate structural health of turbomachinery blades. This approach is affected by constraints of time and the availability of qualified personnel. Thus, new approaches to blade dynamics identification that provide faster and more accurate results are sought after. Generally, modal analysis is employed in acquiring dynamic properties of a vibrating turbomachinery blade and is widely adopted in condition monitoring of blades. The analysis provides useful information on the different modes of vibration and natural frequencies by exploring different shapes that can be taken up during vibration since all mode shapes have their corresponding natural frequencies. Experimental modal testing and finite element analysis are the traditional methods used to evaluate mode shapes with limited application to real live scenario to facilitate a robust condition monitoring scheme. For a real time mode shape evaluation, rapid evaluation and low computational cost is required and traditional techniques are unsuitable. In this study, artificial neural network is developed to evaluate the mode shape of a lab scale rotating blade assembly by using result from finite element modal analysis as training data. The network performance evaluation shows that artificial neural network (ANN) is capable of mapping the correlation between natural frequencies and mode shapes. This is achieved without the need of extensive signal analysis. The approach offers advantage from the perspective that the network is able to classify mode shapes and can be employed in real time including simplicity in implementation and accuracy of the prediction. The work paves the way for further development of robust condition monitoring system that incorporates real time mode shape evaluation.

Keywords: Modal analysis, artificial neural network, mode shape, natural frequencies, pattern recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 884
753 Three-Dimensional, Non-Linear Finite Element Analysis of Bullet Penetration through Thin AISI 4340 Steel Target Plate

Authors: Abhishek Soni, A. Kumaraswamy, M. S. Mahesh

Abstract:

Bullet penetration in steel plate is investigated with the help of three-dimensional, non-linear, transient, dynamic, finite elements analysis using explicit time integration code LSDYNA. The effect of large strain, strain-rate and temperature at very high velocity regime was studied from number of simulations of semi-spherical nose shape bullet penetration through single layered circular plate with 2 mm thickness at impact velocities of 500, 1000, and 1500 m/s with the help of Johnson Cook material model. Mie-Gruneisen equation of state is used in conjunction with Johnson Cook material model to determine pressure-volume relationship at various points of interests. Two material models viz. Plastic-Kinematic and Johnson- Cook resulted in different deformation patterns in steel plate. It is observed from the simulation results that the velocity drop and loss of kinetic energy occurred very quickly up to perforation of plate, after that the change in velocity and changes in kinetic energy are negligibly small. The physics behind this kind of behaviour is presented in the paper.

Keywords: AISI 4340 steel, ballistic impact simulation, bullet penetration, non-linear FEM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1240
752 Temperature-Based Detection of Initial Yielding Point in Loading of Tensile Specimens Made of Structural Steel

Authors: Aqsa Jamil, Hiroshi Tamura, Hiroshi Katsuchi, Jiaqi Wang

Abstract:

Yield point represents the upper limit of forces which can be applied on a specimen without causing any permanent deformation. After yielding, the behavior of specimen suddenly changes including the possibility of cracking or buckling. So, the accumulation of damage or type of fracture changes depending on this condition. As it is difficult to accurately detect yield points of the several stress concentration points in structural steel specimens, an effort has been made in this research work to develop a convenient technique using thermography (temperature-based detection) during tensile tests for the precise detection of yield point initiation. To verify the applicability of thermography camera, tests were conducted under different loading conditions and measuring the deformation by installing various strain gauges and monitoring the surface temperature with the help of thermography camera. The yield point of specimens was estimated by the help of temperature dip which occurs due to the thermoelastic effect during the plastic deformation. The scattering of the data has been checked by performing repeatability analysis. The effect of temperature imperfection and light source has been checked by carrying out the tests at daytime as well as midnight and by calculating the signal to noise ratio (SNR) of the noised data from the infrared thermography camera, it can be concluded that the camera is independent of testing time and the presence of a visible light source. Furthermore, a fully coupled thermal-stress analysis has been performed by using Abaqus/Standard exact implementation technique to validate the temperature profiles obtained from the thermography camera and to check the feasibility of numerical simulation for the prediction of results extracted with the help of thermographic technique.

Keywords: Signal to noise ratio, thermoelastic effect, thermography, yield point.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 327
751 Numerical Investigation of Hot Oil Velocity Effect on Force Heat Convection and Impact of Wind Velocity on Convection Heat Transfer in Receiver Tube of Parabolic Trough Collector System

Authors: O. Afshar

Abstract:

A solar receiver is designed for operation under extremely uneven heat flux distribution, cyclic weather, and cloud transient cycle conditions, which can include large thermal stress and even receiver failure. In this study, the effect of different oil velocity on convection coefficient factor and impact of wind velocity on local Nusselt number by Finite Volume Method will be analyzed. This study is organized to give an overview of the numerical modeling using a MATLAB software, as an accurate, time efficient and economical way of analyzing the heat transfer trends over stationary receiver tube for different Reynolds number. The results reveal when oil velocity is below 0.33m/s, the value of convection coefficient is negligible at low temperature. The numerical graphs indicate that when oil velocity increases up to 1.2 m/s, heat convection coefficient increases significantly. In fact, a reduction in oil velocity causes a reduction in heat conduction through the glass envelope. In addition, the different local Nusselt number is reduced when the wind blows toward the concave side of the collector and it has a significant effect on heat losses reduction through the glass envelope.

Keywords: Receiver tube, heat convection, heat conduction, Nusselt number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1880
750 Dynamic Response of Strain Rate Dependent Glass/Epoxy Composite Beams Using Finite Difference Method

Authors: M. M. Shokrieh, A. Karamnejad

Abstract:

This paper deals with a numerical analysis of the transient response of composite beams with strain rate dependent mechanical properties by use of a finite difference method. The equations of motion based on Timoshenko beam theory are derived. The geometric nonlinearity effects are taken into account with von Kármán large deflection theory. The finite difference method in conjunction with Newmark average acceleration method is applied to solve the differential equations. A modified progressive damage model which accounts for strain rate effects is developed based on the material property degradation rules and modified Hashin-type failure criteria and added to the finite difference model. The components of the model are implemented into a computer code in Mathematica 6. Glass/epoxy laminated composite beams with constant and strain rate dependent mechanical properties under dynamic load are analyzed. Effects of strain rate on dynamic response of the beam for various stacking sequences, load and boundary conditions are investigated.

Keywords: Composite beam, Finite difference method, Progressive damage modeling, Strain rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1974
749 Javanese Character Recognition Using Hidden Markov Model

Authors: Anastasia Rita Widiarti, Phalita Nari Wastu

Abstract:

Hidden Markov Model (HMM) is a stochastic method which has been used in various signal processing and character recognition. This study proposes to use HMM to recognize Javanese characters from a number of different handwritings, whereby HMM is used to optimize the number of state and feature extraction. An 85.7 % accuracy is obtained as the best result in 16-stated vertical model using pure HMM. This initial result is satisfactory for prompting further research.

Keywords: Character recognition, off-line handwritingrecognition, Hidden Markov Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1973
748 Hydrodynamic Simulation of Co-Current and Counter Current of Column Distillation Using Euler Lagrange Approach

Authors: H. Troudi, M. Ghiss, Z. Tourki, M. Ellejmi

Abstract:

Packed columns of liquefied petroleum gas (LPG) consists of separating the liquid mixture of propane and butane to pure gas components by the distillation phenomenon. The flow of the gas and liquid inside the columns is operated by two ways: The co-current and the counter current operation. Heat, mass and species transfer between phases represent the most important factors that influence the choice between those two operations. In this paper, both processes are discussed using computational CFD simulation through ANSYS-Fluent software. Only 3D half section of the packed column was considered with one packed bed. The packed bed was characterized in our case as a porous media. The simulations were carried out at transient state conditions. A multi-component gas and liquid mixture were used out in the two processes. We utilized the Euler-Lagrange approach in which the gas was treated as a continuum phase and the liquid as a group of dispersed particles. The heat and the mass transfer process was modeled using multi-component droplet evaporation approach. The results show that the counter-current process performs better than the co-current, although such limitations of our approach are noted. This comparison gives accurate results for computations times higher than 2 s, at different gas velocity and at packed bed porosity of 0.9.

Keywords: Co-current, counter current, Euler Lagrange model, heat transfer, mass transfer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1341
747 A Comprehensive Approach in Calculating the Impact of the Ground on Radiated Electromagnetic Fields Due to Lightning

Authors: Lahcene Boukelkoul

Abstract:

The influence of finite ground conductivity is of great importance in calculating the induced voltages from the radiated electromagnetic fields due to lightning. In this paper, we try to give a comprehensive approach to calculate the impact of the ground on the radiated electromagnetic fields to lightning. The vertical component of lightning electric field is calculated with a reasonable approximation assuming a perfectly conducting ground in case the observation point does not exceed a few kilometers from the lightning channel. However, for distant observation points the radiated vertical component of lightning electric field is attenuated due finitely conducting ground. The attenuation is calculated using the expression elaborated for both low and high frequencies. The horizontal component of the electric field, however, is more affected by a finite conductivity of a ground. Besides, the contribution of the horizontal component of the electric field, to induced voltages on an overhead transmission line, is greater than that of the vertical component. Therefore, the calculation of the horizontal electric field is great concern for the simulation of lightning-induced voltages. For field to transmission lines coupling the ground impedance is calculated for early time behavior and for low frequency range.

Keywords: Ground impedance, horizontal electric field, lightning, transient propagation, vertical electric field.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1857
746 CFD Simulations to Validate Two and Three Phase Up-flow in Bubble Columns

Authors: Shyam Kumar, Nannuri Srinivasulu, Ashok Khanna

Abstract:

Bubble columns have a variety of applications in absorption, bio-reactions, catalytic slurry reactions, and coal liquefaction; because they are simple to operate, provide good heat and mass transfer, having less operational cost. The use of Computational Fluid Dynamics (CFD) for bubble column becomes important, since it can describe the fluid hydrodynamics on both local and global scale. Euler- Euler two-phase fluid model has been used to simulate two-phase (air and water) transient up-flow in bubble column (15cm diameter) using FLUENT6.3. These simulations and experiments were operated over a range of superficial gas velocities in the bubbly flow and churn turbulent regime (1 to16 cm/s) at ambient conditions. Liquid velocity was varied from 0 to 16cm/s. The turbulence in the liquid phase is described using the standard k-ε model. The interactions between the two phases are described through drag coefficient formulations (Schiller Neumann). The objectives are to validate CFD simulations with experimental data, and to obtain grid-independent numerical solutions. Quantitatively good agreements are obtained between experimental data for hold-up and simulation values. Axial liquid velocity profiles and gas holdup profiles were also obtained for the simulation.

Keywords: Bubble column, Computational fluid dynamics, Gas holdup profile, k-ε model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2696
745 Novel Linear Autozeroing Floating-gate Amplifier for Ultra Low-voltage Applications

Authors: Yngvar Berg, Mehdi Azadmehr

Abstract:

In this paper we present a linear autozeroing ultra lowvoltage amplifier. The autozeroing performed by all ULV circuits is important to reduce the impact of noise and especially avoid power supply noise in mixed signal low-voltage CMOS circuits. The simulated data presented is relevant for a 90nm TSMC CMOS process.

Keywords: Low-voltage, trans conductance amplifier, linearity, floating-gate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1369
744 MPSO based Model Order Formulation Technique for SISO Continuous Systems

Authors: S. N. Deepa, G. Sugumaran

Abstract:

This paper proposes a new version of the Particle Swarm Optimization (PSO) namely, Modified PSO (MPSO) for model order formulation of Single Input Single Output (SISO) linear time invariant continuous systems. In the General PSO, the movement of a particle is governed by three behaviors namely inertia, cognitive and social. The cognitive behavior helps the particle to remember its previous visited best position. In Modified PSO technique split the cognitive behavior into two sections like previous visited best position and also previous visited worst position. This modification helps the particle to search the target very effectively. MPSO approach is proposed to formulate the higher order model. The method based on the minimization of error between the transient responses of original higher order model and the reduced order model pertaining to the unit step input. The results obtained are compared with the earlier techniques utilized, to validate its ease of computation. The proposed method is illustrated through numerical example from literature.

Keywords: Continuous System, Model Order Formulation, Modified Particle Swarm Optimization, Single Input Single Output, Transfer Function Approach

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1765